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•	View	from	hardware	stack:	
•	Behavioral	design	specificaHon	
•	Determines	hardware	complexity	

•	View	from	so\ware	stack:		
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•	Determines	func3onal	completeness
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Code	that	cannot	be	approximated	can	run	at	full	accuracy

Improved	energy	efficiency	if	ISA-induced	approximaHon	is	tolerable
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•	How	to	determine	incomplete,	approximate	ISA	subsets?	
•VerHcal	approximaHon:		
•Exclude	less	frequently	used	complex	instrucHons	

•Horizontal	approximaHon:	
•Simplifies	each	instrucHon,	by	e.g.,	precision	reducHon
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errors or simply enforced by design. The latter applies for
the following discussion.

2 Proof-of-concept Implementation
Let us start with a motivating example. Fig. 1 shows how the
(graphic) output of a typical noise-tolerant application, SRR 1,
changes for representative Vertical, Horizontal, and Horizon-
tal + Vertical approximation under AISC. The application is
compiled with GCC 4.8.4 with -O1 on an Intel® Core™ i5
3210M machine. As we perform manual transformations on
the code, high optimization levels hinder the task; we resort
to -O1 for our proof-of-concept and leave for future work
more exploration on compiler optimizations. We focus on
the main kernel where the actual computation takes place,
and conservatively assume that this entire code would be
mapped to a compute engine with approximated ISA. We
use ACCURAX metrics [1] to quantify the accuracy-loss. We
prototype basic Horizontal and Vertical ISA approximations
on Pin 2.14 [6]. Fig. 1(a) captures the output for the base-
line for comparison, Native execution, which excludes any
approximation. We observe that the accuracy loss remains
barely visible, but still varies across di�erent approximations.
Let us next take a closer look at the sources of this diversity.

(a) Native (b) Vertical (c) Horizontal (d) Horiz.+Vert.

Figure 1. Graphic output of SRR benchmark under repre-
sentative AISC approximations (b)-(d).
2.1 Vertical Approximation
The key question is how to pick the instructions to drop. A
more general version of this question, which instructions to
approximate under AISC, already applies across all dimen-
sions, but the question becomes more critical in this case. As
the most aggressive in our bag of tricks, Vertical can incur
signi�cant loss in accuracy. The targeted recognition-mining-
synthesis applications can tolerate errors in data-centric
phases as opposed to control [3]. Therefore, con�ning in-
struction dropping to data-�ow can help limit the incurred
accuracy loss. Fig. 1(b) captures an example execution out-
come, where we randomly deleted static (arithmetic) �oating
point instructions. For each static instruction, we based the
dropping decision on a pre-de�ned threshold t. We gener-
ated a random number r in the range [0, 1], and dropped
the static instruction if r remains below t. We experimented
with threshold values between 1% and 10%.

2.2 Horizontal Approximation
Without loss of generality, we experimented with three ap-
proximations to reduce operand widths: DPtoSP, DP(SP)toHP,
1Super Resolution Reconstruction, a computer vision application from the
Cortex suite [12]. We use the (64⇥64) “EIA” input data set of 16 frames. The
output is the (256⇥256) reconstructed image.

and DP(SP)toINT. Under the IEEE 754 standard, 32 (64) bits
express a single (double) precision �oating point number:
one bit speci�es the sign; 8 (11) bits, the exponent; and 23 (52)
bits the mantissa, i.e., the fraction. For example, (�1)si�n ⇥
2exponent�127⇥1.mantissa represents a single-precision �oat-
ing number. DPtoSP is a bit discarding variant, which omits 32
least-signi�cant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact.
DP(SP)toHP comes in two �avors. DPtoHP omits 48 least-
signi�cant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact; SP-
toHP, 16 least-signi�cant bits of the mantissa of each single-
precision operand of an instruction. Fig. 1(c) captures an
example execution outcome under DPtoHP. DP(SP)toINT
also comes in two �avors. DPtoINT (SPtoINT) replaces dou-
ble (single) precision instructions with their integer counter-
parts, by rounding the �oating point operand values to the
closest integer.
2.3 Horizontal +Vertical Approximation
Without loss of generality, we experimented with two rep-
resentatives in this case: MULtoADD and DIVtoMUL. MUL-
toADD converts multiplication instructions to a sequence
of additions. We picked the smaller of the factors as the
multiplier (which determines the number of additions), and
rounded �oating point multipliers to the closest integer num-
ber. DIVtoMUL converts division instructions to multipli-
cations. We �rst calculated the reciprocal of the divisor,
which next gets multiplied by the dividend to render the
end result. In our proof-of-concept implementation based on
the x86 ISA, the reciprocal instruction has 12-bit precision.
DIVtoMUL12 uses this instruction. DIVtoMUL.NR, on the
other hand, relies on one iteration of the Newton-Raphson
method [4] to increase the precision of the reciprocal to
23 bits. DIVtoMUL12 can be regarded as an approximate
version of DIVtoMUL.NR, eliminating the Newton-Raphson
iteration, and hence enforcing a less accurate estimate of
the reciprocal (of only 12 bit precision). Fig. 1(d) captures an
example execution outcome under DIVtoMUL.NR.

3 Conclusion & Discussion
Our proof-of-concept analysis revealed that, in its restricted
form – where the region of interest of an application is
mapped in its entirety to an incomplete-ISA compute en-
gine, irrespective of potential changes in noise tolerance
within the course of its execution – AISC can cut energy up
to 37% at around 10% accuracy loss.
The most critical design aspect is how instruction se-

quences should be mapped to restricted-ISA compute en-
gines, and how such sequences should be migrated from one
engine to another within the course of execution, to track
potential temporal changes in algorithmic noise tolerance.
While fast code migration is not impossible, if not orches-
trated carefully, the energy overhead of �ne-grain migration
can easily become prohibitive. Therefore, a break-even point
in terms of migration frequency and granularity exists, past
which AISC may degrade energy e�ciency.
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method [4] to increase the precision of the reciprocal to
23 bits. DIVtoMUL12 can be regarded as an approximate
version of DIVtoMUL.NR, eliminating the Newton-Raphson
iteration, and hence enforcing a less accurate estimate of
the reciprocal (of only 12 bit precision). Fig. 1(d) captures an
example execution outcome under DIVtoMUL.NR.

3 Conclusion & Discussion
Our proof-of-concept analysis revealed that, in its restricted
form – where the region of interest of an application is
mapped in its entirety to an incomplete-ISA compute en-
gine, irrespective of potential changes in noise tolerance
within the course of its execution – AISC can cut energy up
to 37% at around 10% accuracy loss.
The most critical design aspect is how instruction se-
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gines, and how such sequences should be migrated from one
engine to another within the course of execution, to track
potential temporal changes in algorithmic noise tolerance.
While fast code migration is not impossible, if not orches-
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iteration, and hence enforcing a less accurate estimate of
the reciprocal (of only 12 bit precision). Fig. 1(d) captures an
example execution outcome under DIVtoMUL.NR.

3 Conclusion & Discussion
Our proof-of-concept analysis revealed that, in its restricted
form – where the region of interest of an application is
mapped in its entirety to an incomplete-ISA compute en-
gine, irrespective of potential changes in noise tolerance
within the course of its execution – AISC can cut energy up
to 37% at around 10% accuracy loss.
The most critical design aspect is how instruction se-

quences should be mapped to restricted-ISA compute en-
gines, and how such sequences should be migrated from one
engine to another within the course of execution, to track
potential temporal changes in algorithmic noise tolerance.
While fast code migration is not impossible, if not orches-
trated carefully, the energy overhead of �ne-grain migration
can easily become prohibitive. Therefore, a break-even point
in terms of migration frequency and granularity exists, past
which AISC may degrade energy e�ciency.
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errors or simply enforced by design. The latter applies for
the following discussion.

2 Proof-of-concept Implementation
Let us start with a motivating example. Fig. 1 shows how the
(graphic) output of a typical noise-tolerant application, SRR 1,
changes for representative Vertical, Horizontal, and Horizon-
tal + Vertical approximation under AISC. The application is
compiled with GCC 4.8.4 with -O1 on an Intel® Core™ i5
3210M machine. As we perform manual transformations on
the code, high optimization levels hinder the task; we resort
to -O1 for our proof-of-concept and leave for future work
more exploration on compiler optimizations. We focus on
the main kernel where the actual computation takes place,
and conservatively assume that this entire code would be
mapped to a compute engine with approximated ISA. We
use ACCURAX metrics [1] to quantify the accuracy-loss. We
prototype basic Horizontal and Vertical ISA approximations
on Pin 2.14 [6]. Fig. 1(a) captures the output for the base-
line for comparison, Native execution, which excludes any
approximation. We observe that the accuracy loss remains
barely visible, but still varies across di�erent approximations.
Let us next take a closer look at the sources of this diversity.

(a) Native (b) Vertical (c) Horizontal (d) Horiz.+Vert.

Figure 1. Graphic output of SRR benchmark under repre-
sentative AISC approximations (b)-(d).
2.1 Vertical Approximation
The key question is how to pick the instructions to drop. A
more general version of this question, which instructions to
approximate under AISC, already applies across all dimen-
sions, but the question becomes more critical in this case. As
the most aggressive in our bag of tricks, Vertical can incur
signi�cant loss in accuracy. The targeted recognition-mining-
synthesis applications can tolerate errors in data-centric
phases as opposed to control [3]. Therefore, con�ning in-
struction dropping to data-�ow can help limit the incurred
accuracy loss. Fig. 1(b) captures an example execution out-
come, where we randomly deleted static (arithmetic) �oating
point instructions. For each static instruction, we based the
dropping decision on a pre-de�ned threshold t. We gener-
ated a random number r in the range [0, 1], and dropped
the static instruction if r remains below t. We experimented
with threshold values between 1% and 10%.

2.2 Horizontal Approximation
Without loss of generality, we experimented with three ap-
proximations to reduce operand widths: DPtoSP, DP(SP)toHP,
1Super Resolution Reconstruction, a computer vision application from the
Cortex suite [12]. We use the (64⇥64) “EIA” input data set of 16 frames. The
output is the (256⇥256) reconstructed image.

and DP(SP)toINT. Under the IEEE 754 standard, 32 (64) bits
express a single (double) precision �oating point number:
one bit speci�es the sign; 8 (11) bits, the exponent; and 23 (52)
bits the mantissa, i.e., the fraction. For example, (�1)si�n ⇥
2exponent�127⇥1.mantissa represents a single-precision �oat-
ing number. DPtoSP is a bit discarding variant, which omits 32
least-signi�cant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact.
DP(SP)toHP comes in two �avors. DPtoHP omits 48 least-
signi�cant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact; SP-
toHP, 16 least-signi�cant bits of the mantissa of each single-
precision operand of an instruction. Fig. 1(c) captures an
example execution outcome under DPtoHP. DP(SP)toINT
also comes in two �avors. DPtoINT (SPtoINT) replaces dou-
ble (single) precision instructions with their integer counter-
parts, by rounding the �oating point operand values to the
closest integer.
2.3 Horizontal +Vertical Approximation
Without loss of generality, we experimented with two rep-
resentatives in this case: MULtoADD and DIVtoMUL. MUL-
toADD converts multiplication instructions to a sequence
of additions. We picked the smaller of the factors as the
multiplier (which determines the number of additions), and
rounded �oating point multipliers to the closest integer num-
ber. DIVtoMUL converts division instructions to multipli-
cations. We �rst calculated the reciprocal of the divisor,
which next gets multiplied by the dividend to render the
end result. In our proof-of-concept implementation based on
the x86 ISA, the reciprocal instruction has 12-bit precision.
DIVtoMUL12 uses this instruction. DIVtoMUL.NR, on the
other hand, relies on one iteration of the Newton-Raphson
method [4] to increase the precision of the reciprocal to
23 bits. DIVtoMUL12 can be regarded as an approximate
version of DIVtoMUL.NR, eliminating the Newton-Raphson
iteration, and hence enforcing a less accurate estimate of
the reciprocal (of only 12 bit precision). Fig. 1(d) captures an
example execution outcome under DIVtoMUL.NR.

3 Conclusion & Discussion
Our proof-of-concept analysis revealed that, in its restricted
form – where the region of interest of an application is
mapped in its entirety to an incomplete-ISA compute en-
gine, irrespective of potential changes in noise tolerance
within the course of its execution – AISC can cut energy up
to 37% at around 10% accuracy loss.
The most critical design aspect is how instruction se-

quences should be mapped to restricted-ISA compute en-
gines, and how such sequences should be migrated from one
engine to another within the course of execution, to track
potential temporal changes in algorithmic noise tolerance.
While fast code migration is not impossible, if not orches-
trated carefully, the energy overhead of �ne-grain migration
can easily become prohibitive. Therefore, a break-even point
in terms of migration frequency and granularity exists, past
which AISC may degrade energy e�ciency.
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errors or simply enforced by design. The latter applies for
the following discussion.

2 Proof-of-concept Implementation
Let us start with a motivating example. Fig. 1 shows how the
(graphic) output of a typical noise-tolerant application, SRR 1,
changes for representative Vertical, Horizontal, and Horizon-
tal + Vertical approximation under AISC. The application is
compiled with GCC 4.8.4 with -O1 on an Intel® Core™ i5
3210M machine. As we perform manual transformations on
the code, high optimization levels hinder the task; we resort
to -O1 for our proof-of-concept and leave for future work
more exploration on compiler optimizations. We focus on
the main kernel where the actual computation takes place,
and conservatively assume that this entire code would be
mapped to a compute engine with approximated ISA. We
use ACCURAX metrics [1] to quantify the accuracy-loss. We
prototype basic Horizontal and Vertical ISA approximations
on Pin 2.14 [6]. Fig. 1(a) captures the output for the base-
line for comparison, Native execution, which excludes any
approximation. We observe that the accuracy loss remains
barely visible, but still varies across di�erent approximations.
Let us next take a closer look at the sources of this diversity.

(a) Native (b) Vertical (c) Horizontal (d) Horiz.+Vert.

Figure 1. Graphic output of SRR benchmark under repre-
sentative AISC approximations (b)-(d).
2.1 Vertical Approximation
The key question is how to pick the instructions to drop. A
more general version of this question, which instructions to
approximate under AISC, already applies across all dimen-
sions, but the question becomes more critical in this case. As
the most aggressive in our bag of tricks, Vertical can incur
signi�cant loss in accuracy. The targeted recognition-mining-
synthesis applications can tolerate errors in data-centric
phases as opposed to control [3]. Therefore, con�ning in-
struction dropping to data-�ow can help limit the incurred
accuracy loss. Fig. 1(b) captures an example execution out-
come, where we randomly deleted static (arithmetic) �oating
point instructions. For each static instruction, we based the
dropping decision on a pre-de�ned threshold t. We gener-
ated a random number r in the range [0, 1], and dropped
the static instruction if r remains below t. We experimented
with threshold values between 1% and 10%.

2.2 Horizontal Approximation
Without loss of generality, we experimented with three ap-
proximations to reduce operand widths: DPtoSP, DP(SP)toHP,
1Super Resolution Reconstruction, a computer vision application from the
Cortex suite [12]. We use the (64⇥64) “EIA” input data set of 16 frames. The
output is the (256⇥256) reconstructed image.

and DP(SP)toINT. Under the IEEE 754 standard, 32 (64) bits
express a single (double) precision �oating point number:
one bit speci�es the sign; 8 (11) bits, the exponent; and 23 (52)
bits the mantissa, i.e., the fraction. For example, (�1)si�n ⇥
2exponent�127⇥1.mantissa represents a single-precision �oat-
ing number. DPtoSP is a bit discarding variant, which omits 32
least-signi�cant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact.
DP(SP)toHP comes in two �avors. DPtoHP omits 48 least-
signi�cant bits of the mantissa of each double-precision
operand of an instruction, and keeps the exponent intact; SP-
toHP, 16 least-signi�cant bits of the mantissa of each single-
precision operand of an instruction. Fig. 1(c) captures an
example execution outcome under DPtoHP. DP(SP)toINT
also comes in two �avors. DPtoINT (SPtoINT) replaces dou-
ble (single) precision instructions with their integer counter-
parts, by rounding the �oating point operand values to the
closest integer.
2.3 Horizontal +Vertical Approximation
Without loss of generality, we experimented with two rep-
resentatives in this case: MULtoADD and DIVtoMUL. MUL-
toADD converts multiplication instructions to a sequence
of additions. We picked the smaller of the factors as the
multiplier (which determines the number of additions), and
rounded �oating point multipliers to the closest integer num-
ber. DIVtoMUL converts division instructions to multipli-
cations. We �rst calculated the reciprocal of the divisor,
which next gets multiplied by the dividend to render the
end result. In our proof-of-concept implementation based on
the x86 ISA, the reciprocal instruction has 12-bit precision.
DIVtoMUL12 uses this instruction. DIVtoMUL.NR, on the
other hand, relies on one iteration of the Newton-Raphson
method [4] to increase the precision of the reciprocal to
23 bits. DIVtoMUL12 can be regarded as an approximate
version of DIVtoMUL.NR, eliminating the Newton-Raphson
iteration, and hence enforcing a less accurate estimate of
the reciprocal (of only 12 bit precision). Fig. 1(d) captures an
example execution outcome under DIVtoMUL.NR.

3 Conclusion & Discussion
Our proof-of-concept analysis revealed that, in its restricted
form – where the region of interest of an application is
mapped in its entirety to an incomplete-ISA compute en-
gine, irrespective of potential changes in noise tolerance
within the course of its execution – AISC can cut energy up
to 37% at around 10% accuracy loss.
The most critical design aspect is how instruction se-

quences should be mapped to restricted-ISA compute en-
gines, and how such sequences should be migrated from one
engine to another within the course of execution, to track
potential temporal changes in algorithmic noise tolerance.
While fast code migration is not impossible, if not orches-
trated carefully, the energy overhead of �ne-grain migration
can easily become prohibitive. Therefore, a break-even point
in terms of migration frequency and granularity exists, past
which AISC may degrade energy e�ciency.
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•	Which	subset	of	the	ISA	should	each	compute	engine	support?	
•	How	to	map	instrucHon	sequences	to	compute	engines?	
•	How	to	keep	the	potenHal	accuracy	loss	bounded?	
•	How	to	orchestrate	migraHon	of	code	sequences		
•	from	one	compute	engine	to	another	within	the	course	of	computaHon	
•	tolerance	to	noise	may	vary	for	different	applicaHon	phases



AISC

Design	Aspects

13

•		Which	subset	of	the	ISA	should	each	compute	engine	support?	
•	How	to	map	instrucHon	sequences	to	compute	engines?	
•	How	to	keep	the	potenHal	accuracy	loss	bounded?	
•	How	to	orchestrate	migraHon	of	code	sequences		
•	from	one	compute	engine	to	another	within	the	course	of	computaHon	
•	tolerance	to	noise	may	vary	for	different	applicaHon	phases

•	Most	cri3cal	design	aspect:	migra3on	granularity	
•	A	break-even	point	exists	for	migra3on	granularity	(and	frequency)	
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int main(void) 
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DIV.D    F0, F2, F4

ADD.D    F10, F0, F8

SUB.D    F8, F8, F14


