
Special Session: Does Approximation Make Testing
Harder (or Easier)?

R. Iris Bahar
School of Engineering

Brown University
Providence, RI

iris bahar@brown.edu

Ulya Karpuzcu
Dept. of Elect. and Comp. Engineering

University of Minnesota Twin Cities
Minneapolis, MN
ukarpuzc@umn.edu

Sasa Misailovic
Dept. of Computer Science

University of Illinois
Urbana, IL

misailo@illinois.edu

Abstract— Many important application domains, including
machine learning, feature intrinsically noise tolerant algorithms.
These algorithms process massive, yet noisy and redundant data,
by probabilistic and often iterative techniques. As a result, there
is a range of valid outputs rather than a single golden value.
While this may translate into relaxed constraints for testing and
verification of approximate systems, distinguishing actual design
bugs from what is being approximated also becomes harder. In
this paper, using representative case studies, we pose several
challenges for the test and verification community as approximate
computing becomes more prevalent as a design of choice in order
to achieve performance gains, power or energy savings, improved
reliability or reduced software and/or hardware complexity.

I. AN OVERVIEW ACROSS THE SYSTEM STACK

Intrinsic algorithmic noise tolerance is a common charac-
teristic in the vast majority of emerging application domains,
including but not necessarily limited to machine learning. Such
algorithms often feature probabilistic techniques in processing
their noisy (and often redundant) input data. Therefore, there
exists a range of valid output values rather than a single
golden value. Usually this range of valid outputs is bounded
by an ± acceptable deviation from (what would otherwise
be) the golden value, where acceptability itself is application-
dependent. This deviation directly translates into loss in com-
putational accuracy.

In the following, we will use approximate computing to
cover a diverse set of techniques across the system stack,
which trade computational accuracy for performance gains,
power or energy savings, improved reliability or reduced soft-
ware and/or hardware complexity. Promising representatives
include precision reduction [21], [49], [61], [62]; computa-
tion perforation [6], [15], [48], [51]; relaxation of execution
semantics [35], [46]–[48] often accompanied by hardware sim-
plification [5], [11], [17]–[19], [21]; and embrace of errors [1],
[3], [4], [29], [30], [33], [37], [42]. For further discussion and
broader coverage, we refer the reader to many surveys on the
subject matter such as [7], [40], [52], [59].

Quantification of approximation-induced accuracy loss us-
ing application-specific metrics is already a very critical step
in harvesting the intrinsic noise tolerance for better overall
system efficiency. This inevitably necessitates the development
and deployment of accuracy metrics. Almost all approximation
techniques use accuracy metrics to justify the approximations

and show their benefit by studying the accuracy-performance
tradeoffs.

Accuracy metrics are equally critical when it comes to func-
tional testing and verification. In contrast to most software, for
which the developers can test for a binary notion of correctness
(e.g., by ensuring that the results are the same as the expected
results), approximate computations can produce a range of ac-
ceptable results. Accuracy metrics check whether the result is
within the acceptable range or whether the frequency of errors
is acceptably small. On one hand, validation against a range of
values (as opposed to a golden value) using accuracy metrics
may ease testing and verification of approximate systems by
relaxing constraints. On the other hand, distinguishing actual
design bugs from what is being approximated becomes harder,
as design bugs may result in very similar deviation in end
results. This also raises the philosophical question of whether
it is fair to consider such design bugs as actual bugs. And
whether we need to revisit what entails “correct” or “bug-free”
in this context.

This paper describes the challenges and discusses some
solutions for testing approximate computations from three
perspectives across the computing stack:

• We first highlight the role of accuracy metrics for check-
ing the accuracy at the application-level (Section II). The
end-to-end perspective is important for any software or
hardware system that leverages approximation.

• We describe software-level specifications of approx-
imate functions and describe some approaches for
accuracy-aware profiling and testing (Section III).

• We present a comprehensive hardware-focused study on
voltage overscaling in arithmetic units, which discusses
challenges for profiling and error recovery in approximate
hardware (Section IV)

Finally, in Section V we discuss the set of challenges raised
for the test community to consider as approximate computing
becomes more prevalent.

II. CATCHING DESIGN BUGS UNDER APPROXIMATION

Quantifying Accuracy Loss: Adapted from [2], Table I
provides a first-order taxonomy for commonly used end-to-end
accuracy metrics, according to the data type of end results, for
a representative set of benchmark applications from Parsec [8],

2019 IEEE 37th VLSI Test Symposium (VTS)

!

978-1-7281-1170-4/19/$31.00 ©2019 IEEE

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

2* Class 2*Output Data Type 2*Accuracy Metric Examples
Application (Suite) Domain Metric

2*I 2*Numeric: scalar 2*Deviation [38] in output value canneal (Parsec) Optimization Dev. in cost
dedup (Parsec) Compression Dev. in file size

4*II 4*Numeric: multi- 4*Distortion [38] based fluidanimate (Parsec) 2*n-body simulation Dist. in “body”
4*dimensional barnes, water (Splash2) positions

bodytrack (Parsec) 2*Computer Vision Dist. in
particlefilter (Rodinia) coordinates
cholesky, lu (Splash2) Linear Algebra Dist. in
histo, tpacf (Parboil) Histogram elements

4*III 4*Compound streamcluster (Parsec) 2*Clustering
kmeans (Stamp) Based on

Based on # mismatches UtilityMine (MineBench) Data mining # mismatches
Positional error ferret (Parsec) Similarity search

radix (Splash2) Sorting Positional error
3*IV 3*Multi-media raytrace (Splash2) 2*Computer Vision 3*PSNR, SSIM

Peak Signal to Noise Ratio (PSNR) volrend (Splash2)
Structural Similarity Index (SSIM) x264 (Parsec) Video Encoding

TABLE I
A FIRST-ORDER TAXONOMY FOR COMMONLY USED END-TO-END ACCURACY METRICS BY DATA TYPE OF APPLICATION OUTPUTS [2].

Splash2 [58], Rodinia [16], Parboil [53], MineBench [41], and
Stamp [36] suites which feature noise tolerant algorithms. The
taxonomy spans four classes.

For Classes I and II, the application output has a scalar
or multi-dimensional numeric format. Common robust met-
rics represent variants of the distortion metric introduced by
Misailovic et al. [38]. Distortion essentially is the average
deviation (over all output elements) from the exact (non-
approximate) value. Various methods exist to calculate the
deviation per output value, and this is how variants of the
distortion metric differ from each other. For example, if we
use square of the difference between exact and approximate
values to this end, the distortion metric becomes equivalent to
mean square error.

Class III generates compound output data and spans clus-
tering, mining, sorting and search applications. As a represen-
tative example, ferret from Parsec performs similarity search
in an image database. For each of its input query images, the
application finds a list of similar images (from the database)
and ranks them by similarity. A robust metric needs to quantify
the number of mismatches between the exact and approximate
output image list in this case.

Class IV covers multi-media (i.e., image or video) output.
Common robust metrics include the classic PSNR (Peak
Signal to Noise Ratio) and the more recent SSIM (Structural
Similarity Index) and its variants, which capture the human
perception of accuracy loss better than PSNR [56].

Such end-to-end accuracy metrics, however, can only help
quantify accuracy loss if the application outputs under ap-
proximation are valid. An invalid output does not necessarily
imply an excessively corrupt output. As an example, let us
consider dedup from Parsec, which performs file compression.
Consulting Table I, we can use the deviation in the output
file size as an accuracy metric. An invalid output under
approximation in this case would be a corrupt file. The file
size of such an invalid output can very well be equal to the
file size of the exact (non-approximate) output. We therefore

need an application-specific validity check. Simply trying to
decompress the output file may suffice, as excessive corruption
due to approximation may prevent successful decompression.
Only if successful decompression is possible would calculation
of the accuracy metric make sense.

Non-determinism represents yet another challenge, both due
to the already probabilistic nature of the target algorithms, but
also due to the wide spectrum of possible execution outcomes
under approximation, depending on the specific approximation
technique: no/catastrophic program termination, termination
with invalid outputs, valid outputs spanning a wide range of
accuracy loss, or some combination thereof. This brings a sta-
tistical aspect to testing and verification under approximation.

At the same time, both the size and the spread of input
data values may have a huge impact on execution outcome
and accuracy loss under approximation, which may further
challenge the input vector generation and test coverage under
approximation.

Last but not least, accuracy metrics cannot quantify accept-
ability of an execution outcome. The context, environment and
conditions in which the corresponding application is deployed
sets a threshold for acceptability. This may necessitate testing
and verification by comparison to trade-off spaces or ranges,
which span various acceptability levels, rather than to a
specific point corresponding to a specific acceptability level.

We come back to the remaining critical issue of distri-
bution/translation of end-to-end metrics to the interfaces of
individual system components in a recursive or fractal fashion
in Section III.
Correctness Under Approximation: End-to-end metrics can-
not distinguish accuracy loss due to actual design bugs from
accuracy loss due to approximation. When it comes to testing
and verification of approximate software and/or hardware,
design bugs can go undetected if their impact on the execution
outcome is indistinguishable from what would correspond to
the accuracy loss under approximation. If there was a way
to prove that a design bug would behave always like this,

!

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

for any input, it would arguably be safe to ignore such bugs
– simply because they wouldn’t have an impact on correct
execution under approximation. Unfortunately, considering
the challenges we discussed so far, this is a daunting task,
particularly for test coverage. We need testing and verification
methods that can distinguish the signature of a design bug in
the application outputs from what would be correct per the
stretched definition of correctness under approximation.

This brings us back to the question of what correctness
entails under approximation. As a first step in this direction,
the authors in [4] introduce the concept of accuracy bugs. The
idea is stretching the definition of correct to include buggy
but approximately correct parallel execution in the context of
concurrency bugs, a rich set of severe bugs which encom-
passes data races, deadlocks, or atomicity/ordering/consistency
violations. Accuracy bugs simply are concurrency bugs that
do not cause program failures but manifest themselves as
inaccuracy in outputs. Therefore, embracing accuracy bugs
only comprises accuracy, but not correctness, as long as the
corresponding loss in accuracy remains acceptable.

III. CASE STUDY I: TESTING APPROXIMATE SOFTWARE

a) Running Example:: Let us consider a (simplifed)
implementation of an algorithm that scales an image to a
larger size. It consists of the function scale and the function
scale_kernel. The function scale takes as input the
scaling factor f (which increases the image size in both
dimensions), along with integer arrays src, which contains the
pixels of the image to be scaled, and dest, which contains the
pixels of the resulting scaled image. The computation iterates
over the image and calls the kernel, which interpolates the
value of each pixel by a weighted sum of the neighboring
pixels in the original image. The kernel computation can run
on approximate hardware and produce approximate results:
int scale_kernel(float i, float j,

int[] src, int s_height, int s_width);

void scale(float f, int[] src, int s_width, int s_height,
int[] dest, int d_height, int d_width)

{
float si = 0, delta = 1 / f;

for (int i = 0; i < d_height; ++i) {
float sj = 0;
for (int j = 0; j < d_width; ++j) {
dest[IDX(i, j, d_width)] =

scale_kernel(si, sj, src, s_height, s_width);
sj += delta;

}
si += delta;

}
}

The function scale takes as input the scaling factor f

(which increases the image size in both dimensions), along
with integer arrays src, which contains the pixels of the
image to be scaled, and dest, which contains the pixels
of the resulting scaled image. The algorithm calculates the
value of each pixel in the final result by mapping the pixel’s
location back to the original source image and then taking
a weighted average of the neighboring pixels, computed in
scale_kernel.

b) Kernel Reliability:: We can express the reliability of
the computation using the specifications from [37]:

int<0.995 * R(i, j, src, s_height, s_width)>
scale_kernel (float i, float j, int[] src, int

s_height, int s_width);

The specification of scale_kernel is a part of the type
signature of the function. It denotes: (1) the reliability degra-
dation of the function (0.995), representing the probability that
the return value is correct if inputs were correct at the start,
and (2) the joint probability, R(i, j, src, s_height,

s_width), that the inputs were computed correctly. One
can similarly derive the specification for the scale func-
tion. Moreover, this specification can lead to the end-to-
end accuracy specification, that the expected value of PSNR
(after multiple executions of the program) is greater than
−10 · log10(1− r).

Next, we will describe some of the existing approaches for
(1) inferring the specifications of the kernels and (2) if such
specification exists, checking that the implementation likely
satisfies the specification. The presentation in this section is
derived from our previous publications [28], [37].

A. Inferring Reliability Specifications
To specify the reliability of the kernel, the developer typi-

cally needs to relate the kernel’s reliability with the program’s
end-to-end sensitivity metric. We show how to do it with
sensitivity profiling. A sensitivity profiler takes (1) an end-to-
end sensitivity metric, a function that compares the outputs of
the original and approximate executions (e.g., PSNR); (2) the
value of the sensitivity metric that characterizes the acceptable
output quality; and (3) sensitivity testing procedure, which
simulates errors in the outputs of the application.

A developer can write coarse-grained fault injection wrap-
pers that inject noise into the computation. In general, the de-
veloper may use these wrappers to explore the sensitivity of the
program’s results to various coarse-grained error models. For
scale_kernel, the developer can implement the following
simple sensitivity testing procedure, which returns a random
value for each color component.

Chisel’s sensitivity profiler automatically explores the re-
lation between the probability of approximate execution and
the quality of the resulting image for the set of representative
images. Conceptually, the profiler transforms the program
to execute the correct implementation of scale_kernel

with probability r, which represents the target reliabil-
ity. The framework executes the faulty implementation
scale_kernel_with_errors with probability 1-r. The
framework uses binary search to find the probability r for
which the noisy program runs produce results with acceptable
PSNR.

a) Results:: Figure 1 presents a visual depiction of the
results of scaling for different values of r. Note that imple-
mentations with low reliability (0.20-0.80) do not produce
acceptable results. However, as r reaches values in the range
of 0.99 and above, the results become an acceptable approxi-
mation of the result of the original (exact) implementation. The

!

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Sensitivity Profiling for Image Scaling for Different Values of r. Illustration from [37]

target kernel reliability of scale_kernel of 0.995 tested on
mulitple input images, yields an average PSNR of 30.9 dB.

b) Outlook:: This general approach extends to other
coarse-grained error scenarios, such as always returning a
black or white pixel, or inverting the pixel computed by the
original computation. Importantly, these models are hardware-
agnostic, in that they do not require a detailed specification
of the approximate hardware. They provide a lightweight
method for estimating the sensitivity of the output of the
program to the error in individual computations. Further
refinements of this approach may include call-sensitive reli-
ability specifications which would assign different accuracy
specifications for each call site of the approximate function,
or the or phase-sensitive specifications, which would assign
different reliability to the kernel calls depending on whether
it executes near beginning, in the middle, or near the end of
the computation [39].

B. Checking Reliability Specifications

Once the reliability specification for computational kernels
(or more generally, any software component) exists, we can
ask how to check whether the computation actually satis-
fies this specification. Interestingly, despite many rigorous
specifications, a software developer who needs to implement,
test, and tune these randomized algorithms and systems has
virtually no tool support for this effort. Existing techniques
only have support for binary notion of program correctness.

We recently developed AxProf, an algorithmic profil-
ing framework for analyzing accuracy of approximate pro-
grams [28]. Given a high level accuracy specification (like
the one we described in this section), AxProf constructs
statistical models of accuracy, time, and memory, checks
if any of them deviate from the algorithm specification,
and if so, warns the developer.

AxProf supports probability query (which resembles reli-
ability specification above). AxProf’s specification language
allows the specifications to be written in a form close to their
mathematical counterparts, but enforces that they are specified
in an unambiguous manner. For instance, a developer should
explicitly write if a probabilistic specification is over inputs,
items within an input, or runs. Such different cases may be
handled more precisely with different statistical tests.

The key novelty of AxProf is the automatic generation
of the accuracy checking code (which generates input data

and invokes appropriate statistical tests) from a high-level
probabilistic specification. For each specification, AxProf au-
tomatically (1) selects a proper statistical test, (2) generates
checking code that extracts the output, aggregates the values,
and applies the selected test, and (3) determines the number
of runs to achieve a desired level of statistical confidence.
In particular, the effectiveness of AxProf’s analysis can be
controlled by two knobs – statistical confidence or execution
time of profiling.

Testing these programs often requires specific inputs, even
though the specifications apply for all inputs. To automatically
produce informative inputs, we provide several input genera-
tors for scalars, vectors, and matrices, that allow for various
input properties to be modified: difference in the frequency
of values (e.g., uniform vs skewed), order of data (different
permutations), or various forms of correlations (e.g., the next
value is a linear function of the previous). We present a new
dynamic analysis that infers which of these properties affect
the algorithm’s accuracy the most.

Results: We used AxProf to check both kernel-level and
application-level specifications. For the application-level spec-
ification, we check the decrease of PSNR as the subject of
the reliability r (the connection is derived in [37]). We use
a set of representative inputs, requiring that the specification
holds for all. For the kernel-level, we vary the set of pixels
according to the pre-specified distribution and change its skew.
In both cases, the properties should hold for all inputs, with
high-probability over multiple runs. AxProf generates the code
that calls the appropriate statistical tests and ensures that the
specifications hold.

Outlook: The presence of approximations and random errors
make testing programs that run on approximate hardware
challenging. Tools that apply statistical testing provide con-
fidence to the developers, who may have only basic statistical
knowledge. The power of tools like AxProf is the ability to
analyze systems of arbitrary complexity (in a way similar to
statistical model checking [50]) and is agnostic of the method
(hardware or software) that introduced noise in the execution.
Complementary to testing reliability properties, researchers
proposed various program verification techniques for program
safety, e.g., ensuring that approximations do not cause fatal
errors [13], [14].

!

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

IV. CASE STUDY II: HTM

For this case study, we describe IgnoreTM, a new framework
for approximate computation that utilizes aggressive voltage
scaling along with a novel error management scheme to
improve energy efficiency. The key insight is that recovery
from unacceptable errors may be facilitated by lightweight
mechanisms adapted from hardware transactional memory
(HTM) [24]. With the assistance of the HTM recovery mecha-
nism IgnoreTM has been shown to improve energy efficiency
significantly at a minimal run-time performance cost, while
keeping errors with acceptable bounds.

Aggressively lowering supply voltage values can have the
advantage of saving significant amounts of computing energy.
However, lowering the voltage without scaling down operating
frequencies may lead to intermittent timing errors (i.e., incor-
rect values at signal outputs due to signals not meeting their
timing constraints). Several approaches have been proposed
to manage these errors. For instance, Krause and Polian [31]
allow errors due to voltage scaling to go uncorrected, given
an application’s inherent tolerance to errors. Varatkar and
Shanbhag [55] employ algorithmic noise-tolerant blocks along
with voltage over-scaling to correct for errors. Finally, ISA
extensions are used in [49] and [21] to support approximate
instructions that are executed on approximate functional units
and storage. All the hardware-based approaches mention above
either do not allow for error correction, or require special
approximate hardware versions for the actual computation.
Instead, what our ignoreTM approach proposes is an op-
portunistic way of dealing with errors that arise at runtime
such that some errors may pass through without the need
to waste runtime and energy to correct them. The hardware
implementation itself remains exact; however, error recovery,
when needed, is handled through our HTM-based scheme.

A. The HTM Infrastructure

Hardware transactional memory was originally proposed as
a means of recovering from data synchronization. Tradition-
ally, the typical means of managing data consistency in shared
memory systems is to use a locking mechanism, in order to
guarantee that only a single transaction may modify a shared
memory structure at any one time. That is, if a transaction
needs to read/write to memory in a data structure, it must
first obtain the lock and when it is done, it frees the locks so
other transactions may access the shared structure. While this
locking protocol enforces synchronization among transactions,
it is inherently inefficient since it conservatively forces serial
execution of the transactions even if there may be no read/write
conflict for specific data within the shared memory structure.
As an alternative, HTM optimistically allows transactions to
proceeds with reads and writes to the data structure, and only
if a true data conflict occurred, will the execution be aborted
and retried. The HTM design is implemented using three key
components:

1) a bookkeeping mechanism to keep track of read/write
data accesses and detect conflicts,

2) a data versioning technique to keep track of original
and speculative data versions for recovery in case of
conflicts, and

3) a check-pointing and rollback mechanism to recover
from data conflicts and retry failed transactions.

In the case of IgnoreTM, the idea is to use the HTM
infrastructure not to manage data synchronization, but rather
to manage timing errors induced from voltage overscaling.
In this way, if a timing error is detected (through built-
in error detection hardware) while executing a transaction,
the system has a means of easily aborting the transactions
(without involving the operating system), and re-executing the
transaction to correct the error. Note that since we are not
using HTM for memory synchronization, we may bypass the
bookkeeping mechanism mentioned above, in order to obtain
a more lightweight design.

We have implemented a version of this scheme in our prior
work, called Edge-TM [43]. Adding safety margins (guard-
bands) on the supply voltage prevents timing errors, but has
a negative impact on performance and energy consumption.
Edge-TM optimistically scales the voltage beyond the edge of
safe operation for better energy savings and facilitates error
recovery using HTM.

An underlying runtime system transparently manages the
transactions with a core-level policy that optimistically lowers
the voltage in small steps. A snapshot of the system state is
taken before each transaction is started so that if the allowed
error threshold is exceeded during transaction execution, this
safe state can be restored. For timing error detection, we
assume that each core is equipped with runtime error-detection
circuitry, such as error-detection sequential (EDS) [10].

The Edge-TM policy utilizes a combination of static and
dynamic monitors to determine appropriate conditions for
voltage adjustment such that timing errors do not become so
frequent such that all the energy gains made from operating
at a reduced voltage are undone by the need to repeatedly
execute transactions that incurred timing errors.

To allow for improved runtime and error efficiency, our new
IgnoreTM approach builds upon the EdgeTM infrastructure.
Now, instead of always aborting when an error is detected,
the hardware can opportunistically ignore the timing error,
thereby removing the need to abort and re-execute a trans-
action after every error. The added challenge for IgnoreTM
is to determine when a timing error can be ignored, thereby
avoiding re-execution. This determination is made with the
help of profiling an application at runtime, using appropriate
error models.

As a first step, we focus on floating-point applications, many
of which are naturally tolerant to certain types of inaccuracies
and errors. We estimate likely erroneous values using a Critical
Bit model [57]. The Critical Bit model integrates computation
history and value correlation with bit-wise dependency by
identifying the critical bit of the functional unit architecture.
The critical bit corresponds to a signal that is along the critical
path of a particular arithmetic operation.

!

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

By profiling various floating point applications using the
critical bit model we are able to accurately gauge how timing
errors manifest themselves on the result of floating point
operations (i.e., addition or multiplication). After profiling,
instructions that are determined to be amenable to approx-
imation are marked “approximatable” and an overall error
rate threshold is determined according to a user specified
accuracy loss tolerance. Note that a tool such as AxProf
(as described in Section III) may be used to automatically
generate the accuracy checking code. However, by using our
Critical bit model, we incorporate some knowledge of the
hardware implementation into the simulation of the checking
code, which allows for a more accurate accounting for timing
errors.

We have shown that IgnoreTM achieves up to 47% total
energy savings without impacting runtime [42]. Moreover,
our approach allows for an additional 13-18% energy savings
compared to existing voltage scaling techniques such as Edge-
TM [43] that do not apply approximations but always correct
timing errors, while either improving or having a negligible
impact on runtime.

B. Implementation Details

We handle timing errors at the granularity of a transaction.
That is, we enclose within a transaction each block of the
program that has instructions that we want monitored for
timing errors. This means that we protect with transactions
every part of the program where voltage scaling will be
applied, regardless of whether it will be approximated or not.
We then monitor the actual error rate in real time, as the
program is being executed. If the error threshold is not ex-
ceeded (i.e., timing errors are occurring at a rate that by profile
was determined to be too high to retain acceptable accuracy
loss), the transaction commits, the checkpoint is discarded,
and speculative changes to the data become permanent. If
the error rate threshold is exceeded, the transaction aborts,
and a rollback mechanism restores the internal core state.
In addition, data are restored to their original values and
speculative copies are discarded.

We use a distributed logging scheme to enable data ver-
sioning. Logs are distributed among the cache memory banks
and each bank keeps a fixed-size log space for each core in
the system. Note that only the first time an address is written
does its original value need to be saved in the log, so the log
size is quite modest. The log saving and restoration process is
done independently at each memory bank and does not require
interaction with other banks, which makes it very fast and
efficient. Details of our data versioning implementation may
be found in [43].

Voltage adjustments are determined based on the number
of completed transactions between aborts (i.e., the number
of consecutive commits). In our IgnoreTM policy, we take
into account the frequency of a timing violation during a
transaction that has to be corrected, and its effect on the
total system energy consumption. When such frequency of
a timing violation is too high (thus increasing the number

of aborts and total energy consumption), we increase our
operating voltage in order to save energy by lowering the abort
rate. The IgnoreTM policy balances ignoring timing violations,
correcting timing violations, and changing voltage levels to
optimize energy savings while maintaining acceptable program
output accuracy.

Fig. 2. Flow diagram of IgnoreTM DVS Policy showing voltage adjustment
policy for timing violations [42].

Figure 2 shows the flow diagram for our voltage adjustment
policy due to timing errors. The policy makes decisions on
voltage adjustment on two occasions, (1) when a transaction
successfully commits, and (2) when a transaction aborts,
before it is re-executed. A voltage adjustment decision is based
on the number of consecutive commits, C, that are experienced
and the error threshold, E, (i.e., the maximum number of
ignored timing errors in a single run of a transaction), which
determines the level of approximation the transaction will
tolerate. Since every benchmark and every use case of each
benchmark can have different error thresholds, the user can
set a threshold for the number of ignored timing errors per
each transaction.

V. PUTTING IT ALL TOGETHER:
CHALLENGES ACROSS THE SYSTEM STACK

We next describe several challenges for testing approximate
applications at different levels of the system stack.

A. Distinguishing Actual Bugs from Approximation-Induced
Errors

The key challenge in testing approximate programs is
providing statistical guarantees. Actual design bugs, unfortu-
nately, are at least as non-deterministic in nature as execution
outcome under approximation. Defining equivalence classes
(of actual bugs and approximation-induced errors) based on
system-level manifestation hence becomes very difficult. Intu-
itively we would expect testing to become easier if we could
identify such equivalence classes. This is simply because we
could exclude equivalent design bugs from testing and verifica-
tion. No such simplification would be valid though, unless we
prove equivalence over all possible execution scenarios. The
search space for pair-wise comparison (to prove equivalence)
is huge and complex due to non-determinism on both ends.

!

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

B. Classic Hardware Testing as an Enabler for Disciplined
Approximation

Our discussion so far has focused on opportunities and
challenges when it comes to the testing and verification of
approximate computing systems. The rich knowledge base
from the testing community can also serve as an enabler
for disciplined approximate computing. In the end, we can
regard each point of approximation – be it in hardware or
software in space and time – essentially as a point of fault
injection. Hence, to quantify system level implications of
approximation, including but not limited to the impact on
computational accuracy, we can practically rely on classic fault
detection and propagation analysis. Input test vector generation
and coverage analysis can further help in bounding accuracy
loss by providing statistical guarantees. Moreover, we can
deploy classic online testing techniques to support runtime
approximation, in order to keep approximation induced errors
at bay. There are numerous opportunities to be explored.

C. Error Detection and Program Adaptation

The testing approaches discussed so far are performed
offline, during the design and development phases of approx-
imate hardware and software. While these techniques do not
incur execution overhead during the program execution, they
may be insufficient if e.g., input profile of the application or
the assumptions about system change during execution. We
may ask how can we apply the techniques for error detection
and recover online, during the execution of an approximate
program. Runtime error identification and recovery has a long
history in reliability engineering, where the source of errors
are soft faults or component failures (e.g., see [23], [44], [45]
for detection and [19], [20], [22], [34] for recovery), but the
topic has been less studied for general approximations.

In approximate computing, errors happen with much larger
frequency and have a different error profile than soft faults.
Therefore, the systems should be able to monitor errors, and
if necessary constantly adapt to the changes in performance
and/or accuracy. The existing research presents several tech-
niques for runtime adaptation of software, e.g., [6], [25]–[27]
and error estimation for individual inputs [32], [60]. However,
the questions about generality and seamless integration of
existing approaches with compilers and hardware interfaces
(especially in the emerging heterogeneous systems) remain
open, and a topic for future research.

D. The Hardware-Software Boundary

End-to-end testing of approximate system is challenging
today in part because it is difficult to integrate all aspects
of approximation at different levels of the computing stack.
To systematically analyze approximate systems, one promising
direction is to find abstract interfaces between the layers of the
system stack that will allow decoupling the reasoning between
these layers. The reliability specification from Section III is
one example of decoupling. The hardware architects who
design accelerators can check that their designs satisfy such
specifications and use some means of error recovery if they

are not, perhaps by using error mitigation techniques such as
IgnoreTM (Section IV). The software developer can separately
ensure that the program satisfies the end-to-end accuracy
metric from Section II.

The models of approximate hardware are abstractions that
describe the accuracy and performance implications of approx-
imate operations. They extend the instruction set architecture
(ISA) with approximation-related annotations and guarantees.
Note that the operations may be fine-grained (e.g., approximate
addition) or coarse grained (e.g., approximate FFT). The
models can thus represent the error frequency, magnitude, or
another instruction-level accuracy metric. Due to the nature
of the approximations, the models may be both conservative
(e.g., the error will always be below the threshold) or empirical
(e.g., the average error over the input space is below the error).
The existing models provide several simple abstractions [12],
[37], [49], [54], [57], but they can capture only a limited set of
error mechanisms. Despite some recent work on flexible ab-
stractions to support application verification [9], a key question
is how to design expressive error and performance models that
can benefit both hardware and software communities.

E. Monitoring and Profiling

As we have discussed in previous sections, profiling is a
critical component of determining accuracy loss and intrinsic
noise tolerance. Tools such as AxProf [28] can go a long
way in streamlining the process of generating meaningful
accuracy checking code. Indeed such code could also be used
for more general design bug testing and verification aids.
While AxProf is hardware agnostic, it will be important to
consider how faults or other types of noise are manifested
in the output. This will ultimately require some underly-
ing understanding of the hardware implementation and more
precisely how the approximation will be manifested in the
hardware. Accurate approximation models will have to be
developed, but how accurate do they need to be and how
generalizable can they be from one hardware implementation
to another? Finally, as much as profiling will be indispensable
in helping to evaluation approximation loss, how much do
designers want to rely on profiling alone? What are the
possible alternatives in the future?

ACKNOWLEDGMENTS

The authors would like to thank Ismail Akturk, Karen S.
Khatamifard, Dimitra Papagiannopoulou and Tali Moreshet for
their help in developing some of the ideas presented in this
paper.

REFERENCES

[1] S. Achour and M. C. Rinard, “Approximate computation with out-
lier detection in topaz,” in Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM, 2015, pp. 711–730.

[2] I. Akturk, K. Khatamifard, and U. R. Karpuzcu, “On Quantification of
Accuracy Loss in Approximate Computing,” in 12th Annual Workshop
on Duplicating, Deconstructing and Debunking (WDDD), June 2015.

[3] I. Akturk, N. S. Kim, and U. R. Karpuzcu, “Decoupling Control and
Data Processing for Approximate Near-threshold Voltage Computing,”
IEEE Micro Special Issue on Heterogeneous Computing, 2015.

!

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

[4] I. Akturk, R. Akram, M. M. Islam, A. Muzahid, and U. R. Karpuzcu,
“Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algo-
rithmic Noise Tolerance,” ACM Transactions on Architecture and Code
Optimization (TACO), 2016.

[5] D. S.-G. U. R. K. Alexandra Ferrerón, Jesús Alastruey-Benedé, “AISC:
Approximate Instruction Set Computer,” Workshop on Approximate
Computing in conjunction with ASPLOS, March 2018.

[6] W. Baek and T. M. Chilimbi, “Green: a framework for supporting
energy-conscious programming using controlled approximation,” in
ACM Sigplan Notices, vol. 45, no. 6. ACM, 2010, pp. 198–209.

[7] F. Betzel, S. K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and U. R.
Karpuzcu, “Approximate Communication: Approximation Techniques
for Communication Reduction in Parallel Systems,” ACM Computing
Surveys, vol. 51, no. 1, January 2018.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Bench-
mark Suite: Characterization and Architectural Implications,” Princeton
University, Tech. Rep. TR-811-08, January 2008.

[9] B. Boston, Z. Gong, and M. Carbin, “Leto: verifying application-
specific hardware fault tolerance with programmable execution models,”
Proceedings of the ACM on Programming Languages, vol. 2, no.
OOPSLA, p. 163, 2018.

[10] K. Bowman, J. Tschanz, S. Lu, P. Aseron, M. Khellah, A. Raychowd-
hury, B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik, and V. De,
“A 45nm resilient microprocessor core for dynamic variation tolerance,”
JSSC, vol. 46, no. 1, pp. 194–208, Jan 2011.

[11] M. Breuer, “Hardware That Produces Bounded Rather Than Exact
Results,” in Design Automation Conference (DAC), June 2010.

[12] M. Carbin, S. Misailovic, and M. Rinard, “Verifying quantitative relia-
bility for programs that execute on unreliable hardware, 2013,” in 28th
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA/SPLASH 2013), Indianapolis,
IN, USA, 2013.

[13] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard, “Proving accept-
ability properties of relaxed nondeterministic approximate programs,” in
PLDI, 2012.

[14] ——, “Verified integrity properties for safe approximate program trans-
formations,” in Proceedings of the ACM SIGPLAN 2013 workshop on
Partial evaluation and program manipulation, 2013.

[15] S. T. Chakradhar and A. Raghunathan, “Best-effort Computing: Re-
thinking Parallel Software and Hardware,” in Design Automation Con-
ference (DAC), 2010.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Comput-
ing,” in IEEE International Symposium on Workload Characterization
(IISWC), 2009.

[17] V. Chippa, D. Mohapatra, and A. Raghunathan, “Scalable Effort Hard-
ware Design: Exploiting Algorithmic Resilience for Energy Efficiency,”
Design Automation Conference (DAC), June 2010.

[18] H. Cho, L. Leem, and S. Mitra, “ERSA: Error Resilient System
Architecture for Probabilistic Applications,” Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 31, no. 4, 2012.

[19] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An Archi-
tectural Framework for Software Recovery of Hardware Faults,” in
International Symposium on Computer Architecture (ISCA), 2010.

[20] M. A. de Kruijf, K. Sankaralingam, and S. Jha, “Static analysis and
compiler design for idempotent processing,” in ACM SIGPLAN Notices,
vol. 47, no. 6. ACM, 2012, pp. 475–486.

[21] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
Support for Disciplined Approximate Programming,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[22] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
soft error reliability on the cheap,” 2010.

[23] S. K. S. Hari, S. V. Adve, and H. Naeimi, “Low-cost Program-level
Detectors for Reducing Silent Data Corruptions,” 2012.

[24] M. Herlihy and E. Moss, “Transactional memory: architectural support
for lock-free data structures,” SIGARCH Comput. Archit. News, vol. 21,
no. 2, pp. 289–300, May 1993.

[25] H. Hoffmann, “Jouleguard: energy guarantees for approximate appli-
cations,” in Proceedings of the 25th Symposium on Operating Systems
Principles. ACM, 2015, pp. 198–214.

[26] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal, “Application heartbeats for software performance and health,” ACM
Sigplan Notices, vol. 45, no. 5, pp. 347–348, 2010.

[27] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard, “Dynamic knobs for responsive power-aware computing,” in
ACM SIGPLAN Notices, vol. 46, no. 3. ACM, 2011, pp. 199–212.

[28] K. Joshi, V. Fernando, and S. Misailovic, “Statistical algorithmic profil-
ing for randomized approximate programs,” in ICSE, 2019.

[29] U. Karpuzcu, I. Akturk, and N. S. Kim, “Accordion: Toward Soft Near-
Threshold Voltage Computing,” in International Symposium on High
Performance Computer Architecture (HPCA), February 2014.

[30] S. K. Khatamifard, I. Akturk, and U. R. Karpuzcu, “On Approximate
Speculative Lock Elision,” IEEE Transactions on Multiscale Computing
Systems, Special Issue on Emerging Technologies and Architectures for
Manycore Computing, November 2017.

[31] P. Krause and I. Polian, “Adaptive voltage over-scaling for resilient
applications,” in DATE, March 2011.

[32] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and
L. Tang, “Input responsiveness: using canary inputs to dynamically steer
approximation,” PLDI, 2016.

[33] X. Li and D. Yeung, “Application-Level Correctness and its Impact
on Fault Tolerance,” in International Symposium on High Performance
Computer Architecture (HPCA), 2007.

[34] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” in ACM Sigplan Notices, vol. 50, no. 5,
2015, p. 2.

[35] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,”
in International Symposium on Microarchitecture (MICRO), December
2014.

[36] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford
transactional applications for multi-processing,” in IEEE International
Symposium on Workload Characterization (IISWC), 2008.

[37] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability-and accuracy-aware optimization of approximate computa-
tional kernels,” in OOPSLA, 2014.

[38] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of
Service Profiling,” in International Conference on Software Engineering
(ICSE), 2010.

[39] S. Mitra, M. K. Gupta, S. Misailovic, and S. Bagchi, “Phase-aware
optimization in approximate computing,” in CGO, 2017.

[40] T. Moreau, J. San Miguel, M. Wyse, J. Bornholt, A. Alaghi, L. Ceze,
N. Enright Jerger, and A. Sampson, “A taxonomy of general purpose
approximate computing techniques,” IEEE Embedded Systems Letters,
vol. 10, no. 1, pp. 2–5, March 2018.

[41] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choud-
hary, “MineBench: A Benchmark Suite for Data Mining Workloads,” in
International Symposium on Workload Characterization, October 2006.

[42] D. Papagiannopoulou, S. Whang, T. Moreshet, and R. I. Bahar, “Ig-
noretm: Opportunistically ignoring timing violations for energy savings
using htm,” in Proceedings of the IEEE/ACM Design Automation and
Test in Europe Conference (DATE), 2019.

[43] D. Papagiannopoulou, A. Marongiu, T. Moreshet, M. Herlihy, and R. I.
Bahar, “Edge-TM: Exploiting transactional memory for error tolerance
and energy efficiency,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 16, no. 5s, pp. 153:1–153:18, Sep. 2017.

[44] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software Implemented Fault Tolerance,” in Proc. of Intl. Symp.
on Code generation and optimization. Washington, DC, USA: IEEE
Comp. Society, 2005.

[45] G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.
Mukherjee, “Design and evaluation of hybrid fault-detection systems,”
2005.

[46] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener, “Programming
with Relaxed Synchronization,” in ACM Workshop on Relaxing Synchro-
nization for Multicore and Manycore Scalability (RACES), 2012.

[47] M. Rinard, “Parallel Synchronization-Free Approximate Data Structure
Construction,” 5th USENIX Workshop on Hot Topics in Parallelism,
2013.

[48] M. C. Rinard, “Using Early Phase Termination to Eliminate Load
Imbalances at Barrier Synchronization Points,” in Conference on Object-
oriented Programming Systems and Applications (OOPSLA), 2007.

[49] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate Data Types for Safe and General
Low-power Computation,” in Conference on Programming Language
Design and Implementation (PLDI), 2011.

[50] K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking
of black-box probabilistic systems,” in International Conference on
Computer Aided Verification, 2004.

!

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

[51] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing Performance vs. Accuracy Trade-offs with Loop Perfora-
tion,” in European Software Engineering Conference and European
Conference on Foundations of Software Engineering (ESEC/FSE), 2011.

[52] P. Stanley-Marbell, A. Alaghi, M. Carbin, E. Darulova, L. Dolecek,
A. Gerstlauer, G. Gillani, D. Jevdjic, T. Moreau, M. Cacciotti, A. Daglis,
N. D. E. Jerger, B. Falsafi, S. Misailovic, A. Sampson, and D. Zufferey,
“Exploiting errors for efficiency: A survey from circuits to algorithms,”
CoRR, vol. abs/1809.05859, 2018.

[53] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu, and
W.-M. W. Hwu, “Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing,” University of Illinois at Urbana-
Champaign, Urbana, Tech. Rep. IMPACT-12-01, Mar. 2012.

[54] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas, S. Ogrenci-
Memik, and S. Parthasarathy, “b-HiVE: A bit-level history-based error
model with value correlation for voltage-scaled integer and floating point
units,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2015, pp. 1–6.

[55] G. Varatkar and N. Shanbhag, “Error-resilient motion estimation ar-
chitecture,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems (TVLSI), vol. 16, no. 10, pp. 1399–1412, Oct 2008.

[56] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality

Assessment: From Error Visibility to Structural Similarity,” IEEE Trans-
actions on Image Processing, vol. 13, no. 4, April 2004.

[57] S. Whang, T. Rachford, D. Papgiannopoulou, T. Moreshet, and R. I.
Bahar, “Evaluating critical bits in arithmetic operations due to timing
violations,” in IEEE High Performance Extreme Computing Conference,
Sept. 2017.

[58] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-
2 Programs: Characterization and Methodological Considerations,” in
International Symposium on Computer Architecture (ISCA), 1995.

[59] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[60] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic, and
S. Bagchi, “Videochef: efficient approximation for streaming video
processing pipelines,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 43–56.

[61] T. Y. Yeh, G. Reinman, S. J. Patel, and P. Faloutsos, “Fool Me Twice:
Exploring and Exploiting Error Tolerance in Physics-based Animation,”
ACM Transactions on Graphics, vol. 29, December 2009.

[62] S. Yesil, I. Akturk, and U. R. Karpuzcu, “Toward Dynamic Precision
Scaling,” in IEEE Micro Special Issue on Approximate Computing,
July/August 2018, in press.

!

!

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:40:54 UTC from IEEE Xplore. Restrictions apply.

