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Background: Approximate Computing

* Goal: trading off accuracy for energy efficiency

* Bag of tricks
* Precision reduction
» Computation perforation
* Approximate consistency
» Hardware simplification
* Embrace of errors

* Robust means required to quantify accuracy loss under approximation
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Background: Accuracy Metrics

* Numeric
* Measure deviation from non-approximated value per output element
* Metrics differ by the definition of deviation
* Multi-dimensional output: distortion
* Average deviation across all output elements

* Clustering, sorting, searching
* Mismatch-based

e Multi-media
 PSNR, SSIM
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Pitfalls & Fallacies: Accuracy = Validity

Compression N-body simulation
Accuracy Metric: file size Accuracy metric: average displacement
approximate exact approximate
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Pitfalls & Fallacies: Accuracy = Validity

Compression N-body simulation
Accuracy Metric: file size Accuracy metric: average displacement
exact approximate exact approximate
N -\ | —1 | —1

P On Quantification of Accuracy Loss in Approximate Computing 7 06/14/2015 M




Pitfalls & Fallacies: Baseline for Normalization
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displacement from exact position
exact distance from origin (exact position)
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Pitfalls & Fallacies: Baseline for Normalization
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Pitfalls & Fallacies: Baseline for Normalization
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Pitfalls & Fallacies: Baseline for Normalization
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Pitfalls & Fallacies: Averaging Effects

1000 elements
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Pitfalls & Fallacies: Averaging Effects

1000 elements
N
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For variation-awareness, extremes of deviation should be reported
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Pitfalls & Fallacies: Non-determinism

1. Approximation induced
2. Application induced
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Non-determinism: Approximation induced
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Non-determinism: Approximation induced
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Non-determinism: Approximation induced
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Non-determinism: Application induced
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Non-determinism: Application induced
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Impact of Input Data: Size
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Impact of Input Data: Value

low noise

# occurence
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Impact of Input Data: Value

medium noise
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Impact of Input Data: Value

high noise
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Impact of Input Data: Value
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Pitfalls & Fallacies: Accuracy # Acceptability

 Acceptability depends on the context
» Reporting trade-off spaces, pareto fronts, ... is more meaningful

>

accuracy loss

-

energy efficiency
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Pitfalls & Fallacies: Accuracy # Acceptability

 Acceptability depends on the context

» Reporting trade-off spaces, pareto fronts, ... is more meaningful

Context-oblivious studies should report trade-off spaces
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Output Randomization

* How “acceptable” is 10% of accuracy loss?

* Compare to worst case?
» Randomize application outputs
* Calculate the accuracy range of totally randomizec
* Compare to accuracy loss under approximation
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Output Randomization

kmeans
Output: 65K assignments to 15 clusters
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particlefilter
Output: particle position (X,Y)
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Output Randomization

kmeans particlefilter
Output: 65K assignments to 15 clusters Output: particle position (X,Y)
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Putting It All Together

* Metric selection
* Design of experiments
* Reading the outcome of experiments
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Metric Selection

Class | Output Data Type Accuracy Metric Domain
I Numeric: scalar Relative deviation in output value | Optimization, Compression
N Numeric: Relative displacement N-body Simulation, Computer Vision
multi-dimensional | Avg. Noise to Peak Signal (ANPS) | Linear Algebra, Histogram
Il |Compound Rele.lt.lve mismatch Clustering, Similarity, Search
Positional error Sort
[V | Multi-media SSIM (Structural Similarity Index) | Image Processing, Video Encoding

altai.ece.umn.edu/accurax
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Design of Experiments

* Tame the sources of non-determinism
* Report accuracy loss in the form of histograms or trade-off spaces.
* Invalid outcome: reflect the overhead of safety nets to the trade-off space

* Metrics at application phase boundaries?
* Only safe for selective approximation
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Reading the Outcome

» Acceptance depends on the context
* Context determines which points of the trade-off space are feasible

 Oftentimes, Output Randomization can capture acceptability
* Do not average across different inputs

s

* Do not average across different applications

accuracy loss

-

energy efficiency
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