VARIUS-NTV: A Model of Process Variations at Near-Threshold Voltages

Ulya R. Karpuzcu*, Krishna Kolluru*, Nam Sung Kim*, Josep Torrellas*

University of Illinois

* University of Wisconsin

http://iacoma.cs.uiuc.edu/varius/ntv

[ITRS'11]

[ITRS'11]

[ITRS'11]

[ITRS'11]

Vdd remains slightly above Vth

- Vdd remains slightly above Vth
 - Near-threshold Voltage (NTV): ~0.5V
 - Conventional = Super-threshold Voltage (STV): ~1V

- Vdd remains slightly above Vth
 - Near-threshold Voltage (NTV): ~0.5V
 - Conventional = Super-threshold Voltage (STV): ~1V
- Operation with much higher energy-efficiency
 - P_{DYN} and P_{STA} are super-linear functions of Vdd

Ulya R. Karpuzcu

At NTV, more cores can be active than at STV

• Key NTV barrier : Increased sensitivity to parametric variation

- Key NTV barrier : Increased sensitivity to parametric variation
- How to cope with increased sensitivity to variations at NTV?

- Key NTV barrier : Increased sensitivity to parametric variation
- How to cope with increased sensitivity to variations at NTV?
 - Holistic approach involving all levels of system stack

- Key NTV barrier : Increased sensitivity to parametric variation
- How to cope with increased sensitivity to variations at NTV?
 - Holistic approach involving all levels of system stack
 - First step: Characterize the impact of variation

- Key NTV barrier : Increased sensitivity to parametric variation
- How to cope with increased sensitivity to variations at NTV?
 - Holistic approach involving all levels of system stack
 - First step: Characterize the impact of variation
 - Contribution: VARIUS-NTV

- Key NTV barrier : Increased sensitivity to parametric variation
- How to cope with increased sensitivity to variations at NTV?
 - Holistic approach involving all levels of system stack
 - First step: Characterize the impact of variation
 - Contribution: VARIUS-NTV
 - A (μ)architectural model of parametric variation for NTV

• Deviation of device parameters from nominal: Vth, Leff

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

Chip f \downarrow

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

Probability of a path with $T = T_i$ being exercised

Chip P_{STA} 1

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

Parametric Variation: Basics

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

Probability of a path with $T = T_i$ being exercised

Parametric Variation: Basics

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

Probability of a path with $T = T_i$ being exercised

Parametric Variation: Basics

- Deviation of device parameters from nominal: Vth, Leff
- Impact of variation?

Probability of a path with $T = T_i$ being exercised

Same ΔVth causes higher f variation at NTV than at STV

• Extend VARIUS [Sarangi'08]

- Extend VARIUS [Sarangi'08]
 - Systematic variation

╋

• Extend VARIUS [Sarangi'o8]

Systematic variation

Random variation

• Extend VARIUS [Sarangi'o8]

Systematic variation + Random variation

Multi-variate Gaussian Distribution

• Extend VARIUS [Sarangi'o8]

Systematic variation + Random variation Multi-variate Gaussian Distribution Spatial Correlation

- Extend VARIUS [Sarangi'o8]
 - Systematic variation

Random variation

Multi-variate Gaussian Distribution

╋

Spatial Correlation

Floorplan

- Extend VARIUS [Sarangi'o8]
 - Systematic variation

Random variation

Multi-variate Gaussian Distribution

+

Spatial Correlation

Floorplan

• Extend VARIUS [Sarangi'o8]

Systematic variation

Multi-variate Gaussian Distribution

╋

Spatial Correlation

No Correlation

Random variation

Model at transistor granularity

Floorplan

- Extend VARIUS [Sarangi'o8]
 - Systematic variation

+

Random variation

Multi-variate Gaussian Distribution

Spatial Correlation

No Correlation

Model at transistor granularity

Floorplan

Vth, Leff maps

Gate delay

Gate delay **VARIUS-NTV: EKV-based** $\tau \propto \frac{Vdd \times L_{eff}}{\ln^2(e^{(\frac{Vdd-Vth}{2 \times n \times \tau})} + 1)}$

Gate delay **VARIUS-NTV: EKV-based** $\tau \propto \frac{Vdd \times L_{eff}}{\ln^2(e^{(\frac{Vdd-Vth}{2 \times n \times \tau_e})} + 1)}$

Path delay

 $\begin{array}{l} \mbox{Gate delay} \\ \mbox{VARIUS-NTV: EKV-based} \quad \tau \propto \frac{Vdd \times L_{eff}}{\ln^2(\mathrm{e}^{(\frac{Vdd - Vth}{2 \times n \times \tau_{c}})} + 1)} \end{array}$

Path delay

 T_{NOM}

10

Ulya R. Karpuzcu

τ

 $\begin{array}{l} \mbox{Gate delay} \\ \mbox{VARIUS-NTV: EKV-based} \quad \tau \propto \frac{Vdd \times L_{eff}}{\ln^2(\mathrm{e}^{(\frac{Vdd - Vth}{2 \times n \times \psi})} + 1)} \end{array}$

Path delay

• 8T SRAM Cell

• 8T SRAM Cell

• 8T SRAM Cell

- 8T SRAM Cell
- Model various failure types

• Hold

- 8T SRAM Cell
- Model various failure types
 - Hold
 - WR Stability

- 8T SRAM Cell
- Model various failure types
 - Hold
 - WR Stability
 - WR Timing

- 8T SRAM Cell
- Model various failure types
 - Hold
 - WR Stability
 - WR Timing
 - Rd Timing

- 8T SRAM Cell
- Model various failure types
 - Hold
 - WR Stability
 - WR Timing
 - Rd Timing
- Account for leakage

Hold Analysis

Hold Analysis

• The cell is not accessed

- The cell is not accessed
- Node L looses its state

- The cell is not accessed
- Node L looses its state
 - Excessive leakage

- The cell is not accessed
- Node L looses its state
 - Excessive leakage
- **VARIUS-NTV**

- The cell is not accessed
- Node L looses its state
 - Excessive leakage
- **VARIUS-NTV**
 - Minimum V_{dd} (V_{ddMIN}) to exclude state loss

- The cell is not accessed
- Node L looses its state
 - Excessive leakage
- **VARIUS-NTV**
 - \bullet Minimum V_{dd} (V_{ddMIN}) to exclude state loss
 - Hold failure rate at any given V_{dd}

Gate Delay Model	EKV Based	
------------------	-----------	--

Gate Delay Model	EKV Based
SRAM Cell Architecture	8T

Gate Delay Model	EKV Based
SRAM Cell Architecture	8T
SRAM Failure Modes	Hold Write Stability Write Timing Read Timing

Gate Delay Model	EKV Based
SRAM Cell Architecture	8T
SRAM Failure Modes	Hold Write Stability Write Timing Read Timing
Impact of Leakage	\checkmark

Validated against Intel 8o-core TeraFLOPS

Validated against Intel 8o-core TeraFLOPS

f ratio of fastest to slowest core

Validated against Intel 8o-core TeraFLOPS

Evaluation Setup

- 288 core chip:
 - 36 clusters, 8 cores per cluster
 - Core: Single issue in-order
- 11nm process

Core

Core

Intra Cluster

Core

- Larger f variation at NTV
 - 2.5x (NTV) vs. 1.9x (STV)

- Larger f variation at NTV
 - 2.5x (NTV) vs. 1.9x (STV)

- Larger f variation at NTV
 - 2.5x (NTV) vs. 1.9x (STV)
- Memories more vulnerable

- Larger f variation at NTV
 - 2.5x (NTV) vs. 1.9x (STV)
- Memories more vulnerable

Variation in Frequency

Variation in Vth $\uparrow \Rightarrow$ The spread of distribution \uparrow

Timing Error Rate (Logic)

Timing Error Rate (Logic)

Timing Error Rate (Logic)

20

VARIUS-NTV: A μ -architectural model of variations at NTV

• Gate delay model tailored for NTV

- Gate delay model tailored for NTV
- SRAM cell architecture facilitating robust operation at NTV

- Gate delay model tailored for NTV
- SRAM cell architecture facilitating robust operation at NTV
- Various SRAM failure modes

- Gate delay model tailored for NTV
- SRAM cell architecture facilitating robust operation at NTV
- Various SRAM failure modes
- Consideration of leakage throughout analysis

- Gate delay model tailored for NTV
- SRAM cell architecture facilitating robust operation at NTV
- Various SRAM failure modes
- Consideration of leakage throughout analysis
- Useful for a variety of (μ)architectural studies

- Gate delay model tailored for NTV
- SRAM cell architecture facilitating robust operation at NTV
- Various SRAM failure modes
- Consideration of leakage throughout analysis
- Useful for a variety of (μ)architectural studies
 - Design space exploration:
 - Safe Vdd, f for logic and on-chip memory along with induced power

- Gate delay model tailored for NTV
- SRAM cell architecture facilitating robust operation at NTV
- Various SRAM failure modes
- Consideration of leakage throughout analysis
- Useful for a variety of (μ)architectural studies
 - Design space exploration:
 - Safe Vdd, f for logic and on-chip memory along with induced power
 - Reliability analysis:
 - Timing/stability error rate for logic and on-chip memory

- Gate delay model tailored for NTV
- SRAM cell architecture facilitating robust operation at NTV
- Various SRAM failure modes
- Consideration of leakage throughout analysis
- Useful for a variety of (μ)architectural studies
 - Design space exploration:
 - Safe Vdd, f for logic and on-chip memory along with induced power
 - Reliability analysis:
 - Timing/stability error rate for logic and on-chip memory
- Download: <u>http://iacoma.cs.uiuc.edu/varius/ntv</u>

VARIUS-NTV: A Model of Process Variations at Near-Threshold Voltages

Ulya R. Karpuzcu*, Krishna Kolluru*, Nam Sung Kim*, Josep Torrellas*

University of Illinois

* University of Wisconsin

http://iacoma.cs.uiuc.edu/varius/ntv

