
JXCDC, OCTOBER 2019 9

APPENDIX

A. Reconfigurability
Invoking a logic gate within the SpinPM array translates into
pre-setting the output, connecting all cells participating in
computation to LL by setting the corresponding WLs, and
setting a voltage between BSLs of the inputs and output cells
that equals to Vgate, which depends on the type of the logic
gate. Therefore, modulo output pre-set, the complexity of
reconfiguration is very similar to the complexity of addressing
in the memory array. SpinPM is reconfigurable along two
dimensions:
• Each cell can serve as an input or as an output for a
logic gate depending on the computational demands of the
workload within the course of execution.

• For a fixed input-output assignment, the logic function itself
is reprogrammable. For example, we can reconfigure the gate
from Fig.1(b)/(c) to implement another function than NOR
by simply changing Vgate, to, e.g., VNAND (and applying
a different output pre-set, as need be).
By default, SpinPM acts as an MRAM array. A dedicated

architecturally visible set of registers keep the configuration
bits to program SpinPM cells as logic gate input/outputs. These
configuration bits capture not only the physical location in the
array, but also whether the cell represents an input or an output,
the pre-set value for the output, and Vgate. A fixed or floating
portion of the SpinPM array can keep these configuration bits
as part of the machine state, as well.

B. Spatio-Temporal Scheduling
The goal of classic memory data layout optimizations is
to perform as many computations as possible per unit data
delivered from the memory to the processor, as the data com-
munication between the processor and the memory represents
the bottleneck. SpinPM, on the other hand, brings compute
capability to the data to be processed. The goal becomes
minimizing the direct physical distance between the cells
participating in computation. Considering that an output cell
can serve as an input cell in subsequent steps of computation,
the physical location of the cells carrying the input data
for subsequent steps can dynamically change as computation
proceeds.

This optimization problem gives rise to two strongly corre-
lated sub-problems: the layout of data to be processed in
the memory array, and the spatio-temporal scheduling of
computations within the array. In this regard, the optimization
problem has many analogies to floor-planning and placement
algorithms deployed in the computer aided design of digital
systems, which aim to minimize the “distance” (in terms of
wire length) between interconnected circuit blocks. In SpinPM
context, “interconnected blocks” translate into interconnected
cells (over LL) participating in computation (Section II-A). We
will look closer into this effect in Section C.

SpinPM hence features a unique trade-off between data
replication and parallelism: Due to the internal array structure,
(unless replicated), the same cell can only participate in
one computational step at a time, which may impair further
opportunities for parallel execution. Data replication can unlock
more parallelism in such cases, at the expense of a larger
memory footprint.

As an example, Figure 7 illustrates a time lapse of logic
operations on two datasets, each 3-bit in length, in a SpinPM
array of four columns (rotated in horizontal direction for ease
of illustration). Time T0 captures the initial state. T1-T4 is

spent on preset operations of output cells in all four rows,
conservatively through standard writes of one row at a time,
before a sequence of bitwise ORs and MAJ3s take place (on
each column in parallel). Time T5 shows the OR operation on
the first bits of the datasets, in each column at the same time
(bold bit values are involved in computation). T6 and T7 do
the same for next two bits of the datasets. The last stage of
computation, T8, performs MAJ3 on the three bit result of the
previous sequence of ORs. Last step, R, highlights the final
result bits in each column.

C. Practical Considerations

Array Size: The maximum column height (i.e., the maximum
number of rows) per SpinPM array depends on the gate voltage
Vgate (Section II-A), the interconnect material for LL and BSL
(which connects the input and output cells together in forming a
gate), as well as the technology node. We conduct the following
experiment to determine the maximum column height: We
consider a two-input, one output SpinPM gate which has the
input cells and the output cell located in adjacent columns. In
each experiment, we shift the output cell further away from
the input cells, by one cell at a time. The process continues
until we reach the terminating condition, which is when the
current through the output cell falls below the required critical
switching current for the most conservative input cell resistance
states.

Assuming copper interconnect segments of 160nm for LL,
for representative SpinPM gates used in pattern matching, this
analysis renders approximately 2K cells per column at 22nm,
where the latency overhead induced by this maximum distance
computation barely reaches < 1% of the switching time of the
SHE-MTJ as detailed in Section IV).

The feasibility of array dimensions is contingent upon the
correct functionality of the array at subarray granularity. Our
circuit-level analysis reveals a maximum subarray size of 512×
512 bits, without sacrificing the reliability of array functionality.

Since SpinPM cells use two transistors, the area of each cell
is dominated by the transistors. The area of each SpinPM cell,
at 22nm technology node, is roughly 100F 2 considering the
current density requirement of MTJ devices which governs the
size of the cell (MTJs are placed on top of transistors, and
roughly consume ∼ 5% of the transistor area).
Array Periphery: Peripheral overheads, mainly induced by
addressing and control operations, can play a vital role in
determining the pattern matching throughput. Accordingly,
throughout the evaluation, we consider the time and energy
overhead of peripheral circuitry including row and column
decoders, multiplexers, and sense amplifiers. For memory read
and write operations a SpinPM array is not quite different
than a standard STT-MRAM array, hence we model periphery
after the standard STT-MRAM. During computation, however,
as all columns operate in parallel, column decoder overhead
does not apply (which we conservatively keep). The periphery
during computation rather becomes similar to the periphery of
Pinatubo [34], an alternative spintronic PIM substrate (although
SpinPM computation relies on a different mechanism, totally
excluding sense amplifier involvement during computation
contrary to Pinatubo). Even during computation where all
columns are active, the current draw in an SpinPM array
remains relatively modest. For example, using specifics for
SHE-MTJ devices (as detailed in Section IV), a 128MB array
would still consume considerably less current than a DDR3
SDRAM write operation [42].



JXCDC, OCTOBER 2019 10

0 1 1 0 1 0 1 10 1

1 0 0 1 0 0 0 01 0

1 1 1 1 1 0 1 11 1
1 0 1 1 1 1 1 11 1

0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

Column1

Column2

Column3

Column4

0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

1
1
1

1

1 1

1
1

0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

1 1

1
1

1 1 1
1

1 1 1

1

0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

1 1 1

1

1 1 1 1
1 1 1 1

1 1 1 1
0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

0 1 1 1

1 1 1 1
1 1 1 1

1 0 1 1
0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

0 1 1 1

1 1 1 1
1 1 1 1

1 0 0 1
0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

0 1 1 1

1 1 1 1
1 1 1 1

1 0 0 0
0 1 1 0 1 0

1 0 0 1 0 0
1 1 1 1 1 0
1 0 1 1 1 1

{ { {Data1 Data2 Output Cells

0 1 1 1
Result Bits

T1 T2 T3

T4 T5 T6 T7

T8 R

T0

Fig. 7: Timing diagram of example logic execution.

Preset Overhead: Each logic operation requires the output
to be (pre)set to a predefined value. Computation is column
parallel, i.e., in all columns, the output cell resides in the
very same row. Accordingly, before firing column-parallel
computation, the corresponding row where the output cells
reside should be preset. To this end, we can use a “gang” preset,
which presets all cells in the output row(s) simultaneously.
The alternative is relying on the standard write operation,
which can preset (columns in) one row at a time. The gang
preset is equivalent to a parallel COPY operation – where
all columns compute in parallel and where the output cells
are all in the respective row subject to gang preset. Hence,
the discussion about the periphery overhead during column-
parallel computation directly applies here, and the current
draw remains to be modest. For standard write based preset as
well, the current draw is similar: As one gate can be actively
computing in a column at a time, only one cell needs to be
preset per column, and all rows are preset one after another.
Read Disturbance: Read disturbance is an issue that arises
when read current and write current become similar due to non-
linear technology scaling of different electrical components of
an array. SHE-MTJ devices have separate read and write paths
through the device, eliminating read disturbance issue.

D. System Interface
SpinPM can serve as a stand-alone compute engine or a co-
processor attached to a host processor. Following the near-
memory processing taxonomy from [2], due to the reconfigura-
bility (Section A), both SpinPM design points still fall into the
“programmable” class. A classic system has to specify how to
offload both computation and data to the co-processor, and how
to get the results back from the co-processor. For a SpinPM co-
processor, we do not need to communicate data values – instead,
the SpinPM array requires (ranges of) data addresses to identify
the data to process, and the specification for computation, i.e.,
which function to perform on the corresponding data.
We will next cover the SpinPM system stack to support in-
memory execution semantics for pattern matching.
SpinPM Instructions: In addition to conventional memory
read and write, SpinPM instructions cover computational
building blocks for in-memory pattern matching. SpinPM
instructions hence form two classes: data transfer (read,
write) and computational (arithmetic/logic). By construction,
computational SpinPM instructions are block instructions:
two dimensional vector instructions, which operate on all
columns and on a subset of rows of an SpinPM array at
a time. Hence, key operands for any computational SpinPM

instruction are the row numbers of the source(s) (i.e., input(s) to
computation) and destination(s) (i.e., output(s) to computation).
Depending on the size of the pattern matching problem,
multiple SpinPM arrays may be deployed in parallel. Therefore,
the computational subset of SpinPM instructions facilitates
gang-execution on all SpinPM arrays, as well. In the following,
we will generically use the term SpinPM substrate to refer
to all arrays participating in computation. We also make the
distinction between macro- and micro-instructions. The set of
micro-instructions covers actual bit-level operations performed
in the SpinPM substrate, while the set of macro-instructions
forms the high-level programming interface.

Programming Interface: To match SpinPM’s column-level
parallelism, memory allocation and declaration of variables
(which represent inputs and outputs to computation) happen
at column granularity. Depending on the problem, a variable
may cover the entire column or only a portion. The following
code snippet provides an example, where an integer variable
x gets written (assigned) to row r and column c in a SpinPM
array (line 5):

1 int x = ...;

2 ...

3 int y;

4 preset(r, ncell, val);
5 intpm xpm = writepm(x, r, c, sizeof(x));
6 y = readdirpm(xpm);

In this case, besides x and y, ncell, val, c and r represent
(already defined) integer values. The SpinPM-specific (com-
posite) data type intpm captures row and column coordinates
for each variable stored in the array. xpm in line 5 keeps this
information for variable x, after it gets written to column c,
from row r onwards, by the writepm function. The subsequent
read in line 6, conducted by the readdirpm, directly assigns
the value of x to y. SpinPM also features a read function,
readpm, which has a similar interface to writepm with explicit
row and column specification. We consider each such function
as a macro-instruction.

The preset function in line 4 presets ncell number of
(consecutive) cells, starting from row r, each to value val.
SpinPM features different variants of this function, including
one to gang-preset the entire scratch area (Fig. 3), and another
where val is interpreted as a bitmask (of ncell bits) rather
than a single-bit preset value which applies over the entire
range of the specification.

Each pattern matching problem to be mapped to SpinPM
features three basic stages:



JXCDC, OCTOBER 2019 11

(i) Allocating and initializing the reference, pattern, and
scratch regions in each array (Fig. 3);

(ii) Computation;
(iii) Collecting the pattern matching outcome.

Variants of preset and writepm functions cover stage
(i); and variants of read(dir)pm, stage (iii). Stage (ii) can
take different forms depending on the encoding of pat-
tern and reference characters, but generally primitives such
as addpm(int start, int end, intpm result) apply, which
sums all cell contents between rows start and end, on
a per column basis, and writes the result back where result
points. addpm macro-instruction can directly implement Phase-2
from Algorithm1 to calculate the bit-count on the match string
(Section III-B).

To better facilitate flexibility of development, both gate-
level and function-level macros are available to the developers.
The following code excerpt implements DNA sequence pre-
alignment application on SpinPM.
Step-1: For all reads, do:
xpm

[
i
]
= writepm

(
spatterns

[
i
]
, i, sizeof

(
spatterns

[
i
]))

//write the search patterns to SpinPM. i in writepm denotes
column index.
Step-2: (Preset) For match string bits, do: ms

[
i
]
= 0 or 1

//dependent on logic function
Step-3: (Preset) For reduction adder output bits, do:
adder out

[
i
]
= 0 or 1 //dependent on logic function

Step-4: (Preset) For scratch bits, do: sb
[
i
]

= 0 or 1
//dependent on logic function
Step-5: For all bits in reference and search patterns in this
row index = i, do:
xor

(
xpm

[
i
]
, xref

[
i
]
, sb

[
i
])

//XOR on first bits of base
character, store output in scratch space

xor
(
xpm

[
i+ 1

]
, xref

[
i+ 1

]
, sb

[
i+ 1

])
//XOR on second

bits of base character, store output in scratch space
nor

(
sb
[
i
]
, sb

[
i + 1

]
,ms

[
i
])

// NOR operation on scratch
output bits, store in match string
Step-5a: Update row index
Step-6: reduction

(
ms, adder out

)
//Reduction on match

string bits (ms) to store the output in adder out
Step-6a: Preset scratch bits if required: sb

[
i
]

= 0 or 1
//dependent on preset algorithm
Step-7: read

(
adder out

)
Step-7a: Go back to Step-2 for next location search.

Code Generation: Code generation simply entails translating
a sequence of macro-instructions to a sequence of micro-
instructions for the SpinPM memory controller (SMC) to drive
the in-place computation. Micro-instructions specify the type
of operation and the rows to connect as inputs and outputs.
For example, nand(ri, rj, rk) specifies row ri as the output
and row rj and rk as inputs to form a NAND gate in the
SpinPM array. The macro-instruction nandpm, on the other
hand, performs the very same operation on multi-bit operands
(of width ncell): nandpm(ri, rj, rk, ncell). In this case, ri,
rj, and rk still demarcate the starting rows for the source
and destination (ncell bit) operands. nandpm hence translates
into a sequence of ncell number of nand micro-instructions.
For addpm type of macro-instructions, on the other hand, a
spatio-temporal scheduling pass (Section B) determines the
corresponding composition of micro-instructions. The goal is to
maximize the throughput performance for the given data layout.
This usually translates into masking the overhead of presets or
other types of writes (per row) by coalescing when possible.
By construction, variants of preset macro-instruction trigger

a sequence of memory writes (as many as the number of rows),
as at most one row can be written at a time.
SpinPM Memory Controller (SMC): SMC orchestrates
computation in the SpinPM substrate, and the communication
with the host processor. SpinPM features an internal clock.
During computation, SMC allocates each micro-instruction a
specific number of cycles to finish depending on the operation
and operand widths. This time window includes peripheral
overheads and the scheduling overhead due to SMC, besides
computation. After the allocated time elapses (and unless an
exception is the case), SMC fetches the next set of micro-
instructions. SMC features an instruction cache where micro-
instructions reside until they are issued to the SpinPM substrate.
Before issue, SMC decodes the micro-instructions using a
look-up table to initiate preset, and subsequently, to set the
appropriate voltage level on input and output BSL (as a function
of the operation, as explained in Section II-B), before activating
the corresponding rows in the specified arrays for computation.
The look-up table keeps the voltage level and the preset value
for each bit-level operation from Section II-B, which form a
SpinPM micro-instruction. No look-up table access is necessary
for read and write operations.

E. A Closer Look into Performance and Energy
We will next provide a detailed throughput performance and
energy characterization, along with a sensitivity analysis, using
DNA as a case study. SHE-MTJ is considered as the cell
technology used in SpinPM. To characterize SpinPM based
DNA sequence pre-alignment, we use a NVidia Tesla K20X
GPU based implementation of the common Burrows-Wheeler
Aligner (BWA) algorithm [43]. We deploy the very same ref-
erence and input pattern pool for the GPU and SpinPM. In
order for the comparison to be fair, we only take the basic
pattern matching portion of the GPU baseline into consideration
(Section III). Specifically, we will consider two design points,
which differ in how the patterns (from the input pattern pool)
get assigned to columns for matching. In other words, how
patterns are scheduled for computation in the SpinPM array:
The first one is a Naive implementation, where we take one
pattern and blindly copy it to every column of all arrays to
perform similarity search. The second implementation, on the
other hand, features Oracular pattern scheduling, which can
avoid assigning a pattern to a column where a too dissimilar
(reference) fragment resides. Oracular is straight-forward to
implement by adding a search-space pruning step before full-
fledged mapping takes place, as explained in Section III-B, by
e.g., using hash-based filtering [44]. We will leave exploration
of this rich design space to future work, but cover the overhead
of a representative practical implementation in the following.
Any practical SpinPM implementation would fall somewhere
in the spectrum between these two extremes.
Naive Design (Naive): The caveat here is the very high
overhead of redundant computation, due to processing one
pattern at a time and mapping each such pattern naively to
all reference fragments. As a single pattern is matched to
the entire reference, across all arrays, at a time, the apparent
serialization hurts the throughput, in terms of the number of
patterns matched per second. per second as match rate.
Oracular Pattern Scheduling (Oracular): The oracular
scheduler resides between the input pattern pool and SpinPM,
and controls to which column in which array each pattern goes.
Oracular may still feed a given pattern to multiple columns,
in multiple arrays, however, does not consider columns which



JXCDC, OCTOBER 2019 12

Naive NaiveOpt Oracular OracularOpt

N
or

m
al

iz
ed

 M
at

ch
 R

at
e

0
10

0
30

0
50

0

2.049e−4 2.135e−4

614.623
640.554

(a) Match Rate (patt/sec)
Naive NaiveOpt Oracular OracularOpt

N
or

m
al

iz
ed

 C
om

pu
te

 E
ffi

ci
en

cy
0

20
0

60
0

10
00

4.3124e−4 4.3127e−4

1293.83 1293.83

(b) Compute Eff. (patt/sec/mW)

Fig. 8: Performance and Energy Characterization.

carry a too dissimilar (reference) fragment. In other words,
Oracular directs patterns to columns and arrays in a way
such that achieving a high similarity score becomes more
likely. While Oracular bases its pattern scheduling decisions
on perfect information, a practical implementation of this idea
would incur the overhead of gathering this information, i.e.,
extracting a schedule to keep pattern matching confined to
columns where a high similarity score is more likely. In any
case such smart scheduling of patterns benefits the throughput
performance by reducing redundant computation which eats
from the energy budget.

However, since all columns in a SpinPM-SHE array perform
pattern matching (in lock-step but) in parallel, before compu-
tation begins, we require that all columns have their patterns
ready. Scheduling patterns takes time, which might further
affect the throughput performance of SpinPM, if we let the
array sit idly, waiting for scheduling decisions to take place.
We can mask this overhead, as drawing pattern scheduling
decisions for all the columns in an array takes less time than
writing patterns in the columns of that array. This, in effect,
would not introduce any timing overhead towards the system
throughput, although there is an energy overhead.
Fig.8 shows the throughput performance and compute efficiency,
normalized to GPU baseline, for Naive and Oracular, when
processing a pool of 3M patterns. We use match rate (in terms
of number of patterns processed per second) for throughput;
match rate per milliwatt, for compute efficiency. Naive yields
very low throughput – by mapping each pattern to every
column of each array at a time, and thereby increasing the total
execution time significantly. Oracular pattern scheduling is
very effective in eliminating this inefficiency: we observe that
the throughput performance w.r.t. Naive increases by orders
of magnitude in this case.

To put these throughput values in context, we can look at the
time required to process the pool of 3M patterns, which is over
38 hours, using 300 arrays under Naive. The fundamental
limitation for Naive is the redundancy in computation. Since
at a time, Naive feeds only one pattern into all SpinPM arrays,
the total time required to process the entire pool of patterns is
higher. The effective throughput is limited by the time taken to
align one pattern in one column. On the other hand, Oracular
only takes about 0.05 seconds for the same pool of patterns.
This drastic change in runtime is due to feeding multiple
patterns into SpinPM arrays at the same time.

It is fundamental to the understanding of the performance and
energy characterization to identify the individual contributions
of actual computation stages – i.e., Stages(1)–(8) from Section
IV. Fig.9 shows the distribution of energy and latency compo-
nents. The preset overheads are 67.67% and 70.7% in energy
and latency, respectively, where the bit-line (BL) driver energy
and latency overheads are < 1%. The breakdowns in Fig.9
do not contain preset and BL driver related overheads. Apart
from these, we observe that the majority of the energy (Fig.9a)

34.58% 0.04%

55.73%

 9.64%

Match
Write
Add
Read

(a) Energy

 7.04%

 7.72%
 0.13%

85.11%

Match
Add
Write
Read

(b) Latency

Fig. 9: Breakdown of energy and latency in computation.

is consumed by the match operations and additions during
similarity score computations. However, in case of latency
(Fig.9b), the dominant components change to read-outs of
similarity scores (i..e, Stage (8)) while the match and additions
have similar shares. In case of both energy and latency, writes
(i.e., Stage (1)) consume < 1% of the share.

This breakdown clearly identifies preset overhead as the
essential bottleneck. Also, although the time required by the
match and similarity score compute phases are not drastically
different, the energy required by the similarity score compute
phase is around 1.5× of that of match phase. Accordingly,
we next look into preset and similarity score computation
operations for optimization opportunities.
Optimized Designs (NaiveOpt, OracularOpt): As the re-
duction tree for addition (Fig.4b), which is at the core of
similarity score computations, already represents an efficient
design, we focus on optimizations to reduce the preset overhead.
Since presets are inevitable for logic operations, it is not
possible to entirely get rid of them. However, we can still
hide preset latency through careful scheduling of presets.

As presets do not correspond to actual computation, Naive
and Oracular simply perform them in between computation.
The challenge comes from successive steps in computation
using the very same set of cells to implement logic functions.
Instead of interrupting computation to preset these cells every
time a few computation steps are completed, we can distribute
such consecutive steps to different cells, using the scratch area
from Fig.3, and preset them at once, before computation starts.
We call the resulting designs NaiveOpt and OracularOpt,
respectively. The NaiveOpt and OracularOpt bars in Figure 8a
and Figure 8b capture the resulting energy and throughput
performance. We observe that, for each design option, energy
consumption of the optimized case is unchanged. This is
because the optimization only changes the scheduling of presets,
where the total number of presets performed still remains
the same. The throughput performance, on the other hand,
skyrockets in both cases thanks to gang presets (Section C).
Practical Search Space Pruning: The throughput for
Oracular represents the theoretically achievable maximum.
We next consider a practical implementation, as detailed in
Section III-B. For the GRIM filter based implementation, we
observe that the filtering overhead, as compared to the actual
pattern matching overhead, is very insignificant and therefore
has effectively no impact, even considering very high sub-
string lengths (used for chunking the patterns and the reference
in converting them to bit-vectors). However, the accuracy of
the filtering still has an impact, as captured by Fig. 10. This
figure shows, without loss of generality, how the throughput
and compute efficiency (both normalized to NMP baseline) of
DNA changes when the number of locations (column indices)
in an array for possible matches increases (which would be
the case under heavy aliasing during hashing). The decrease in



JXCDC, OCTOBER 2019 13

●

●

●

●

●

●
●

●
● ●

2 4 6 8 10

0
50

0
15

00
25

00

No. of Probable Match Locations

N
or

m
al

iz
ed

 V
al

ue

● Match Rate
Compute Eff.

Fig. 10: Impact of filtering inaccuracy on throughput.

performance numbers is intuitive since more match locations
refer to more iterations of the same set of search patterns
through SpinPM arrays. Luckily, even for a high degree of
filter inaccuracy, SpinPM-SHE can perform better than the
baseline.

How close a practical implementation can come to Oracular
strongly depends on the actual values of the patterns, as well,
which may or may not ease scheduling decisions. Since each
array keeps consecutive fragments of the reference, it is always
possible that patterns directed into a particular array do not
have any matches in any of the columns. We may not always
be able to eliminate such ill-schedules, depending on the
pattern values, where the incurred redundant computation would
degrade performance. The feasibility of any pattern scheduler
is contingent upon the distribution of the patterns, in terms of
the columns in the arrays where the most similar fragments
reside.
Sensitivity Analysis: Up until now, we have used a pattern
length of 100 characters. We will next examine the impact of
pattern length on energy and throughput characteristics. Without
loss of generality, we confine the analysis to OracularOpt.
For the purpose of design space exploration, we experiment
with pattern lengths of 200 and 300 characters, which are repre-
sentative values for the alignment of short DNA sequences [13].
We keep the array structure the same, while the reference length
remains fixed by construction.

100bp 200bp 300bp

N
or

m
al

iz
ed

 M
at

ch
 R

at
e

0
20

0
40

0
60

0

640.553 679.111
733.971

(a) Match rate (patt/sec)
100bp 200bp 300bp

N
or

m
al

iz
ed

 C
om

pu
te

 E
ffi

ci
en

cy
0

20
0

60
0

10
00

1293.83

723.99

549.89

(b) Compute Eff. (patt/sec/mW)

Fig. 11: Sensitivity to pattern length for OracularOpt.

Fig.11 summarizes the outcome. Understandably, with the
pattern length increasing, more computation becomes necessary
to generate the similarity scores in each row. However, this
effect does not directly translate into degraded performance:
The throughput for increasing pattern lengths remains close
to the baseline throughput for 100-character patterns. This is
because the preset optimization is scalable. Increasing pattern
length translates into more scratch bits for presets, which acts
against throughput going down sharply. Irrespective of the
application domain, the maximum pattern length is actually
limited by technology constraints, since the required number of

cells per column also increases with increasing pattern length.
We further observe that the compute efficiency (i.e., the match
rate per mW) decreases due to increases in computation per
alignment, which is congruent with the intuition.


