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Spiking Neural Networks in Spintronic Computational RAM
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Spiking Neural Networks (SNNs) represent a biologically inspired computation model capable of emulating

neural computation in human brain and brain-like structures. The main promise is very low energy con-

sumption. Classic Von Neumann architecture based SNN accelerators in hardware, however, often fall short

of addressing demanding computation and data transfer requirements efficiently at scale. In this article, we

propose a promising alternative to overcome scalability limitations, based on a network of in-memory SNN

accelerators, which can reduce the energy consumption by up to 150.25×when compared to a representative

ASIC solution. The significant reduction in energy comes from two key aspects of the hardware design to

minimize data communication overheads: (1) each node represents an in-memory SNN accelerator based on

a spintronic Computational RAM array, and (2) a novel, De Bruijn graph based architecture establishes the

SNN array connectivity.
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1 INTRODUCTION

Spiking Neural Networks (SNNs) are neural networks mimicking the event-driven neural trans-

mission in the brain. As a biologically inspired computational model capable of emulating neural

computation in human brain and brain-like structures [17, 45], SNNs pose as an ideal computing

medium for event-driven processing [46]. SNNs can perform a variety of computational tasks with

significantly lower power consumption, such as prosthetic brain-machine interface control [12] or

classification tasks like speech recognition [51].
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Large-scale SNNs needed to perform useful computational tasks inevitably come with increased

data access and parallelism demand that often exceeds capabilities of traditional hardware. When

neuron count increases significantly, more space is required to store synaptic parameters. Data

access and retrieval becomes a burden at the same time, mainly because any spiking information

emerging in neurons should be accessible to all other neurons as an input.

As large-scale SNN computations are massively parallel and induce high-intensity memory ac-

cesses for data retrieval, the energy consumption skyrockets at scale. To put this into perspective,

SpiNNaker requires 90 kW of power [34] for processing 1 billion neurons in real time, which would

scale to 7.7 MW for 86 billion [26] neuron count in human brain even under optimistic linear scal-

ing assumptions. This falls short by more than six orders of magnitude difference compared to

the often cited 20-W power consumption in human brain [29], which clearly shows that scaling

is quite costly. This is why true in-memory computing substrates such as the recently proposed

spintronic Computational RAM (CRAM) [48], enabling massively parallel and reconfigurable

logic operations in situ without compromising energy efficiency, represent especially promising

platforms for SNN hardware, which forms the focus of this article. Our data-centric design fea-

tures a network of accelerator arrays, where each node represents an in-memory SNN accelerator

based on a CRAM array, and a novel, De Bruijn graph based architecture establishes SNN array

connectivity to minimize data communication overheads. In a nutshell, our contributions are as

follows:

• We present a novel, communication-centric SNN accelerator that minimizes data transfer

overheads by (i) using non-volatile in-memory accelerator arrays at the node level and (ii)

introducing a scalable topology for array connectivity.

• We explore the accelerator design space and cover algorithm mapping details along with

sensitivity to technology parameters.

• The proposed accelerator design can reduce energy consumption significantly (by up to

more than two orders of magnitude) when compared to a recent representative ASIC

implementation.

We will start our discussion with background information covering related work in Section 2,

and basics of CRAM and the SNN model in Section 3. Section 4 details the proposed SNN

architecture based on CRAM. After quantitative evaluation in Section 5, we conclude the article

in Section 6.

2 RELATED WORK

Recent efforts [25] focus on flexible and efficient hardware emulation of different biologically accu-

rate SNN models, whereas others exploit the computational power resulting from the high number

of relatively simpler neurons in SNNs. Low-energy hardware SNN accelerators such as ODIN [16]

try to minimize the energy per spiking event. SNN hardware solutions include IBM’s TrueNorth

[30], Intel’s Loihi [10], University of Manchester’s SpiNNaker [17], and Human Brain Project’s

BrainScaleS [41]. The present highest number of spiking neurons in a hardware SNN implementa-

tion is 1 billion real-time neurons in SpiNNaker [21]—only a fraction of the average neuron count

of 86 billion in human brain [26].

Various solutions based on traditional CMOS as well as emerging spintronic and resistive tech-

nologies are proposed to overcome this bottleneck [32]. These proposals typically only address a

single step of SNN computation, which takes the form of weight multiplication by spike trains in a

crossbar setting for recent Magnetic Tunneling Junction (MTJ) based spintronic SNN accelera-

tors [6, 22, 42, 50]. Flexibility is also a concern, as the SNN model as well as parameter resolution is

hardwired. Spintronic (MTJ based) devices have also been proposed as analog SNN building blocks
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[54]; however, analog implementations by construction suffer from process variability constraints

[47]. Several other implementations utilize customized sense amplifiers to perform computations

near memory, including FeFETs [36], SOT-MRAM based in-memory graph processing [1], and

STT-MRAM based binary neural networks [35]. Unfortunately, these designs introduce additional

complexity to the peripheral circuitry and do not completely eliminate the memory access over-

head. This results in a suboptimal design as tighter coupling between the computation and the

memory is still possible. Other implementations include various other works [2, 3, 22, 31].

It is important to note that RRAM and SRAM based universal true in-memory computing ap-

proaches also exist, yet MTJ based SHE CRAM is more energy efficient. For example, compared

to the SRAM and RRAM based 3-input majority gate implementations in the work of Gupta et al.

[18], CRAM in the work of Zabihi et al. [53] consumes 4.6× and 4.48× less energy, respectively.

RRAM and MTJ based technologies have a clear advantage over SRAM due to their non-volatility.

When compared to MTJ, however, RRAM suffers from low endurance, which limits practicality.

Up to 1E+20 cycles of endurance are reported for MTJs, whereas RRAM endurance remains be-

low 1E+10 [49]. As a representative example, MAGIC [6, 23, 24], a similar in-memory computing

platform to CRAM (in terms of logic operation principle) yet with predominantly RRAM based

implementations, suffers from these limitations.

3 BACKGROUND

We will first cover CRAM basics (Section 3.1) and continue with the feedforward Leaky Integrate-

and-Fire SNN model (Section 3.2). Although only the feedforward model is useful for many compu-

tational tasks, applications such as brain simulation need the parameters to be learned online. To

this end, we also include pairwise Spike-Time Dependent Plasticity (STDP) learning algorithm

for updating parameters during computation (Section 3.3).

3.1 CRAM Basics

Essentially, CRAM [48] augments conventional spintronic memory arrays with compute capability,

thereby enabling seamless memory access. As long as there is no computation, CRAM reduces

to an ordinary memory. When computation is enabled, CRAM performs logic operations directly

inside the memory array. Spin Torque Transfer (STT) and Spin-Hall Effect (SHE) or Spin-Orbit

Torque (SOT) based CRAM variants exists [8, 38, 52, 53]. CRAM can perform one logic operation

(Boolean gate) in a column at a time, but all (or a desired subset of) columns can perform the

same operation in parallel. Each cell in a column can serve as an input or output to a Boolean gate.

Logic operations are reconfigurable in time and space. At the same time, multiple CRAM arrays

can perform the same computation (across all of their columns) in parallel.

CRAM’s main storage element is an MTJ, which comprises a fixed-polarity magnetic layer, a

variable-polarity magnetic layer, and an insulating layer in between. When polarities of the mag-

netic layers (mis)match, the MTJ is in (Anti)Parallel-(A)P state that corresponds to logic (1) 0, ex-

hibiting a (high) low resistance.

Cell structures for STT- and SHE-CRAM are provided in Figure 1(a) and Figure 1(b), respectively,

which depict a sample of three cells in a column. CRAM features even and odd bitlines (BLE/O),

which are used to sense (change) the state of the MTJ in read (write) mode. For logic operations,

BLE/O is used determine which MTJ serves as an input or output. Logic lines (LL) connect input

and output cells to perform Boolean operations. Wordlines (WL) are used to select the rows for

both memory and logic operations. Specifically, to perform a logic gate in Figure 1(a), first the

output MTJ is preset to a known logic value depending on the type of the gate. If inputs reside in

even rows, the output should be in an odd row, and vice versa. By imposing a predefined voltage

difference between BLE and BLO, a current is induced through (a parallel connection of) inputs and
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Fig. 1. (a) 1T1M STT-CRAM. (b) SHE-CRAM. (c) Equivalent resistive network for a NAND gate. (d) NAND truth
table. (e) Three-step full adder implementation (with each box depicting a cell). MAJ3 and MAJ5 are 3-input
and 5-input majority gates. INV1-2 is an inverter that writes the output to two different cells simultaneously.
This is the time evolution of the very same column over three steps.

the output in series. The magnitude and direction of this current depends on the voltage difference

between BLE and BLO, which also is a function of the type of the gate to be performed. For a given

voltage difference, the current through the output evolves as a function of the parallel equivalent

resistance of the inputs, and may or may not be enough to switch the output state. This is the

main principle behind how CRAM implements truth tables. The equivalent resistive network for

the universal NAND gate is given in Figure 1(c) along with the truth table in Figure 1(d). CRAM

supports a rich set of (universal) gates beyond NAND, each characterized by specific bitline voltage

and output preset values. More complex logic functions such as full adders can be synthesized by

a sequence of basic gate operations as shown in Figure 1(e) [7].

SHE-CRAM, as shown in Figure 1(b), however, features a four terminal cell element that enables

faster memory and logic operations while consuming significantly less energy. This is because SHE-

CRAM separates read and write paths, making independent optimization of each possible (which

otherwise impose conflicting constraints). Accordingly, SHE-CRAM has separate read (WLR) and

write (WLW) wordlines, and two access transistors per cell. SHE-CRAM hence has a higher area

footprint compared to the STT-CRAM, which is compensated by lower energy and faster operation.

Memory and logic operations follow the same principles otherwise.

CRAM features two levels of parallelism: column level parallelism, where the same logic opera-

tions are performed in multiple columns simultaneously, and array level parallelism, which enables

multiple STT/SHE-CRAM arrays to perform computation at the same time. As all computation di-

rectly takes place within the memory array (i.e., there is no need to transfer data out of the array,

not even to periphery, for logic processing), CRAM represents an ideal in-memory processing plat-

form. To ease illustration, in the following, we will use transposed CRAM arrays, and abstract out

the interleaved placement where inputs (outputs) reside in even (odd) rows or vice versa.

3.2 Leaky Integrate-and-Fire SNN Model

Although there exist more complex and biologically accurate models for SNNs, the Leaky Integrate-

and-Fire model, as described in the work of Davies et al. [10], is widely used due to its relative sim-

plicity. Figure 2 highlights the computational steps involved in calculating the output (spike train

or spike function) of neuron ni from the spike trains received at its input. A neuron transmits in-

formation (in the form of a spike train) to others only if its membrane potential exceeds a threshold.

And a neuron’s membrane potential itself evolves as a function of the spike trains received at its

input, as we will discuss briefly. Table 1 provides the definitions for all model parameters.
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Fig. 2. Leaky Integrate-and-Fire model [10]. ∗, ×, +, >, and PRNG represent convolution, multiplication,
addition, comparison, and pseudo-random number generation. Table 1 provides the definitions for all model
parameters.

Table 1. Leaky Integrate-and-Fire SNN Model
Parameter Definitions

Parameter Definition

t Discretized time variable

σj (t ) Spike train at the output of neuron j
τu Synaptic time constant

τv Neural time constant

θi Spiking threshold constant of neuron i
ωi j Weight variable between neurons i and j
di j Delay variable between neurons i and j
bi Bias variable of neuron i

ui (t ) Synaptic response current of neuron i
vi (t ) Membrane potential of neuron i
A± Time constant

tpr e/post Presynaptic/postsynaptic spike time

αu (t ) 1
τu

e−
t

τu H (t )

F (t ) e−
t

τu H (t )
Lf #Entries in the lookup table of αu (t )
S Weight bit length

tmax Maximum time difference for STDP

r (t ) Pseudorandom noise

Nmax Maximum number of input spikes

Each connection from neuron j to neuron i is characterized by a weight ωi j and a delay value

di j (corresponding to the actual transmission delay in brain). Each spike train (or spike function)

can be expressed as σ (t ) =
∑

k δ (t − tk ), where δ is the unit impulse function; t , the discrete time

variable; and tk , the time difference corresponding to the kth spike.

The weighted sum of filtered input spike trains with bias is called synaptic response current, as

depicted in Equation (1), where ui (t ) represents the synaptic response current of neuron i:

ui (t ) =
∑
j�i

ωi j (αu ∗ σj ) (t ) + bi where αu (t ) =
1

τu
e−

t

τu H (t − di j ). (1)

H (t ) here is the unit step function; τu , a time constant; and bi , the bias. In the summation provided

in (1), the arrival of the spikes from each input (i.e., presynaptic) neuron j, σj , is delayed by di j .

In other words, the input neuron j is only taken into consideration after time characterized by di j
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Fig. 3. Time evolution for convolution of input spikes (σj ) with the filter αu .

Fig. 4. αu (t ) function for representative values of the synaptic time constant τu .

elapses. Here the convolution is implemented as a dot product between shifted samples of input

spikes (σj ) and the filter (αu ). For each time instance, adding samples of the dot product result

together effectively corresponds to a new sample of the convolution. This operation is depicted

in Figure 3.

Update function for membrane potential is given by Equation (2), wherevi (t ) captures the mem-

brane potential of neuron i:

v̇i (t ) =

(
− 1

τv
vi (t ) + ui (t )

)
σi (t ). (2)

τv here is a time constant. The neuron i spikes if v̇i (t ) exceeds the threshold value θi , and if the

neuron spikes, vi (t ) is reset to zero.

Figure 4 shows αu (t ) function considering representative values of the synaptic time constant

τu . It is important to note that the function decays quickly, which enables logic optimizations for

savings in array utilization, as we will cover in the following sections.

Variations of this basic algorithm include the Random Sampling algorithm from Loihi [10],

which our design is based on. Support for such variations is enabled by introducing an increment

of the synaptic response current and the membrane potential by a pseudorandom number, which

we will encapsulate in the following discussion in a noise term r (t ) (and which is generated by

PRNG blocks in Figure 2).

3.3 Pairwise STDP Based Parameter Learning

Learning entails adjusting synaptic weights (ωi j ) and delays (di j ) to dynamically optimize the SNN

for solving a specific problem. It models the actual synaptic changes that brain adapts to, to accom-

modate new constraints.
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Fig. 5. Pairwise STDP based parameter learning.

The STDP model features a simple weight learning rule, as described in other works [9, 10]. It

can be summarized as follows:

Δωi, j =
⎧⎪⎨
⎪
⎩

A−F
(
t − tpost

i

)
, on presynaptic spike

A+F
(
t − tpr e

j

)
, on postsynaptic spike.

(3)

Presynaptic and postsynaptic spikes correspond to spike events (trains) received at the input and

fired at the output, respectively. F (t ) = e−
t

τ H (t ) and τ , A−, and A+ are constants, as defined

in Table 1. Δωi, j is added to the weight ωi, j in each update. Figure 5 provides a block diagram

description of the basic STDP algorithm. We define Δtpr e (post ) as t − t
pr e (post )
j (i )

. The algorithm

continuously checks whether the current neuron or an input (presynaptic) neuron spikes. If so,

it resets the Δtpr e (post ) counter by multiplying its former value by zero. Otherwise, it checks for

overflow and increments the Δtpr e (post ) , which is then fed to F (·) function and multiplied byA+(−) .

The same STDP algorithm described in Figure 5 can be used to update synaptic delay parameters

in addition to the synaptic weights without loss of generality.

4 SNN IN CRAM

4.1 Leaky Integrate-and-Fire-Model in Memory

CRAM supports universal Boolean gates and hence can handle any type of computation including

the Leaky Integrate-and-Fire Model described in Section 3.2. The mapping is straightforward, as

shown in Figure 6, where each neuron gets processed inside a single CRAM array to exploit array-

level parallelism.

4.1.1 Initialization. Our design incorporates several lookup tables and dedicated storage for pa-

rameters and constants, which are initialized before feedforward computations start. The initializa-

tion is a one-time procedure, as the corresponding values do not change during computation. We

also initialize an S-bit local delay value for each synapse, which serves modeling synaptic delays

between neurons.
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Fig. 6. Data layout (transposed, with each row corresponding to a column of CRAM). The steps follow the
steps of the algorithm from Figure 2.

Table 2. CRAM Array Utilization by Constants,
Parameters, and Lookup Table for Different S and Lf s

S Lf Array Size Utilization

1−4 32 256 × 256 14.06%−56.25%

5−8 32 512 × 512 35.15%−56.25%

9−16 32 1024 × 1024 31.64%−56.25%

1−2 64 256 × 256 26.55%−53.13%

3−4 64 512 × 512 39.84%−53.13%

5−8 64 1024 × 1024 33.2%−53.13%

9−16 64 2048 × 2048 29.88%−49.8%

Precomputed αu values reside in a lookup table. αu lookup table consists of Lf different S-bit

values (Table 1). Similarly, constant 1
τv

is initialized once, as well as weights ωi j , bi , and θi values.

For the αu lookup table, Table 2 shows the utilization for different CRAM array sizes for various

values of S and Lf . We choose the array size so that the utilization does not exceed approximately

half of the array size. Thereby, enough space is left to perform the arithmetic/logic operations in

remaining CRAM space. Lf values of 32 and 64 allow the decay in αu (t ) (as captured by Figure 4)

to be represented with sufficient accuracy without compromising the memory footprint. Also note

that the actual number of active rows depends on the presynaptic spike activity.

4.1.2 Dataflow. Once a spike train of presynaptic neurons is received, it is written in the mem-

ory as shown in the first column in Step 1 . All of the (previously received and similarly placed)

spikes and the αu (s ) values are multiplied where s ∈ [0,Lf − 1] and Lf is the predetermined filter

length. This filtering operation effectively corresponds to the convolution (∗) from Equation (1).

Since all of the values involved are binary, this operation reduces to S × Lf AND operations where

S is the bit length of each entry in the αu (s ) lookup table, which keeps precomputed values of the

αu (s ) function. Once ANDs are computed, the resulting Lf entries are added together and rounded

(Section 4.1.3) to S bits to obtain the column denoted by 2 in Figure 6.

Then, the resulting S bit values are multiplied by S bit weights, which corresponds to S2 full

adder operations and results in the column marked by Step 3 . The 2S multiplication outcome

is next rounded to S bits—that is, a (S − 1)-bit rounding factor is added to it and the result is

truncated to S bits. Addition is again performed as a cascade of full adder operations. Truncation
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has practically no overhead as it translates into simply ignoring the unused bits. Equation (1) gives

rise to the operations we covered so far, spanning Step 1 to Step 3 .

In the following step, all rows in Step 3 are added by reading half of the rows and writing them

back to the adjacent rows. After each addition, a rounding operation is performed. This operation

takes log2 Nmax steps, whereNmax is the predetermined maximum number of presynaptic neurons.

Once the addition is done, the result is reduced to a single row as shown in Step 4 . After the

bias and the noise is added to the outcome from Step 4 , synaptic response current shown in

Step 5 is obtained. We keep older membrane potential in the same row, which is next scaled—by

multiplication with τv
−1. Equation (2) spans Step 4 to Step 6 . The current membrane potential is

obtained after current synaptic response current, scaled old membrane potential, the noise, and the

scaled old spike train is added as shown in Step 6 . Current membrane potential then overwrites

the old membrane potential. Finally, current spike value is calculated by thresholding the current

membrane potential in Step 6 , which corresponds to the comparison of S bits. Current spike value

is updated in Step 7 and copied to the old spike train column. To reset the membrane potential,

we invert the spike bit and AND it with the membrane potential. The output spike is then read and

broadcast as we will explain in Section 4.2.

Before starting computation, the S-bit local delay value in all columns is incremented and com-

pared to di j (for the corresponding synaptic connection). If the comparison yields true, the local

delay value is reset to zero. The comparison output is then read by the array controller and used

as column enable. This results in a practical synaptic delay implementation, as well as energy sav-

ings, as the disabled columns do not participate in computations described previously to perform

Equations (1) and (2).

4.1.3 Low-Level Operations. For addition operations, we use the full adder from Figure 1. Mul-

tiplication also uses the same full adder design N 2 times for N -bit numbers. Multiplication is im-

plemented in standard fashion since bit lengths are relatively low. In the convolution with αu (t ),
the multiplications reduce to AND operations since the spikes are binary. Comparators are imple-

mented as a subtraction operation, followed by using the sign bit in case of magnitude comparison,

or a series of AND operations when equality comparison is needed. We increase the bit length con-

servatively until Step 3 and then perform rounding by adding rounding factors in each arithmetic

operation, which ensures that no overflow happens. Rounding to S bits entails adding a (S − 1) bit

long rounding factor and then keeping only the S most significant bits.

Figure 7 demonstrates a 2 × 2-bit binary multiplication in SHE-CRAM array, which represents

the key building block for multiplication operations and can be scaled to any number of bits.

Loihi [27] features a Pseudorandom Noise Generator to support several variants of the basic al-

gorithm such as neural sampling. As a proof of concept, we demonstrate how to implement a Pseu-

dorandom Noise Generator in CRAM using a basic linear feedback shift register in Figure 8. First,

an XOR gate is applied as a cascade of four NAND gates and then COPY operations are performed as

many as the length of the feedback polynomial. For an example 9-bit polynomial, this operation

takes 13 cycles. We denote the generated random number with r (t ) and update it upon each use.

Our lookup table based implementation of αu (t ) function and the inevitably limited bit length

for parameters such as weights, by construction, affect synaptic accuracy. Section 5 provides a

quantitative characterization of the accuracy impact of precision.

4.2 Routing and Connectivity

As one CRAM array is allocated to process each neuron, the connectivity between neurons di-

rectly translates into the connections between arrays to transfer spikes. Ideally, each neuron in

SNN would be connected to all of the other neurons. However, such a fully connected network
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Fig. 7. 2 × 2-bit binary multiplication (of a1a0 and b1b0) in a SHE-based CRAM array proceeds as follows.
A controller array provides the driver line values (LL, ESL, OSL, WLR, and WLW). Using these driver values
fetched from the controller array, AND, NAND, and INV gates are performed in a cascaded manner. Before the
computation starts, output cells at each logic depth level (Levels 1, 2, and 3) are preset to appropriate values
depending on the gate type to be performed at that particular level. The top portion of the figure marks the
Boolean depth level of the cells in the logic network along with the bits (in red) generated by each column.
Since Level 0 resides in even columns, Level 1 should reside in odd columns, following basic SHE CRAM
semantics. Steps of the first logic gate operation, NAND(a1,b0) are highlighted with green and red arrows. In
all rows, the currents passing through a1 and b0 cells get combined in the LL, and pass through the SHE

channel in the cells marked with column label a1b0. This essentially computes a1b0 operation as the name

suggests. a0b1, a1b1, a0b0, a1b0, and a0b1 are calculated in a similar fashion. Then, intermediate value i0 is
obtained by NANDing the first two level 1 cells. Intermediate value i1 is obtained by INV operation on a0b0,
and i2 is obtained by ANDing last two level 1 cells. Finally, s1 is calculated by NANDing i0 and i2, and s2 is
calculated by ANDing i1 and a1b1, thereby producing the 4-bit multiplication result s3s2s1s0.

requires
(

N
2

)
connections between neurons (i.e., arrays), which is not feasible in hardware when

the number of neurons is in the order of billions, due to the limited area. To eliminate the connec-

tivity burden, a possible solution is using a 2D network as implemented in other works [10, 17, 30].

In the work of Furber et al. [17], the 2D topology is further extended to a 3D Torus alongside

additional diagonal connections and emergency routes. Such implementations involve each spike

event to be transmitted as a packet in the mesh. This and similar solutions with more involved

networks are subject to congestion in the packet traffic, eventually leading to packet drops.

Instead, we use the Generalized De Bruijn Graph (GDBG) topology [11] to connect CRAM

arrays. GDBG has been used in High Performance Computing, and it is shown to be the near-

optimal for load-balanced networks [15]. The first advantage of GDBG is that each vertex has four

edges at most, which is comparable to a 2D mesh. The second advantage is that the shortest path

between any two vertices is loд2N for a graph with N vertices.

Figure 9 provides a comparison of GDBG to representative 2D Mesh and Torus variants using

the tabulation given in the work of Chae et al. [5]. Here the diameter is defined as the number of

edges between the farthest vertices in the graph, and the bisection width is the number of edges

in the largest cross section. The cost is defined as the overall number of edges. Although GDBG

reduces the diameter significantly, this comes at the expense of higher layout complexity. How-

ever, overall asymptotic cost is not affected. Although the cost is similar when it is defined as the

number of edges in the graph, the length of the edges is not necessarily the same in all alterna-

tives. 2D Mesh only has unit size connections, whereas 2D Torus has long connections at the edges.

SpiNNaker’s Torus has longer edges in general, since it has 6-connectivity and skip connections.

Although the maximum link length in GDBG is less than the Torus, it has a range of link lengths,
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Fig. 8. (a) Linear Feedback Shift Register (LFSR) based pseudorandom number generation using feedback
polynomial x9+x5+1. (b) CRAM implementation of the given LFSR. Input (output) cells are highlighted with
green (red). Here the cells b0-b9 are the past values in the LFSR, a0-a2 are the ancillary cells for intermediate
values, and t is the new XOR value to be computed. tn to tn+13 denote the time instances for the computation.
For this operation, output cells are preset to logic 1 first. Then a cascade of four NAND operations compute
XOR of b5 and b9 and write the result to the t cell, which effectively corresponds to calculating x9 +x5 part of
the feedback polynomial. Then a series of COPY operations shift the input vector and write the new t value
into the b1 cell, which is the +1 part of the characteristic polynomial.

Fig. 9. Diameter, bisection width, and cost comparison for GDBG, 2D Mesh, and Torus variants.

which might make routing harder. Still, GDBGs can be routed with two routing layers [19], and

algorithms for optimal routing are discussed in the work of Liu and Lee [28]. As a Network-on-

Chip topology, GDBG results in less latency and area, which typically translates into lower power

consumption [39].

As under GDBG the shortest path between any two vertices is loд2N , each neuron can reach

any other neuron in (at most) loд2N steps. Figure 10 depicts an example for 16 neurons (labeled

with 1-16), which reveals the similarity to the connectivity of Singleton’s FFT [43]. Each edge

corresponds to sets of wires between neurons.

In our design, each CRAM array, which corresponds to a neuron, is connected to one another in

GDBG topology. Each connection consists of Nmax wires, which is equal to the maximum number

of input (presynaptic) neurons. Once the computation is done, the routing operations are initi-

ated. The routing consists of loд2N steps. If the current step c ∈ [1, loд2N ] is smaller or equal

to Nmax , then each array (i.e., neuron) concatenates the input spike trains and transmits them
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Fig. 10. Example worst-case paths on a 16-neuron network in GDBG topology, from neuron 15 to neuron 1
(highlighted in green) and from neuron 6 to neuron 15 (highlighted in red).

Fig. 11. Routing steps for an example 16-neuron (-array) architecture with a maximum of eight input spikes.

to the connected arrays for the next step. This operation involves only reading incoming spike

trains and writing them in the predetermined locations. Therefore, no extra logic is involved if

c ≤ log2 Nmax . However, if c > log2 Nmax , each array combines the input spike trains using stored

address values. Each array therefore reads log2 Nmax -bit address values for each spike and copies

the spike train to the corresponding addresses. Hence, upon initialization, each array has to store

(log2 Nmax ) (log2 N − log2 Nmax ) bits of address values. After routing is complete, the next spike

computation starts, as discussed in Section 4.1.

Figure 11 demonstrates four routing steps of an example 16-neuron architecture: Nmax = 8

and N = 16. In Step 1 (c = 1), the two spikes (highlighted in green and blue) coming from two

input neurons are combined and transmitted. In Step 2 (c = 2), the number of incoming spikes

doubles and combined spikes are forwarded to Step 3. When c = 3, each incoming spike train

has a size of 4, and they are forwarded to the next step. In Step 4, however, c = 4 is greater than

log2 Nmax = 3 so half of the incoming spike trains should be discarded and the remaining spikes

should be forwarded. For this purpose, we use a bit indicator for each step, as shown in Figure 11.

The bit indicators select one of the input spikes (highlighted in green and blue). The selected input

spike train is read and then written to the ordered output in the corresponding address specified

in the current step’s reordering (bit)mask. For this example, there is only one set of reordering
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Fig. 12. Data layout for the STDP engine in CRAM (transposed).

masks and bit indicators; however, in general, there can be log2 N − log2 Nmax different sets of

(log2 Nmax )-bit masks and bit indicator sets.

Our GDBG based design is efficient since we need 2N connections for N neurons instead of
(

N
2

)
; we

avoid traffic handling that is required to implement NoC based architectures; and we can synchronize

the whole system in deterministic time as each routing cycle entails a fixed amount of routing steps,

which is log2 N for N neurons.

4.3 STDP Learning Engine

4.3.1 Initialization. Initialization steps for the STDP engine are similar to the feedforward case

(Section 4.1.1). Note that F (·) is only a scaled version of αu (t ) (Table 1). Therefore, we re-use the

lookup table for αu and scale any fetched value from it by multiplying the fetched value with 1
τu

.

We also initialize all parameters and constants from Equation (3) such A±.

4.3.2 Dataflow. In the STDP engine, every time spike distribution is completed, the presynap-

tic (postsynaptic) part of the operations is executed, as shown in the left (right) half in Figure 5,

where the input corresponds to the spikes and the output is the weight. This effectively performs

Equation (3). Note that the data dependency on presynaptic and postsynaptic spikes does not in-

duce additional memory accesses since they are already stored in the same array in our mapping

from Section 4.1.

In the transposed layout, 1 corresponds to the presynaptic spikes. 2 is the incremented time

difference since the arrival of the latest presynaptic spike, and 3 resets the Δtpr e if the input

neuron spikes. Then 5 is obtained by a lookup table implementation of F (·) function that is

fed by 4 . These steps are similar for 7 , 8 , 9 , and 10 except that these calculations are only

performed in one row and the output is copied to all rows as shown in the layout in Figure 12.

Finally, Δω is added to ω as shown in 11 and 12 .

4.3.3 Low-Level Operations. Addition and multiplication operations in the STDP are similar to

the feedforward case as discussed in Section 4.1.3. Comparators are implemented as a subtraction

operation as described in Section 4.1.3.

5 EVALUATION

To evaluate our design, we perform energy and performance analysis based on the low-level ele-

mentary operations such as Boolean gate implementations in the context of the proposed CRAM-

based SNN architecture. Configuration parameters for the simulations are given in Table 3. For

experiments, we have four different configurations where STT-M and SHE-M correspond to the

current conservative estimates while STT-F and SHE-F reflect near-term future expectations for

STT and SHE based MTJs. The near-term expectations are based on the configurations in other

works [37, 38, 52, 53] along with the work of Jan et al. [20]. For array characteristics such as

read/write timing, we use NVSim [14]. Each array has an array controller that is responsible for

driving logic lines, bitlines, and wordlines. We take the overhead resulting from driving such lines
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Table 3. Configuration Parameters

Parameter STT-M, SHE-M STT-F, SHE-F

P state resistance 3.15 kΩ 7.34 kΩ
AP state resistance 7.34 kΩ 76.39 kΩ

Switching Time 3 ns [33, 40] 1 ns [20, 52]

Switching Current 40 μA [40] 3 μA [52]

Bulk preset current limit 30 mA

Fig. 13. (a) RMSE vs. log2 Lf bit length for an example 10-neuron configuration in Loihi. (b) The spike-time
diagram.

into consideration.1 For synaptic events, we stick to a conservative setup where each presynaptic

neuron spikes in each timestep and each neuron is connected to the maximum possible number of

neurons (F). Since we base our neuron model on Loihi’s implementation, we compare our results

with the energy and time figures reported in the work of Davies et al. [10] and Lines et al. [27],

using L = 1024 and F = 1024 for 1-bit synaptic weights (in their design, L is the neuron count per

core; F , the postsynaptic fanout).

For accuracy analysis, we use Loihi library of Nengo framework [4] with Loihi configuration.

Modifying Nengo Loihi’s implementation, we analyze the spiking accuracy for our lookup table

based limited precision design. This analysis is only used for Leaky Integrate-and-Fire feedfor-

ward implementation. Figure 13 shows how RMSE error changes with intermediate computation

bit length compared to the baseline. Bit-precision analysis performed in Figure 13(a) does not nec-

essarily translate to accuracy degradation and demonstrates the energy/time-accuracy tradeoff.2

Figure 13(b) features a 10-neuron spike-time diagram used for the analysis.

Table 4 summarizes the results for 1 billion neurons, where the maximum number of presynaptic

neurons is 1024, bit length is 1, and the filter (lookup table) size is 64. Each CRAM array has

1024× 512 cells. Although all CRAM configurations can provide enough performance to implement

SNN operations within a biologically plausible time budget (i.e., a spiking rate of several kHz),

1The controller can be implemented in many different ways. We assume a very conservative controller design, where

control bits for the driver lines are preprogrammed into separate control arrays. During the execution, this controller array

broadcasts the configuration parameters to multiple arrays. Providing a startup pulse, controller array rows are activated

one by one.
2Note that this analysis only includes a low-level characterization of the proposed architecture. We directly use an existing

SNN algorithm without any essential algorithmic changes to drive our hardware design; therefore, higher-level character-

istics, including accuracy (for a given weight bit-length), stays the same when compared to our baseline, by construction.

That said, extension to higher-level algorithmic examples, such as the ones discussed in the work of Srinivasan et al. [44]

and Diehl and Cook [13] would be straightforward.
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Table 4. Evaluation Results

Metric STT-M STT-F SHE-M SHE-F

Execution Time (μs) 6.342 0.825 6.342 0.825

Maximum Spiking Rate (KHz) 157.7 1212.3 157.7 1212.3

Energy (J) 133.37 2.53 31.36 0.25

EDP (μJs) 845.89 2.09 198.82 0.21

Fig. 14. Sensitivity to number of neurons, weight bit length, and αu table size.

SHE-F configuration provides the lowest energy consumption and fastest operation. Note that

although frequency scaling is an option, it is desirable to have a less than a millisecond latency

so that real-time brain simulation is possible. Here the spiking rate is the maximum attainable

operating frequency within the time budget imposed by our design constraints.

Figure 14 shows execution time, maximum spiking rate, energy, and energy-delay-product

(EDP) for the case where maximum number of presynaptic neurons is 1024 and the bit length is

9, which is the maximum weight size that Loihi supports. Figure 14(a) and (c) are complementary

figures for different CRAM variants compared to Loihi for similar parameters. Although Loihi is

faster for a larger number of neurons because of its faster computation, CRAM variants surpass

Loihi when neuron count approaches 100 billion thanks to our routing architecture. Figure 14(b)

and (d) capture energy and EDP’s sensitivity to neuron counts in several Loihi models with differ-

ent voltages. For very large neuron counts, the best-performing CRAM variants have lower energy

consumption than Loihi and higher energy efficiency (EDP). We also sweep bit length of weights

and table size for αu , as shown in Figure 14(e) through (h). Figure 14(e) and 14(f) show processing

time and energy consumption for different weight bit lengths, and Figure 14(g) and (h) capture

the processing time and energy for various lookup table sizes in the feedforward design. In all

cases, STT/SHE-F or SHE-F configuration provide the lowest processing time and energy when

compared to other CRAM variants, emphasizing the effect of the cell technology.

Overall, when compared to the best-performing Loihi baseline (0.55V) with a fanout of 1024, and

1-bit synaptic weights, SHE-F configuration consumes 24.2× less energy. At the same time, SHE-F

is 3.72× more energy efficient (in terms of EDP) for the feedforward implementation as captured

in Figure 14.
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Fig. 15. Overall energy breakdown of operations in a single instance of spiking events.

Table 5. Energy, Latency, and EDP for
Single Spike Operation

Synaptic Parameter SHE-F Loihi

Spike Operation Energy 157.07 fJ 23.6 pJ

Spike Operation Time 499.86 ns 3.5 ns

Spike Operation EDP 7.85e-20 Js 8.26 e-20 Js

STDP Update Energy 0.369 pJ 120 pJ

STDP Update Time 1321.7 ns 6.1 ns

STDP Update EDP 4.88e-19 Js 7.32 e-19 Js

Fig. 16. Single-spike energy breakdown of STDP weight update operation.

Figure 15 shows the energy breakdown for a single spike operation with 1 bit weight. We ob-

serve that preset and additions dominate the overall energy followed by multiplication (i.e., AND)

operations, pointing to further hardware optimization opportunities.

Table 5 summarizes low-level performance parameters of our best case CRAM-SNN design for

1-bit weights where Lf = 32 for feedforward computations. Also tabulated are Loihi’s correspond-

ing low-level performance parameters for comparison. STDP operations are performed at 10-bit

precision. Lf = 32 is chosen to deliver enough accuracy for αu (t ) without compromising logic

complexity to maintain a low energy consumption. A 10-bit precision suffices to provide enough

bandwidth for updating up to 9 bit weights, which is meaningful for a fair comparison. Although

being slower for low-level operations, our design consumes significantly less energy, which leads

to a lower EDP for a single spike operation with a single presynaptic connection for 1 bit weights.

That said, Loihi supports a variety of models and in general is a more capable architecture. There-

fore, Table 5 is only provided to demonstrate where our implementation stands compared to Loihi

for a single configuration of Leaky Integrate-and-Fire and STDP models.

Energy breakdown of STDP operations are given in Figure 16. Similar to the feedforward case,

energy consumption is mostly dominated by preset, addition, and multiplication operations in

STDP weight update. Figure 17 shows the STDP processing time and energy for larger bit lengths.
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Fig. 17. (a) Processing time vs. weight bit length. (b) STDP update energy vs. weight bit length.

Fig. 18. Energy breakdown vs. spiking probability for different CRAM variants.

Processing times in Figure 17(a) irregularly increase around 6-bits as CRAM preset operations be-

come overwhelming; however, this does not effect the energy consumption pattern in Figure 17(b)

where the SHE-F configuration outperforms the other CRAM variants. Low-level performance re-

sults further show that our gains are not only due to the proposed connectivity scheme but also

because of the low energy, massively parallel logic operations CRAM enables.

Figure 18 shows the energy breakdown for increasing spiking probabilities for different CRAM

configurations. Although presets require a large amount of energy for STT-M, share of presets

decrease and adder overhead dominates the overall energy consumption moving to SHE-F. Sev-

eral energy figures, such as routing, are not affected by spiking probability, whereas the rest is

proportional to it.

Both in Figure 15 and Figure 16, the controller overhead seems overwhelming. This is because

we assume an unrealistically conservative controller overhead, and these figures only characterize

the neuron operation with only one presynaptic neuron. In fact, this overhead diminishes when

number of presynaptic neurons increase, as illustrated in Figure 18.

To demonstrate that CRAM improvement is not only due to the technology, we compare the

energy figures of a hypothetical GDBG based Loihi implementation to the existing 2D mesh
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Fig. 19. Spike energy comparison of hypothetical GDBG and default hierarchical 2D Mesh implementation
for Loihi. This limit study ignores the link latencies in both 2D Mesh and GDBG, and only considers the
routing energy overhead due to the chosen topology.

based Loihi in Figure 19. The comparison takes existing core and tile boundaries and resulting

limitations into consideration, and shows that GDBG implementation would improve the default

Loihi significantly.

A quantitative comparison to crossbar based designs would not be necessarily more fair since

the crossbar typically only addresses one part of the computation (i.e., weight multiplication with

spikes and addition), as is the case for RESPARC [2] or STT-RAM based [22]. A similar pattern

applies to SpinalFlow [31], where a large portion of the operations are offloaded to the logic in the

crossbar periphery. SNN models are usually complex, and many alternative approaches exist even

for the most commonly used algorithms. Furthermore, more biologically accurate model behavior

is often simplified, and notions such as filtering, membrane potential feedback, variable delays,

refractory period, and online learning are not implemented or offloaded to peripheral logic. The

main advantage of our design is that logic operations are performed purely in-memory regardless

of the model—therefore, if the model is flexible (i.e., can be changed or adjusted according to the

user needs), the modification only entails changing the content of the controller array that stores

driver line values. This way, no fixed control logic is necessary, and no external logic is involved

throughout the computation.

6 CONCLUSION

We present a novel, networked SNN hardware, where each node represents a CRAM-based SNN

accelerator processing a neuron, and a GDBG based topology establishes SNN array connectiv-

ity to minimize data communication overheads. We thereby achieve a limited full connectivity by

using only 2N connections in a N neuron network, instead of
(

N
2

)
, while exploiting the massive

intra- and inter-array parallelism and energy efficiency of CRAM for logic operations. Our best

configuration results in 150.25× less energy consumption and similar EDP for feedforward oper-

ations, and 324.89× less energy consumption and 1.5× lower EDP for learning (via STDP) when

compared to the alternative Loihi architecture. We also evaluate the effect of technology boost

as well as GDBG based improvement separately, and show that both concepts contribute to the

performance of the overall architecture.
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