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Benchmarking Quantum Computers and the Impact of
Quantum Noise

SALONIK RESCH and ULYA R. KARPUZCU, University of Minnesota

Benchmarking is how the performance of a computing system is determined. Surprisingly, even for classical
computers this is not a straightforward process. One must choose the appropriate benchmark and metrics to
extract meaningful results. Different benchmarks test the system in different ways, and each individual metric
may or may not be of interest. Choosing the appropriate approach is tricky. The situation is even more open
ended for quantum computers, where there is a wider range of hardware, fewer established guidelines, and
additional complicating factors. Notably, quantum noise significantly impacts performance and is difficult
to model accurately. Here, we discuss benchmarking of quantum computers from a computer architecture
perspective and provide numerical simulations highlighting challenges that suggest caution.
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1 INTRODUCTION

There are many ways to measure the performance of a computer.1 Common ways have been mea-
suring operations per second (OPS) or floating-point operations per second (FLOPS). These
are intuitive and easy to understand; however, they are generally poor metrics. The problem is that
hardware could be designed to have a very high OPS/FLOPS but could perform poorly on real-
world applications, which do not consist of monolithic blocks of arithmetic operations. A way to
improve upon this is to measure the progress of a program rather than the number of operations it
performs. For example, the HINT benchmark measures quality improvements per second, which
measures the numerical accuracy improvement of the output in a given time [68]. While this can
be insightful, again the main concern is that this does not accurately represent the real-world
programs that will be run on the hardware.

1For clarification, we note benchmarks are operations that the system is asked to perform (programs) and metrics are
measurable characteristics of the system when performing the benchmark.
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Generally, the best metric is the wall-time required to complete a program [91] if the program
is representative of real-world applications. This concept has led to the creation of benchmarks
that are samples of larger, industrially useful applications. SpecCPU [141] and Parsec [15] are
popular suites in this vein. While this is a clear improvement, it is not without its issues. For
one, the reduced size of the programs introduces estimation error on the performance. There
are other, less obvious complications. For example, academic work commonly reports performance
on Parsec for system evaluation. Now, the human made choices of which benchmarks to include
in Parsec determine what the academic community considers to be important. This makes these
choices critical, because if the selection is not representative, then these results can be misleading.
Even further, having established benchmarks would allow for a hardware designer to “cheat” by
making a system particularly good on only the specific applications.

The takeaway is that benchmarking is possible and useful, yet is tricky and can be misleading.
It is difficult to create useful benchmarks, and it may be impossible to create universal ones. This
same construct applies to quantum computing, except it is much more intricate. There are a number
of complicating factors:

(1) Quantum hardware is more diverse than classical hardware;
(2) Quantum hardware is less developed, most systems have only a few qubits and cannot per-

form useful applications;
(3) Quantum algorithms are still being developed and it is unknown what applications will be

the most useful;
(4) Quantum noise is not well understood and difficult to simulate, making characterization

particularly challenging.

The dissimilarity of quantum hardware makes it hard to compare them to each other. This is not as
much of an issue for classical hardware. While there has been a trend toward more diversified and
specialized hardware in recent years, such as application specific integrated circuits, there is a gen-
eral framework and almost all hardware is silicon CMOS based. This makes metrics, benchmarks,
and general intuition portable across different devices. Currently, there are many different hard-
ware approaches competing in quantum computing. Each is based on a different physical system
with entirely different dynamics. For example, quantum computing can be performed in super-
conducting circuits, ions isolated in a vacuum, or in atoms embedded in silicon. These systems
look very different from each other and each have unique advantages and deficiencies. Is it fair to
compare them directly?

As quantum computing is early on in its development, there are only small-to-medium sized
quantum computers in existence. Most systems are not capable of performing useful programs.
This makes it difficult to create benchmarks for these systems that are representative of future real-
world applications. Scaling to larger sizes is particularly difficult for quantum computers, hence
benchmarks that can be run on these smaller systems are less likely to accurately represent the
performance of scaled-up versions. This is where one would normally turn to simulation. Unfortu-
nately, as the states in quantum computers are highly complex, they are not able to be efficiently
simulated by classical computers. Hence, benchmarks must be tied to a physical experiment.

On a more fundamental level, it is even unsure what quantum applications will be useful. As
the field of quantum computing is largely unexplored, and not well understood, it is believed that
many of its advantages and potential are currently unknown. Exploration of quantum potential is
not well captured by benchmarking [20].

Quantum computing faces many hardware challenges. Information is easily lost due to quantum
noise, which causes decoherence of quantum states. The physical devices need near absolute iso-
lation from the environment, making the systems large and difficult to scale. Due to this fragility,
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benchmarking begins much lower in the system stack. Benchmarks even for 1-bit operations have
been developed [40, 43, 84]. Even at this level, performance has been difficult to quantify. Accu-
rately modeling quantum noise and determining the robustness of quantum operations has become
the subject of much research [44, 84, 119, 159]. Noise can affect quantum programs differently, de-
pending on their length and structure. Hence, noise is a significant complicating factor.

Thus, quantum computing inherits all the benchmarking complexity of classical computing,
but introduces many additional complications. This makes it quite unclear what the best way is
to evaluate a quantum system. In fact, the authors of Reference [20] argue that it is too early to
develop a standard approach. They warn that quantum research is currently exploratory in nature
and that benchmarks are inappropriate for this kind of work. In fact, it could even be detrimental
due to the possibility of misguiding research efforts.

In this article we provide a quantitative comparison for different quantum strategies from a
benchmarking perspective, in the presence of quantum noise, to pinpoint pitfalls and fallacies. We
start with basics in Section 2. We discuss quantum noise and noise models in Section 3. A brief
introduction to quantum metrics is supplied in Section 4. Benchmarking for single- and two-qubit
systems is covered in Section 5, for near-term noisy computing systems in Section 6, and for fault-
tolerant computing systems in Section 7. Sections 8 and 9 detail the simulation results. Finally, we
conclude the article in Section 10.

2 QUANTUM PRIMER

In this section, we introduce background and context for quantum computing. Necessarily brief,
this clearly cannot do it justice. Quantum mechanics is highly complex and defies intuition. To
quote Richard Feynman, “If you think you understand quantum mechanics, you don’t understand
quantum mechanics.” This seems even more applicable if one views quantum mechanics from the
perspective of computer architecture [75]. But in an attempt to “understand quantum mechan-
ics,” we will attempt to cover key concepts. We recommend [64] as an introduction to quantum
mechanics and [94] as an introduction to quantum computing.

Quantum mechanics describes the nature of the physical world. High temperatures and large
sizes causes quantum mechanical effects to become less noticeable, and classical physics acts as a
good approximation. But when one creates a system that is very small or very cold, only quantum
mechanics can accurately describe the system and how it evolves in time. Under these conditions,
states are noticeably quantized (take on discrete values), such as the discrete possible energy lev-
els of electrons around the nucleus of atoms. We can assign logical values to these distinct states,
which are then called qudits. Transitions between these states correspond to quantum logical oper-
ations. Qudits can have many possible values, for example there are many possible non-degenerate
energy levels for an electron. However, it is often convenient to use only two of the possible states,
such as the ground and first excited states, as these become analogous to classical bits and are
less susceptible to noise [109]. These two-level qudits are called qubits. Qubits can be in both of
their states simultaneously (superposition) and multiple qubits can have their states intertwined
(entanglement). Hence, there is not only information in each qubit but between each qubit. As a
direct consequence, quantum states can store an amount of information that is exponential in the
number of qubits. This enables extreme compute capabilities if one is able to create a complex
quantum state and reliably transform it in a meaningful way. Unfortunately, this is a difficult task.
Pure2 quantum states are extremely fragile and need near perfect isolation from the environment
to exist. At the same time, we need to be able to interact with the quantum state to transform it.

2Pure states are quantum states that can be completely specified by state vectors.
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Fig. 1. Bloch Sphere representation of a single qubit.

Large-scale quantum computing, despite the fragility of quantum states, remains a possibility
due to quantum error correction (QEC). By encoding quantum information for a single qubit
using multiple qubits, the quantum state can be restored if only a subset of the qubits become cor-
rupted. Encoded qubits are called logical qubits, which are composed of multiple physical qubits.
QEC is a rich field [60], and there is much work devoted to studying how QEC works under dif-
ferent error models [26, 63, 69, 71, 100]. However, modern quantum computers do not yet have
sufficient numbers of qubits or required qubit quality to practically implement QEC. Hence, mod-
ern quantum applications operate on physical qubits and try to make use of limited resources.
Therefore, it is of interest not only how quantum error affects QEC but also how it affects algo-
rithms running without QEC.

If a quantum state is completely isolated, then it is called a pure state. Quantum pure states can
be represented by kets, which are column vectors of complex numbers. The elements of the kets
are called the amplitudes. For example, a single qubit can be represented by a ket of length 2,

α |0〉 + β |1〉 =
[
α
β

]
, (1)

where α is the amplitude associated with state |0〉 and β with state |1〉. The amplitudes determine
probabilities when performing measurements, |α |2 is the probability of measuring this single qubit
in the state |0〉 and |β |2 is the probability of measuring the qubit in the |1〉 state. The probabilities
must sum to 1 for pure states. A single qubit can be visualized as a vector from the origin to a point
on the Bloch Sphere, shown in Figure 1, where a pair of angles, θ and ϕ, can be used to specify the
state of the qubit, related to the amplitudes by the equations

α = cos (θ/2), (2)

β = eiϕsin(θ/2). (3)

Operations on qubits are called gates, which are represented by matrices. Common gates are the
Pauli I (identity), X (NOT), Z (phase-flip), and Y (NOT and phase flip) gates, shown in Equation (4),

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
. (4)

Single qubit gates represent rotations on the Bloch sphere. Performing a gate is logically equiva-
lent to multiplying the ket column vector by the matrix of the gate. The I gate leaves the qubit
unmodified. The X gate rotates the qubit by π around theX axis, which flips the amplitudes for the
|0〉 and |1〉 states. Similarly, the Z gate rotates the qubit around the Z axis and the Y gate rotates
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the qubit around the Y axis. Other common gates include the Hadamard (H) gate and phase gates
S and T, shown in Equation (5),

H =
1
√

2

[
1 1
1 −1

]
S =

[
1 0
0 i

]
T =

[
1 0
0 eiπ /4

]
, (5)

The S gate is a rotation around the Z axis by π/2 and the T gate is a rotation around the Z axis by
π/4. Performing two T gates back to back is equivalent to an S gate, and two S gates back to back
is equivalent to a Z gate. The H gate is commonly used at the beginning of quantum algorithms
to put qubits into a perfect superposition state.

Two-qubit gates commonly involve a control qubit and a target qubit. In this case, a gate is
performed on the target qubit if the control qubit is in the |1〉 state. For example, the controlled-
NOT, CNOT gate is a controlled-X gate. Two-qubit gates are used to create entanglement between
the qubits.

Quantum gates must be unitary. This means they must be linear, reversible, and preserve the
magnitude of the column vector. For example, the X gate is its own inverse, and if two X gates
are applied sequentially, then the qubit returns to the original state. In other words, unitary op-
erations coherently transform the quantum state. Conversely, measurements are non-unitary and
irreversible. If a qubit in a superposition of |0〉 and |1〉 is measured and found to be |0〉, then it is
then entirely in the state |0〉. This is an incoherent process, as the quantum state has effectively
been destroyed, containing only classical information. Whether operations are unitary or not is
important not only for quantum gates and measurements, but also for the noise that affects the
quantum state.

Quantum states that are not pure are called mixed states. These states are combinations of pure
states, each with an associated classical probability. Mixed states occur as the result of imperfect
isolation and manipulation of the quantum state, which applies to all physically realizable quantum
states. Density matrices are the equivalent of kets for mixed states. Density matrices can represent
all pure and mixed states. A ket representation can be converted to a density matrix by taking the
outer product of the ket with its conjugate transpose (adjoint)[

α
β

]
−→

[
αα∗ αβ∗

βα∗ ββ∗

]
, (6)

where ∗ denotes the complex-conjugate. A common metric to quantify the “quality” of a quantum
state is the fidelity [48], which is defined as

Tr [ρσ ], (7)

where the density matrix ρ represents the “correct” quantum state;σ , the actual quantum state; and
Tr, the trace (diagonal sum) of the matrices multiplied. Simulating with density matrices allows one
to keep track of classical probabilities and possible errors, in addition to the quantum transforma-
tions. This can be convenient in many cases [70]; however, the computational resources required
increase significantly [13].

3 QUANTUM NOISE

Noise is present in all computing systems. However, it is quite a force to be reckoned with
for quantum systems. In fact, noise is so pervasive that it is impossible to have a meaningful
discussion about practical quantum computing without an in-depth consideration of its effects.
Clearly, no benchmarking approach can succeed without considering noise and the resulting im-
pact on measured or simulated results. This has been unfortunate, as quantum noise is difficult to

ACM Computing Surveys, Vol. 54, No. 7, Article 142. Publication date: June 2021.



142:6 S. Resch and U. R. Karpuzcu

characterize and, in many cases, its effects are not well understood. Here, we provide a brief
overview of quantum noise and the models used to represent it.

3.1 Physical Sources of Noise

Quantum noise can come from a variety of sources. There is never only a single source of noise
in any given quantum system. Determining what the sources are and what their relative contribu-
tions are is a hard problem. Possible sources are unwanted interaction with the environment (both
distinct events and inevitable decay of quantum states), unwanted interaction between qubits, or
imperfect control operations. Each of these introduce error with significantly different character-
istics, giving rise to different models. Here, we go over different common sources and discuss their
physical impact. A summary of physical noise sources is provided in Table 1.

3.1.1 Interaction with the Environment. Qubits need to be perfectly isolated from the environ-
ment to maintain their state. If such a system could be constructed, then there would be no quan-
tum noise. But no real system can be perfect, hence there is inevitably some interaction. This can
be seen as a “measurement” of the system [12], as information is leaving the quantum state. As
measurements are non-unitary, this kind of noise is also non-unitary. The expected amount of
time a system can remain unperturbed is called the coherence time. Commonly reported are the
T1 and T2 times. T1 measures the expected loss of energy from the system; if a qubit is put into an
excited |1〉 state, then T1 is a measure of how long it takes to collapse to the |0〉 state. This is also
called the qubit relaxation time [149]. T2 measures the dephasing time; if a qubit is placed in the
superposition state |0〉 + |1〉, then T2 determines how long it takes to polarize either to |0〉 or |1〉
[109]. Risk of interaction with the environment is increased when performing operations on the
qubits, as the driving force of the operation comes from an external input. This is an unfortunate
situation as two critical requirements have conflicting needs. The quantum state needs near per-
fect isolation to remain intact, yet also must interact with control mechanisms to perform useful
computation. This is referred to as the coherence-controllability tradeoff [166].

Interaction with the environment can also produce unitary errors, such as global external fields
that act on the qubits [11, 63, 85, 156, 157]. Such interactions can cause unitary rotations of the
quantum state.

3.1.2 Interaction with Other Qubits. As previously mentioned, qubits can become entangled
with each other. This means their states become correlated. While this is a frequently used tool
in quantum computation, it needs to occur only when desired. If qubits interact accidentally, then
this can lead to a mixture of their quantum states or decoherence [27, 117, 128]. This is referred to
as cross-talk. This type of error has been particular difficult to characterize.

If left in perfect isolation, then cross-talk between qubits would lead to a unitary evolution of the
state. Hence, all the information is still contained in the quantum state. However, the quantum state
would be different than the one desired, which destroys the ability to manipulate it in a meaningful
way. For example, we may wish to have two qubits that are far apart and highly entangled, to
perform quantum teleportation.3 However, if they interact with other, nearby qubits, then this will
disperse and decay the entanglement [117]. If not in perfect isolation, then cross-talk can cause
increased degradation of the quantum state. Say one is performing error correction, which involves
interacting extra (ancilla) qubits with the qubits that store the data, and then measuring the ancilla
to extract error information (syndromes). Cross-talk may cause the unintentional interaction of a

3Quantum teleportation is the transfer of quantum information between qubits by means of quantum entanglement in
combination with a classical channel. It can be used to transfer information between non-adjacent qubits in a quantum
computer or over long distances via a quantum network.
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Table 1. Categorization of Physical Noise into Its Sources and Whether It Is Unitary or Not

Environment Other Qubits

Unitary
External Fields

Over/under Rotations from Imperfect Control [12]
Cross-talk [27, 117]

Non-Unitary Unintentional Measurements [12]

data qubit with an ancilla qubit. Thereby some of the quantum information in the data qubit can
get transferred into the ancilla. As a result, when the ancilla is measured, the computer would
unknowingly extract information from the data qubit, corrupting its quantum state.

3.1.3 Imperfect Operations. Imperfect application of quantum gates can generate incorrect
quantum states. Often, these are slight over- or under-rotations that are the result of imperfect
calibration [26]. These kinds of errors do not directly destroy the quantum state but lead to coher-
ent evolution of the quantum state into an undesired state [12]. This type of noise is predominantly
seen in modern experiments [159] and its potentially catastrophic impact on the ability to perform
error correction has been a concern in recent years [26].

3.1.4 Leakage. Many quantum systems that are used as qubits actually have more than two
possible states. In this case, two of the possible states are selected to represent |0〉 and |1〉. In other
words, the qubit is encoded in a subspace of a larger quantum system [164]. This subspace is called
the computational subspace. It is assumed that the quantum systems remain in these two states
(though other states may be used temporarily, such as in the implementation of two-qubit gates
[30]). If a qubit unintentionally enters one of these other states, then it is referred to as leakage, and
it can be particularly detrimental [49]. The return of a qubit back into the compuational subspace
is called seepage [164]. Leakage and seepage can be either unitary or non-unitary, and can be
caused by imperfect control or unwanted interactions with the environment [164].

3.2 Noise Models

Working at higher levels of the system stack, it is more critical to know how quantum noise will
affect quantum operations. In this section, we transfer focus from physical sources of noise to the
process of modeling them. The goal is to learn how noise disrupts the correctness of quantum algo-
rithms during operation. As most research labs do not have their own physical quantum computer,
and publicly available machines have low qubit counts, accurate and efficient noise models are
greatly desired to facilitate simulation. Quantum noise is notoriously difficult to model accurately
[159]. There are variations of quantum noise and it is possible that it may even be non-Markovian.
Knowing what specific type of noise is present and how it affects a particular system is difficult
to determine without extensive, physical experiments. However, there are a number of possible
methods to estimate noise, with varying degrees of accuracy and computational efficiency. Realis-
tic noise models are often intractable to simulate at scale, so simplifying assumptions are made to
reduce complexity [99]. It is important to know when these assumptions are appropriate to make
to produce realistic results. Here, we give a brief, high-level overview of different noise models
and discuss their implications. A summary of noise models is provided in Table 2 and a summary
of the physical noise processes they emulate is shown in Table 3.

3.2.1 Stochastic Pauli Noise. Stochastic Pauli noise is the simplest and most intuitive noise
model. Additionally, according to the well-known Gottesman-Knill theorem [4, 59], it is easy to
simulate using classical computers [26] and, at the same time, easy to correct using standard
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Table 2. Categorization of Noise Models into Whether They Are Unitary and Whether

They Are Efficiently Simulable or Not

Efficient Not Efficient

Unitary NA Coherent Rotations [26]

Non-Unitary
Stochastic Pauli

Pauli Twirling [53]
Clifford Channels [69, 71]

Amplitude/Phase Damping[149]

Table 3. Physical Noise and Corresponding Noise Models

Physical Noise Source Noise Models

Interaction with Environment
Stochastic Pauli Noise

Amplitude/Phase Damping
Pauli Measurements

Imperfect Control Coherent Over/Under Rotations

error correction procedures [159]. Hence, it has become popular [5, 79, 88]. It is most applica-
ble for modeling unwanted interactions with the environment, which is effectively unintentional
“measurements” of the quantum state [12]. It can be implemented by inserting an X, Y, or Z gate
into a circuit at random with some specified probability. The effect on the overall fidelity can be
estimated with Monte Carlo simulation [88]. Alternatively, representing the quantum state as a
density matrix, ρ, the noise can be modeled as

Ni (ρ) = (1 − ϵi )ρ + ϵx
i XρX + ϵ

y
i YρY + ϵz

i ZρZ, (8)

where ϵi is the total error rate on qubit i and ϵx
i , ϵ

y
i , and ϵz

i are the rates for each type of error, cor-
responding to the probabilities of inserting each gate [26]. This is also referred to as depolarizing

noise [149]. If ϵx
i = ϵ

y
i = ϵz

i , then it is called symmetric depolarizing noise. X, Y, and Z are operators
performing the respective gate on the qubit. While X, Y, and Z gates are unitary operations (caus-
ing a coherent transformation of the quantum state), inserting them in a probabilistic manner does
not represent a coherent process. Additionally, the linear combination of unitary operations, as in
Equation (8), can represent a non-unitary operation. Hence, stochastic Pauli noise is an incoherent
source [26].

A common strategy is to inject error only after each gate. However, this is not realistic as qubits
can acquire error even when remaining idle [155]. Therefore, Pauli noise should be injected in
every cycle. Numerous studies have found that stochastic Pauli noise models often lead to inac-
curate and overly optimistic results [12, 26, 63, 69, 71, 106], but that they still can provide rea-
sonable approximations in certain conditions. These include errors at the logical level under QEC
[13, 26, 63, 69].

There are some natural extensions to this model that can result in more accurate simulations.
Significant improvements can be made, while remaining efficiently simulable, by augmenting Pauli
gates with Clifford group operators (i.e., Hadamard (H), phase (S), and CNOT gates) and Pauli
measurements [71]. This involves the same process of inserting gates at random, but using a larger
gate set, which, in addition to the Pauli gates (I,X,Y,Z), has H, S, and CNOT gates [100].

A fundamental problem with stochastic Pauli noise is that it is “not quantum enough” [26]. While
the inserted Pauli gates are quantum operations, the choice of whether to insert them is based on
a classical probability. While a classical noise model is familiar and intuitive from a computer
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architecture perspective, it is not necessarily true depiction of the real errors occurring at the
physical level.

3.2.2 Coherent Noise. Coherent noise models attempt to capture evolution of the quantum state
that, while not destructive, is still undesired. One could see this as coherently performing a quan-
tum program, just one that is different than intended. Physical coherent noise can be caused by
imprecise classical control of the quantum operations [26], external fields, and cross-talk [63].
Modeling coherent noise can be difficult as some of the relevant sources of noise are not well
understood. Hence, simplifying assumptions are made. While not exact, the goal is for the model
to affect the quantum state similar to realistic sources. Examples include static Z-rotations [26],
X-rotations in combination with Pauli-X errors [63], or rotations about a non-Pauli axis [71]. Co-
herent noise is not efficiently simulable, meaning the classical resources required to simulate grow
exponentially with the system size. Hence, these simulations are limited to relatively small systems
[12, 34, 90, 149].

Coherent noise is typically much more detrimental, with a much higher worst case error rate
[12, 26, 159]. Additionally, many quantum algorithms consist of periodic circuits, where the same
sequences of gates are repeated many times. Coherent noise is particularly harmful in this case,
where its effects get amplified with each iteration [17, 18]. From this, it may appear that coherent
noise is more important, and should be assumed unless known otherwise. However, this may
not be true for all circumstances. The effects of coherent noise were analyzed on quantum error
correction [26, 63]. It was found that the coherence of the error is reduced at the logical level, and
is further decreased with a higher code distance. This means that it may be sufficient to assume
stochastic Pauli noise at the logical level, even if the physical noise is coherent. However, it was
noted that using a stochastic Pauli model for physical noise would significantly under estimate the
error rate at the logical level.

Unfortunately, as modern quantum computers are not capable of QEC, they cannot make use
of this resilience to coherent error. Randomized Compiling (RC) [159] is a novel approach that
may help in this domain. The basic idea is to perform randomizing Pauli gates during the run
of a quantum circuit, which are interleaved with the gates of the program. At each location that
randomization is introduced, the previous randomization is undone to return the quantum state to
the desired state. These randomizing operations disrupt the coherent noise and tailor it effectively
into stochastic Pauli noise. Prior to execution, these additional randomizing gates can be fused
with (compiled “into”) the actual gates in the circuit. Depending on the gate set available in the
system, RC can be performed with no overhead.

3.2.3 Amplitude/Phase Damping. Amplitude Damping (AD) is a non-coherent error model
that captures energy loss from the quantum state into the environment, such as spontaneous emis-
sion of a photon [149]. This noise model is relevant to any quantum system with multiple energy
levels, where there is an excited state and ground state, with a tendency for the excited state to
decay to the ground state, such as ion-trap quantum computers that use the excitation levels of
electrons. Additionally, the loss of energy must be to some environment, i.e., in the previous exam-
ple, if the energy loss is a spontaneous emission of a photon, then there must be an environment
for the photon to escape into. Hence, if the quantum system was perfectly isolated, then AD would
not occur. AD is a realistic noise model but is also not efficiently simulable. However, models
have been designed to approximate the effect of AD, but that remain simulable [71], such as Pauli
Twirling [54, 129, 137, 149]. Phase damping (PD), sometimes call pure dephasing, is equivalent
to a phase flip channel [149]. This does not change the probability of a qubit being in either the |0〉
or |1〉 state, but it changes the phase between the two states. AD is closely related to the T1 time
and PD is closely related to the T2 time, which are discussed in Section 3.1.1.
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The nature of quantum noise greatly affects the quantum state, and by direct result, the perfor-
mance of any potential quantum computer. Hence, even at higher levels in the system stack,
one must give serious attention to the expected noise present in the system and be sure it is ad-
equately accounted for. This impact of quantum noise is often overlooked or given secondary
consideration. In many cases stochastic Pauli noise may be an overly simplified model. If so,
then it will produce incorrectly optimistic results, especially for modern systems.

4 METRICS

Metrics enable quantitative analysis on the quality of a given system. Choosing metrics can be
tricky, and can be misleading if not done wisely. This is true for classical systems and, unsurpris-
ingly, is even more complicated for quantum systems. A number of quantum metrics have been
developed and used widely; however, there is no unifying “gold standard” [55]. Depending on the
use case, different metrics may be preferable.

A commonly used metric for quantum operations is the process fidelity. The process fidelity of a
noisy quantum operation, G̃, relative to the noiseless operation, G, can be determined by [44, 48]

F (G (ρ), G̃ (ρ)) = Tr
[
G (ρ)G̃ (ρ)

]
, (9)

where ρ is the density matrix representing the input quantum state and Tr is the trace. At a high
level, process fidelity measures “how similar” the noisy output quantum state is to the intended
target. If the noisy operation G̃ is free of error, then the process fidelity will be 1. One drawback is
that it is not strongly tied to a physical interpretation, when comparing two different mixed states
[55]. However, if one of the states is a pure state (represented here by G (ρ)), and the other is a
noisy mixed state (represented here by G̃ (ρ)), then it is the overlap of the two states [55].

Another commonly used metric is the average gate fidelity, or conversely the infidelity, the aver-
age gate infidelity to the identity [13]. The fidelity of a quantum gate is its process fidelity, where
the qubit’s quantum state after applying the gate is compared to what it should be. This is com-
plicated by the fact that the qubit could be in any possible state prior to the operation (anywhere
on the surface of the Bloch Sphere in Figure 1) and the fidelity could be different for each state. A
general solution to this is to average over all possible input states, i.e., to integrate over the surface
of the Bloch Sphere [24, 31]:

〈F 〉 = 1

4π

∫
Tr

[
G (ρ)G̃ (ρ)

]
dΩ. (10)

However, it was shown that it is also possible to achieve the same result by averaging over a finite
set of inputs [24].

The trace distance [126] is an alternative that measures the distinguishability of two quantum
states. It is defined as

D (G (ρ), G̃ (ρ)) =
1

2
Tr

[√
(G (ρ) − G̃ (ρ))† (G (ρ) − G̃ (ρ))

]
, (11)

where again ρ is the density matrix for the input quantum state.G (ρ) is density matrix of the ideal
output quantum state, which is ρ transformed by the process G. G̃ (ρ) is the density matrix of the
noisy output quantum state, which is ρ transformed by the noisy process G̃. † means the adjoint.
The trace distance is related to the process fidelity via

1 −
√
F (G (ρ), G̃ (ρ)) ≤ D (G (ρ), G̃ (ρ)) ≤

√
1 − F (G (ρ), G̃ (ρ)), (12)
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allowing bounds to be placed on one if the other is known. The diamond distance [51] is the
maximum trace distance between any state and the state impacted by noise [19]

| |G − G̃ | |d =maxρ

(
| |(G ⊗ I)[ρ] − (G̃ ⊗ I)[ρ]| |1

)
, (13)

where [159]

| |M | |p =
(
Tr (M†M )p/2

)1/p
(14)

is the Schatten p-norm of M. Note that when p = 1, Equation (13) takes a form very similar to
Equation (11). The diamond distance is a measure of the distinguishability of G and G̃ given a
single use of either operator. This will be quite small for any well-performing hardware [19]. Here,
ρ can be entangled with additional ancilla qubits, and these inputs are often the most sensitive [19].
The diamond distance is often used in proving fault-tolerance of quantum computers when doing
rigorous analyses of errors in quantum circuits [6, 83, 135] as it represents the worst-case error.
A drawback of this is that it may be overly pessimistic [154]. While there are no efficient known
ways of computing it directly, there are methods of efficiently computing the bounds [154].

If one is interested in only the output measurement probabilities, then the Hellinger fidelity may
be a more appropriate metric. The Hellinger fidelity is defined as 1 − Hellinдer distance . The
Hellinger distance measures difference between two probability distributions [95]. For example, if
we have two probability distributions p and q, and pi and qi are the probability of sampling i in
each distribution, then the Hellinger distance is defined as

1
√

2

√∑
i

(√
pi −
√
qi

)2
. (15)

If the distributions are identical, then the Hellinger distance is 0, and if there is no overlap, then
the Hellinger distance is 1. The quality of a noisy quantum operation is quantified by determining
the Hellinger fidelity of its measurement distribution to that of an ideal one. This is convenient in
experiment, as all that is required is repeated iterations of the noisy operation and measurements
in the standard Z-basis. It is provided as a standard metric on IBM’s Qiskit [5].

Many other variants of distance metrics exist [95, 140]. We have provided introductory defi-
nitions to some widely used metrics, but refer the interested reader to comprehensive works for
more in-depth discussion on which quantum metrics are useful and in which contexts [55].

5 QUBIT BENCHMARKING

Before talking about benchmarking a quantum computer, we have to talk about benchmarking
the qubits themselves, even in a single (or two) qubit system. If one is constructing a quantum
computer, then it is clearly of great interest how reliable the quantum operations (gates) are. The
average gate fidelity coarsely predicts how many gates can be applied before the quantum state
gets too corrupted. Additionally, quantum error correcting codes only work if the error is below
a certain threshold [83]. On top of this, the overhead of the error correction strongly depends on
the fidelity [111]. Quantum gates suffer from high error rates. Errors in classical switches could
be less than 1 in 1015, whereas effective quantum error rates are frequently above 1%, where the
previously mentioned error sources and models apply and determining their impact is a complex
task.

Unfortunately, experimentally determining quantum states, and the fidelity of quantum oper-
ations, is not straight forward. Measurements of a quantum system are destructive, so the state
will need to be prepared or the operation performed for each measurement. In addition to this
time overhead, errors in the initial state preparation and the measurements (SPAM) errors
can obscure the error in the operation.
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A brute-force approach to learn a quantum state is quantum state tomography [153]. This en-
ables the classical extraction of all quantum information, and hence answers any questions we may
have about its structure. This requires measuring a complete set of observables (physical proper-
ties that can be measured) that determines the quantum state. For example, say there is a single
qubit in the quantum state

|ψ 〉 =
√

0.8 |0〉 +
√

0.2 |1〉 . (16)

For numerical clarity we use a pure state; however, this process works for mixed states, as well.
While this is a pure state, it can be described equivalently in density matrix form:

ρ =

[
0.8 0.4
0.4 0.2

]
. (17)

This state is unknown to the outside world, but the state can reliably be prepared by a quantum
operation. The goal then is to determine this density matrix only by performing repeated measure-
ments on the prepared state |ψ 〉. All single qubit density matrices can be represented as a linear
sum of the Pauli matrices [112]:

ρ =
1

2
(S0I + S1X + S2Y + S3Z) . (18)

Therefore, if we find the coefficients, then we can reconstruct the density matrix. These coefficients
can be found by determining measurement probabilities when measuring along the X, Y, and Z
bases [112]

S0 = P |0〉 + P |1〉 = 0.8 + 0.2 = 1.0

S1 = P |0〉+ |1〉 − P |0〉−|1〉 = 0.9 − 0.1 = 0.8

S2 = P |0〉+i |1〉 − P |0〉−i |1〉 = 0.5 − 0.5 = 0.0

S3 = P |0〉 − P |1〉 = 0.8 − 0.2 = 0.6,

(19)

where P |ϕ〉 is the probability of measuring |ϕ〉. Note that S0 = 1 by construction, as |0〉 and |1〉
are the only two measurement outcome possibilities. S3 only requires measurements along the
standard Z-basis. To find S1 and S2, measurements need to be performed along the X and Y axes.
This can be done with a basis change prior to measurement, which is done by applying the appro-
priate quantum gate just prior to measurement. For example, performing a Hadamard gate then
a Z-basis measurement is effectively an X-basis measurement. Note that each measurement must
be performed many times to achieve accurate probability estimates. The exact probabilities are
shown in Equation (19). For the example we computed them directly with Tr

[
ξ ρ

]
, where ξ is the

density matrix of the corresponding basis state. Once the coefficients are known the state can be
described

ρ =
1

2

(
1 ∗

[
1 0
0 1

]
+ 0.8 ∗

[
0 1
1 0

]
+ 0 ∗

[
0 −i
i 0

]
+ 0.6 ∗

[
1 0
0 −1

])
=

[
0.8 0.4
0.4 0.2

]
. (20)

This process can be generalized to multi-qubit systems as well, we refer the reader to a thorough
introduction in Reference [112]. However, it does not scale well as it requires a number of measure-
ments that is exponential in the system size. In addition to this, it is difficult to distinguish states
with low probability from those with zero [84] and the computation to convert measured results
into an estimate of the quantum state is intractable [38]. Hence, this approach is not feasible for
large systems. There are notable variations of this process, such as Shadow Tomography [1]. While
quantum state tomography has exponential cost, because it tries to answer all possible questions,
shadow tomography attempts to only learn certain features by learning from measurements [76].
The name comes from the idea that one is not trying to learn the full density matrix, only the
“shadow” it casts on the chosen measurements [1].
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Quantum process tomography (QPT) uses the same approach as quantum state tomography,
except that the goal is to identify a quantum operation, rather than the quantum state. Known in-
put quantum states are generated and then the operation is performed. Quantum state tomography
is then applied to the output states allowing identification of the process [37, 116]. As it follows the
same procedure as quantum state tomography, it also requires exponential resources in the number
of qubits. The key assumption that QPT makes is that the input state is known, and therefore only
the quantum operation needs to be found. This simplifies the problem, and finding the parameters
of the operation is equivalent to maximum likelihood estimation of a convex objective function
(which has a single, global minimum) [62]. Hence, standard convex optimization techniques can
be used to solve for it [25, 36]. This simplification comes at a cost, however. The input state is not
necessarily known, as there can be errors in the state preparation process, which can lead to inac-
curacy [62]. Compressed quantum process tomography [133] uses compressed sensing, a known
classical signal processing strategy, to reduce the number of measurements required. The unitary
operations performed by quantum computers can typically be represented by nearly-sparse pro-
cess matrices, and hence can be well approximated by sparse matrices. These sparse matrices can
be found with exponentially fewer measurements [133].

Direct Fidelity Estimation [48] is another clever method used to extract meaningful information
without exponential overhead. This procedure estimates the fidelity of an arbitrary quantum state
relative to a pure state. Here, the pure state is an error free state that is the intended result of a
quantum operation; and the arbitrary state, what is actually produced. Note that complexity can
be reduced by not attempting to learn everything about the state, seeking only to get the estimate
of the fidelity of the arbitrary state. The estimate is achieved by measuring a constant number
of Pauli observables (applying standard Pauli operations and then measuring). This is possible by
making educated guesses about which Pauli observables are likely to reveal errors.

Gate set tomography (GST) is an extension of QPT [62, 103, 107]. Like QPT, the resources it
requires increase exponentially with the number of qubits [62]. Hence, it cannot target large quan-
tum systems and is also used mainly for 1- and 2-qubit systems. However, a significant advantage
it has over QPT is that it is calibration-free, i.e., it does not depend on accurate descriptions of
the initial prepared states [107]. This is significant, as QPT can generate highly inaccurate results
when the gates used to prepare the input states have systematic error [103]. Like QPT, the process
of finding the parameters of the quantum operations (gate set) involve maximum likelihood esti-
mation of an objective function based on measurement results. However, the inclusion of SPAM
errors in the gate set produces a non-convex objective function [62]. Hence, standard convex opti-
mization techniques do not work, and a combination of approximate and iterative methods must
be used. Another consequence of including SPAM errors is that it is not possible to characterize
a single gate at a time, as in QPT. Rather, there is a minimal set of gates that must be estimated
simultaneously [62]. The mathematical background of GST is provided in Reference [107] and the
protocol is provided in Reference [62].

A scalable approach that has been utilized frequently in recent years is Randomized Benchmark-

ing [40, 43, 84]. Randomized Benchmarking attempts to go beyond tomography by determining
error probability per gate in computational contexts. Like GST, it is calibration free [107]. A fur-
ther strength of randomized benchmarking is that is insensitive to variations in error between the
different types of gates used [74, 104, 119, 158].

There are variations on the specific implementation [22], including numerous extensions
[7, 52, 81, 99, 156]. We provide a high level description of the general approach, but note that
different formulations may vary on the specifics. First, a random sequence of operations (gates) is
generated. Commonly, gates are chosen uniformly at random from the Clifford set, as these can
be efficiently performed on a quantum processor [96] and also can be efficiently simulated on a
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classical computer [58]. The sequence is then appended with a final operation that undoes the
action of the entire sequence. For example, if the sequence has a length ofm and the operation (set
of gates) applied at cycle i is denoted as ci , then the effect of the firstm − 1 operations is

C =
m−1∏
i=0

ci , (21)

where
∏

denotes matrix multiplication. The final operation is then chosen to be the inverse, or
adjoint, of C

cm = C
† (22)

and hence the full sequence will become the Identity operation,

m∏
i=0

ci = cmC = C
†C = I. (23)

This final corrective operation is easy to determine, due to the Clifford set being efficient to sim-
ulate classically [96]. Hence, a quantum state subjected to this sequence will be returned back
to its initial state (in the case of no error). This is often chosen to be the |00...0〉 state. In experi-
ment, the fidelity can be found by finding the probability of measuring the initial state [120]. Many
sequences of the same length should be generated, and the results averaged over all cases. This
process is then repeated, using sequences of various lengths. The fidelity will be a function of the
sequence length and will drop exponentially as the the length increases. The fidelity can then be
fit to a model, where constants will absorb the state preparation and measurement errors [96].
This enables the extraction of the average error per gate. For example, in a single qubit case with
independent gate errors, the average fidelity of the sequence can be modeled as [97]

〈F 〉 = A(−2r + 1)m + B, (24)

where r is the average gate error and A and B are the fitting constants. This enables r to depend
exclusively on the fidelity of the gate operations [74]. This process can be applied to many qubit
quantum states with relative ease, as the resources required scale polynomially in the number of
qubits [62, 97, 98]. As a result, it has become a standard approach to benchmarking quantum sys-
tems. The common practice of using the Clifford set, while convenient, is also a limitation, as by
itself it is not universal [62]. However, strategies have been found to extend randomized bench-
marking beyond the Clifford set [33, 74, 81]. Additionally, note that the scalability of randomized
benchmarking is enabled by only seeking a subset of the quantum information, it does not provide
the full tomographic information about the gates [45, 103].

Modern analog quantum computers have been able to simulate systems that are hard even
for classical supercomputers [29, 80, 138, 163]. This raises the concern of validating their out-
put, as they may be untrustworthy [57, 73] and it is challenging to classically certify them [163].
Hamiltonian Learning is a process by which the Hamiltonian of a system is estimated to validate
that it is simulating the correct dynamics [10, 45, 61, 162, 163]. Additionally, reconstructing the
Hamiltonian of a quantum system will provide detailed diagnostic information that can enable
noise reduction in experiment [45]. The Hamiltonian of an n-qubit system, which has dimension
d = 2n can be described by d2 parameters, though most Hamiltonians of interest can be described
by m = O (poly (n)) [45]. Utilizing known information about the system can significantly reduce
the number of measurements required and make the process tractible [61]. Compressed quantum

Hamiltonian learning [161] is a process in which the dynamics of subsystems of a large device are
measured against the dynamics of a smaller system, enabling a model to be created for the larger
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system. Using a trusted simulator [162, 163], which has a firm known mathematical model, enables
an absolute model to be generated for the larger system [161].

6 (QUANTUM) COMPUTER BENCHMARKING

This kind of benchmarking is more similar to classical benchmarking. The idea is to determine
the compute capability of a quantum system running a program. This is sometimes referred to
as holistic benchmarking [107, 108]. Note that this is still considering near-term computers that
do not use error correction. It shares a number of considerations with classical computing, such
as latency and available parallelism. However, these metrics are not as informative for quantum
computers. As to be expected, there are a number of additional considerations. When discussing
benchmarking for full quantum computers, it is important to reconsider the role of quantum er-
ror and, if applicable, quantum error correction. As previously mentioned, quantum noise is not
equivalent to classical noise, and these differences get more pronounced the larger the system is.

In classical computing it would be feasible to obtain an error rate per gate and stitch these error
rates together to generate an error model for a larger circuit. The quantum equivalent would be
finding a fidelity for each gate, and then assuming this error rate for each gate on each qubit in the
system throughout the entire program. This is not accurate for quantum circuits as quantum noise
is context dependent [155]. Even if good estimates of gate fidelity can be obtained, then using this
information to model larger systems with more qubits is not straightforward. A gate performed on
one qubit may induce error in another, via quantum entanglement or physical proximity. Hence,
qubits must be considered as a monolithic system and their error rates cannot be considered in-
dependently [44, 47]. This is problematic as it makes it difficult to understand how noise affects
large quantum computers. The whole point of creating large quantum computers is to create states
that cannot be efficiently classically simulated. Unfortunately, that also means the noise becomes
impossible to simulate. Hence, accurately characterizing the noise, and its significant effects on
the reliability and performance, is not straightforward.

This has a few key impacts on benchmarking quantum computers. One is that it intensifies
the error that is introduced when using a reduced program size as a benchmark. The error
rates per qubit or per operation may be higher on a larger system. Some experimental evidence
has shown that this may be overly pessimistic [44], but increased system sizes will no doubt
increase susceptibility to noise due to complexity [101]. Hence, the rate of success of a program
on a small system may be significantly different from that of a larger system, and extrapolating
results is not straightforward.

6.1 Program Benchmarks

An intuitive approach is establishing a set of programs and measuring the performance of a com-
puting system performing each one. As previously mentioned, this is common practice for classical
computers. Replicating this for quantum computing would be collecting a set of quantum programs
that are representative of the algorithms we would like to run on them. Common examples may
be Shor’s [136] for prime factorization or Grover’s [66] for unstructured search. There are intu-
itive advantages to this approach, particularly in making the system perform a “real-world” task.
IonQ, a quantum start up that has an 11-qubit ion-trap quantum computer, appears to favor this
approach. They tested their computer on the Bernstein-Vazirani [14] and Hidden Shift [125, 152]
algorithms, and their metric for performance was the likelihood of measuring the correct output
[165]. They claim that these algorithms are representative benchmarks and the results proved their
system was the best as of early 2019.

A challenge that this approach introduces is that someone must decide which programs are im-
portant. This introduces the issue of invested interests [91]. In the classical computing domain, a
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lot of money is on the line when benchmarking hardware [75]. This problem is exacerbated by
the fact that different, competing quantum technologies are superior at different programs. For
example, the program benchmark approach was used in Reference [92], where a handful of small
quantum circuits4 were used to benchmark and compare the performance of an Ion-Trap quan-
tum computer with a superconducting quantum computer. Amongst the chosen benchmarks were
three-qubit circuits implementing the Toffoli and Margolis gates. It was found that the higher con-
nectivity (ability of different qubits on the machine to interact) of the ion-trap computer allowed it
to have a much higher relative success rate on the Toffoli circuit, which contained more two-qubit
gates during the program. The success rate was more comparable on the Margolis circuit, which
required fewer two-qubit gates. The authors note that how well the quantum architecture matches
with the requirements of the algorithm is a major determinant of the performance [92]. So, which
of the two benchmarks are more insightful? This question highlights the difficulty of creating a
representative set quantum program benchmarks. While quantum computing is more complicated,
much can be learned from previously discovered pitfalls and fallacies of classical program bench-
marking. Intuitively, the benchmarks will be set by the customer, rather than the manufacturer. To
the extent possible, the benchmarks should reflect the applications that customers will be running
on them. Another key component of accurate (and honest) benchmarking with a set of programs
is transparency [75]. This means providing data on all the programs and not unfairly weighting
some results over others. For example, a quantum benchmark suite could be created that contains
many circuits that have few two-qubit interactions, but also a few prominent circuits that require
many two-qubit interactions, such as the Quantum Fourier Transform (QFT) [136]. A quan-
tum computer with low connectivity could be benchmarked on all circuits, with only the average
performance being reported. Such analysis could falsely inflate perception of the performance.

While impressive, these modern computers are very small compared to the computers we hope
to build in the coming years. Hence, these benchmarks are also very small compared to truly useful
programs. While running smaller versions of real-world applications introduces error, and is ac-
cepted in classical benchmarking, this is exacerbated for quantum computers. Entirely new issues
may be introduced when scaling up and it is difficult to say whether measurements taken today are
good indicators of future performance. For example, IonQs computer [165] has all 11 qubits fully
connected, meaning each qubit can directly interact with every other qubit. This configuration is
possible at this scale, but may not be for a system with hundreds or thousands of qubits. Such a
system will likely require multiple fully connected groups of qubits and communication will need
to be orchestrated between them [101]. This introduces additional complexity that is not found in
these small-scale benchmarks. This is analogous to the classical benchmarking of machine learn-
ing inference accelerators. An accelerator that performs well on MNIST [87] digit recognition will
not necessarily perform well on 1000-class ImageNet [41] classification. While the problem and
computation is similar, ImageNet requires much more data, and memory management becomes
the bottleneck.

A more fundamental question is what quantum programs will be useful in the future. Famous
algorithms such as Shor’s [136], Grover’s [66], and quantum chemistry [32, 102, 110] are obvious
examples. However, for the most part, these algorithms will remain well out of reach for some
time. Currently, classical-quantum hybrid algorithms [46, 114, 130, 160] are popular due to their
ability to make use of the limited resources of modern quantum computers. It is important to re-
member that quantum algorithm design is still an emerging field, and what actually is the best use

4In literature on quantum computing, circuit refers to a sequence of quantum gates (instructions). It is analogous to “pro-
gram” in classical computing.
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of quantum computers is still unknown. This presents a moving target, which suggests quantum
research should not too heavily invest in any one direction [20].

6.2 Quantifying Capability

Considering the current limitations of quantum computers, it may be more insightful to focus on
how much work a quantum computer is capable of, in contrast to performance results on specific
algorithms. Because quantum technology is not mature, modern quantum computers are not yet
capable of performing commercially useful algorithms. However, creating larger, more functional
computers is of great interest, regardless of the applications they perform. This type of bench-
marking is a shift away from traditional, classical benchmarking, and is an attempt to uniquely
and objectively quantify the “capability” of modern quantum computers. The aim is to abstract out
as much as possible, such as unique architecture characteristics and performance on specific algo-
rithms, and create a simple metric that indicates the general computational power of the machine.
While this benchmarking approach can be applied to all modern quantum computers, it is intrin-
sically tied to the concept of quantum supremacy—demonstrating that a quantum computer can
perform work that is not possible with classical computers. Hence, this type of benchmarking is
not just used as a comparison between different points in the design space of quantum computers,
but is also the experimental assessment of the capabilities of quantum computers with respect to
classical machines. Such benchmarks seek practical demonstrations of quantum computers solv-
ing well-defined problems, which are also intractable (in terms of time and hardware resources
required) for classical computers. The best known classical algorithm/implementation should be
used as a baseline for comparison in this case, while accounting for all sources of noise on the
quantum side.

The importance of demonstrating quantum supremacy cannot be overstated. A central motiva-
tion for creating quantum computers is to solve problems that cannot be solved by other means
[146], which will only be possible if quantum computers can achieve (and go beyond) quantum
supremacy. It has been argued that this will be fundamentally impossible due to noise [78]. Hence,
even if an experimental demonstration of quantum supremacy does not provide scientifically or
commercially useful results, then it is an invaluable proof of concept for future research efforts.
The success of quantum computing research is contingent upon reaching this goal. The key ques-
tion then is how to quantify capability of quantum machines accurately and how to be sure when
they truly achieve quantum supremacy.

Cross-Entropy benchmarking [21] can be used to validate the output of a quantum computer
and was created specifically as method to test for quantum supremacy. The previously described
program benchmarks consider decision problems, where the measurement at the end provides
an answer to a specific question. In significant contrast, Cross-Entropy benchmarking considers
sampling problems. Here, the measurement at the end effectively allows for the sampling from a
certain distribution. It is the ability of the quantum computer to create such a distribution that
acts as the demonstration of quantum supremacy. Hence, it must be shown that the quantum
computer produces the distribution with a sufficient fidelity and that a classical computer (using
polynomial resources) cannot provide a sampling from that same distribution. Beyond demonstrat-
ing supremacy, validating sampling problems is important, because they correspond to important
quantum applications, such as quantum simulation.

To produce the output distribution, a quantum circuit is constructed by choosing quantum gates
(from a universal set) at random. Using a random circuit allows for limited guarantees of compu-
tational hardness, as it does not have structure [9, 21, 23, 28]. Executing this circuit on a quantum
computer will produce a quantum state in which some states are much more likely than others,
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yet is also widely distributed over the 2n possible measurement outcomes, where n is the number
of qubits. The distribution resembles a speckled intensity pattern produced by light interference
in laser scatter [9]. For a large quantum computer, 2n will be much greater than the number of
samples (executions of the circuit) that can be taken. Hence, it is very unlikely that two differ-
ent measurements will be same [21]. This makes it difficult to discern it from a uniform random
number generator by simply looking at the samples. However, the output can be distinguished
and validated if the circuit is also classically simulated [57, 93, 115, 150]. The classical simulation
(which requires exponential resources on a classical computer) will provide the exact output quan-
tum state, and hence also the exact probabilities of measuring each result (in the absence of noise).
This allows the comparison of the output of the experimental quantum circuit with the ideal quan-
tum circuit, and also with any classical algorithm that attempts to generate the same distribution.
The information theory definition of entropy is [134]

H (X ) = −
N−1∑
i=0

P (xi )loдP (xi ), (25)

whereX is a random variable that can take on N values and P (xi ) is the probability of observing
X = xi . The output of the quantum circuit, and a classical algorithm attempting to emulate it, is a
random variable that can take 2n = N values. The cross-entropy between the distribution of the
ideal quantum probabilities (pU ) and the polynomial classical algorithm probabilities (ppcl ) can be
defined as [21]

H (ppcl ,pU ) = −
N∑

j=1

ppcl (x j |U ) loд pU (x j ), (26)

where pU (x j ) is the probability that the quantum circuit, U , will produce the output x j and
ppcl (x j |U ) is the probability that the classical algorithm emulating U will also produce x j . The
value of interest is the average quality of the classical algorithm, which can be found by averaging
the cross-entropy over an ensemble of random quantum circuits, {U }:

EU [H (ppcl ,pU )] = EU

⎡⎢⎢⎢⎢⎢⎣
N∑

j=1

ppcl (x j |U )
1

loд pU (x j )

⎤⎥⎥⎥⎥⎥⎦ . (27)

It was argued in References [21, 23, 28] that the polynomial classical algorithm cannot accurately
reproduce the distribution.

When performing the circuit on a quantum computer, a single error (such as X or Z error) will
cause the output to become nearly statistically uncorrelated with pU . Hence, depolarizing noise
will cause an increase in the entropy of the output of the quantum computer, and it will resemble
that of a uniform distribution. This means that the quantum computer, which is subject to noise,
will only barely be able to produce a superior cross-entropy to that of a uniform random number
generator,

EU [H (Uni f orm,pU )] = loд N + γ = H0, (28)

where γ = 0.577 is the Euler constant. On this concept the quantum supremacy test is based. Any
classical or quantum algorithm, A, which produces bitstring x j with probability pA (x j |U ), can be
evaluated on how well it predicts the output of an ideal quantum random circuit,U , by comparing
its cross-entropy relative to that of a uniform classical sampler. This metric is called the cross-
entropy difference [21]:

ΔH (pA) = H0 − H (pA,pU ) =
∑

j

( 1

N
− pA (x j |U )

)
loд

1

pU (x j )
, (29)
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If the algorithm A produces the distribution perfectly, with no errors, then the cross-entropy dif-
ference will be 1. If the algorithm A produces an uncorrelated distribution, then the cross-entropy
difference will be 0 [9, 21]. Effectively, this is a measure of how consistent the outcomes are with
the predicted probabilities [18]. A classical algorithm (using polynomial resources) should fail, and
a quantum algorithm running on a sufficiently powerful quantum computer should succeed. The
experimentally determined cross-entropy difference, denoted by α , can be found by takingm sam-
ples from the quantum computer, with each producing a bit string xexp , and then using classical
simulation to find the value pU (xexp ). α is then estimated by [21]

α = H0 −
1

m

m∑
j=1

loд
1

pU (x
exp
j )
. (30)

Quantum supremacy is achieved if a quantum computer can produce a higher α than a clas-
sical computer can. Unfortunately, quantum supremacy also implies that the pU values required
to determine α , which are produced by classical simulation (using exponential resources), can no
longer be computed by a classical computer in a reasonable amount of time. Hence, measuring α
directly is not possible if the quantum computer truly has achieved quantum supremacy. However,
it should be possible to extrapolate α if it has been reliably found at sizes that are slightly below
the limit of quantum supremacy (pU can still be computed by sufficiently powerful classical super-
computers [21]). In the summer of 2019 Google used cross-entropy benchmarking5 to quantify the
capability of their 52-qubit quantum computer, Sycamore, where they claim to have demonstrated
quantum supremacy [9]. It is also possible to use cross-entropy benchmarking to find the average
fidelity of individual gates [9, 21], similar to randomized benchmarking.

Note that tests for quantum supremacy doesn’t necessarily require a universal set of gates on the
quantum computer. For example, in the case of Boson Sampling, recent work has demonstrated that
these algorithms can be composed by notably more noise-tolerant (yet not necessarily universal)
set of gates [151].

A similar and influential sampling-based benchmark is quantum volume from IBM [16, 39]. The
process of determining quantum volume shares many of the steps with cross-entropy benchmark-
ing. According to the authors [16], there are 4 factors that determine the capability of a quantum
machine:

(1) The number of physical qubits
(2) The number of gates that can be applied before errors make the the output unreliable
(3) The connectivity of the machine
(4) The number of operations that can be run in parallel

It is assumed that quantum volume targets modern, noisy quantum computers. Hence, factor 2)
is referring to running a quantum algorithm without error correction and it is assumed there
is an upper limit on the number of gates possible. In the future, it will be of more interest to
determine whether the error rate is low enough to enable efficient error correction, or how often
error correction needs to be applied. Hence, quantum volume will need to be adapted or superseded
in the future [39].

Similar to cross-entropy benchmarking, quantum volume attempts to abstract out all consider-
ations and generates a single number that quantifies the capability of a quantum computer. The
idea is to measure something that can be improved by each of the four considerations, meaning

5Google used linear cross-entropy benchmarking, which differs from the standard cross-entropy benchmarking process ex-
plained here. However, the argument is similar for why linear cross-entropy benchmarking is easy for a quantum computer
and hard for a classical computer.
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systems that are superior in each consideration will generally achieve a higher quantum volume.
The score is determined by the largest random quantum circuit a quantum computer is able to
complete successfully. Whereas cross-entropy benchmarking uses the cross-entropy to quantify
the validity of the output, quantum volume uses the heavy output generation problem [3]. Heavy
output generation also requires classical exponential time to validate the output from the quantum
computer, as it relies on the ability to classically simulate the quantum operations [3]. Again, this
will not be possible once physical quantum computers reach the scale where their quantum states
are not efficiently classically simulable. By simulating the quantum operation, the output measure-
ment probabilities can be exactly determined. When ordering all possible outputs from most likely
to least likely, all outputs that have a greater probability than the median are called heavy outputs.
The quantum circuit is then repeatedly performed and the output measured. If the measurements
produce heavy outputs more than 2/3 of the time, then the quantum computer “passes”; otherwise,
it fails. If noise has completely destroyed the information in the quantum state, then heavy outputs
will be generated 50% of the time [39]. The largest quantum circuit that the computer can get a
pass on corresponds to the quantum volume, VQ [39],

loд2VQ = arдmaxm (min(m,d (m))), (31)

wherem is the number of qubits and d (m) is the maximum achievable depth of anm-qubit circuit.
Hence, quantum volume is the largest square (m = d) circuit that can be successfully run.

Quantum volume has some limitations. A number of which were addressed in Reference [18],
which proposes a framework called Volumetric Benchmarks. The idea is to make quantum volume
more general, by allowing different shapes of circuits, kinds of circuits (random, periodic, subrou-
tines of algorithms), and different criteria for success. As noted by the authors of Reference [18],
errors will affect different kinds of circuits differently, such as coherent errors getting magnified by
periodic circuits but getting smeared out by random circuits. This provides evidence that univer-
sal benchmarks should be avoided. While quantum volume is a novel and useful concept, it uses
exclusively random circuits. As we show in our simulations, random circuits have a similar affect
to applying randomized compiling [159]. Another potential drawback is that quantum volume can
produce potentially misleading results. For example, a Honeywell quantum computer achieves a
high quantum volume score due to its extremely high fidelity operations [143]. However, given
the relatively low qubit count, its dynamics can be simulated classically with ease [2].

Another significant approach is that of Cycle Benchmarking [44]. This is similar to the process
of randomized benchmarking. The core idea is to break a quantum program into sets of opera-
tions on all the qubits (cycles) and then individually characterize the fidelity of each cycle. This
allows one to quantify how well the computer can do specific operations. Additionally, arbitrary
programs can be broken into a finite set of cycles [155]. This prevents the number of required char-
acterizations from growing exponentially with the number of qubits. Using cycle benchmarking,
the “benchmarks” would be individual cycles and the metric is the process fidelity, as defined in
Equation (9).

7 FAULT-TOLERANT (QUANTUM) COMPUTER BENCHMARKING

Thus far we have considered qubit benchmarking and holistic computer benchmarking for near-
term quantum machines. While there has been much effort to create practically useful quantum
algorithms for these machines, as of yet their performance falls far short of their classical com-
petitors. Hence, the main goal of these near-term demonstrations has been for research and to
learn how to achieve scalability. Once computers are built that have sufficient qubit counts and
sufficiently low error rates, full-scale QEC [62] will become possible. QEC can detect and correct
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errors during the run of a program, and hence enable computers to perform arbitrarily long quan-
tum programs. This is referred to as fault-tolerant quantum computing [118]. Such computers will
be capable of solving real-world problems with much greater speed than classical computers, per-
forming well beyond the threshold for quantum supremacy. Naturally, such fault-tolerant comput-
ers will significantly change the landscape of benchmarking as it breaks many of the assumptions
of previously described techniques. For example, the maximum circuit depth is effectively infinite,
hence a metric such as quantum volume would be limited only by qubit count. More fundamentally,
the quantum states of these machines would be much too large to simulate, and hence the classical
validation of the heavy output generation problem would not be possible. A typical use case for
large-scale fault-tolerant quantum computers will be running algorithms that will be impossible
to run on a classical computer, but for which the output can efficiently be checked for correctness
on one [94], such as Shor’s algorithm [136].

However, no fault-tolerant computers have been built to date, and hence there is not much
research dedicated to benchmarking them. Likely, quantum benchmarking will look much more
similar to classical benchmarking, where the emphasis will transition to performance (latency to
produce the final result) amongst quantum processors that have sufficiently many qubits to per-
form the algorithm of interest. Benchmarking may take a similar form as program benchmarks, as
described in Section 6.1, except the chosen benchmarks would be real-world, full-size applications
rather than sample toy cases. Additionally, unlike the modern computers performing the program
benchmarks described in Section 6.1, a fault-tolerant computer should not fail due to noise. Hence,
the probability of success will not be a representative metric.

The performance of fault-tolerant computers will have a strong dependence on the method QEC
used as it has a high overhead. QEC utilizes many qubits [50], involves many, repeated quantum
operations, and also requires significant classical hardware resources to manage its orchestration
[105]. Both the qubit chip [42] and the supporting classical architecture [147] will need to be
specifically designed to support QEC. For an introduction to quantum error correction, we refer
the interested reader to Reference [60].

8 SIMULATIONS

To illustrate the impact of the different types of quantum noise in different computational con-
texts, and the resulting difficulty of choosing representative benchmarks, we run representative
key quantum algorithms at sizes that are experimentally feasible. All benchmarks used are listed
in Table 4. We use a Quantum Adder [35], the QFT [136], and the Quantum Approximation

Optimization Algorithm (QAOA) [46]. In addition, we use an idle circuit (which has no com-
putational gates) and a random circuit (composed of random X, Y, Z, H, and CNOT gates), for
reference. Note that this is not the same randomized circuit as used in Quantum Volume [39],
which generates a set of arbitrary random unitary operations, which need to be decomposed into
a universal gate set. For our random circuit, we want to view the effects of performing our gate
set in random fashion, without introducing the complexity of gate compilation (which is needed
for our other algorithms). Unless otherwise stated, our metric is the process fidelity [48] described
in Equation (9). We note that other metrics may be equally suitable. However, we chose process
fidelity as it is widely used in the quantum information science community [55] and it shines light
on the complexities of benchmarking mentioned earlier.

The QFT and QAOA benchmarks contain gates that are precise rotations around the X- orZ axis
of the bloch sphere. Rz (θ ) is a rotation around the Z axis by angle θ and Rx (θ ) is the equivalent
for the X axis. Currently available modern quantum computers, such as IBM’s machines [5], can
perform these operations directly. This can be powerful, as it enables quantum computation to
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Table 4. Benchmarks Used in Simulations

Benchmark # Qubits Logical Physical Gate Metric
Depth Depth Set

IDLE 4 2-70 2-70 I Process Fidelity
RANDOM 4 2-70 2-70 I, X, Y, Z, H, CNOT Process Fidelity

Adder 7 30 30 H, T, CNOT Process Fidelity
QFT 4 10 10 H, Rz , CNOT Process Fidelity

QFT (Clifford+T) 4 10 229 H, T, S, CNOT Process Fidelity
QAOA 8 10 10 H, Rz , Rx , CNOT Expectation Value

QAOA (Clifford+T) 8 10 113 H, T, S, CNOT Expectation Value
# Qubits is the number of qubits required for each input size. Logical depth is the depth of the quantum circuit (number
of sequential gates) required before compilation into Clifford+T set. Physical depth is the depth after compilation. The
Adder and QFT have two different input sizes.

occur relatively quickly, which also mitigates the effects of noise. As this gate set is likely to be
used for some time into the future, we include it in our simulations of the QFT and QAOA. However,
this gate set is not compatible with RC or quantum error correction. Hence, it is not scalable to
the level of fault-tolerant quantum computers. For progressing into the fault-tolerant regime, the
Clifford+T set is a good option. This gate set is universal and enables use of RC. Hence, we include
Clifford+T versions of the QFT and QAOA as well. While we are using the Clifford+T gate set, we
are not performing error correction in the simulation. Hence, these do not represent fault-tolerant
computations. However, using this gate set can provide insight on how the impact of noise is
affected by the chosen gate set. Each gate in Clifford+T can be implemented with the previously
mentioned X- and Z- rotations – using the Clifford-T set just restricts the angles used. When
performing these gates on physical qubits, as we do here, the operations are not changed in any
fundamental way. While we do not show simulations of error correction, it should be noted that,
to perform error correction, groups of physical qubits would form a single logical qubit, and the
logical operations consist of many individual gates on the physical qubits [50].

The drawback of Clifford+T is that precise rotations must be broken into sequences of gates
that can perform the operation approximately. This increases the length of the circuit. For single
qubit gates, we use the gridsynth decomposition method from [132] that finds an approximation
to Z rotations with Hadamard (H), T and S gates. This is sufficient, as any single qubit gate U can
be implemented using the Euler angles [132]

U = Rz (β ) Rx (γ ) Rz (δ ) = Rz (β ) H Rz (γ ) H Rz (δ ) (32)

for some β , γ , and δ . Hence, any quantum gate can be approximated by a sequence of approximate
Rz gates and H gates. An additional complication exists in that controlled versions of these gates
cannot be implemented directly [82]. For a general case, controlled 2-qubit versions of the gates
can be implemented by including an additional ancilla (scratch) qubit and using an alternative
sequence of gates [8]. However, both the QFT and QAOA can be implemented with just CNOT
gates and single qubit Rz gates. Hence, controlled- H, S, and T gates are not required.

The Quantum Adder performs binary addition using a sequence of quantum full-adders on two
input integers that are basis state encoded (1 qubit for each bit). If performing n-bit addition, then
the quantum adder requires 3n + 1 qubits. We perform 2-bit addition (using 7 qubits). The adder
only uses gates in the Clifford+T set and hence does not require gate decomposition. It does use the
Toffoli (doubly controlled X gate), which we implement with a sequence of CNOT, H, and T gates.
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The QFT effectively performs the Discrete-time Fourier Transform on the amplitudes of the
input quantum state, and is the core of Shor’s algorithm. The width and depth of the circuit are
determined by the number of input qubits. We use 4 input qubits. The circuit contains Hadamard
gates and controlled-Z rotations, which can be implemented with CNOT and Rz gates.

QAOA has gained a lot of attention recently as it is considered to be a strong candidate to demon-
strate quantum supremacy. QAOA is a variational algorithm, where quantum computation is used
in tandem with classical optimization [160]. It is commonly applied to the Max-Cut problem. The
input to Max-Cut is a graph that represents a combinatorial optimization problem. Vertices are
variables and the edges between vertices are constraints. The goal is to partition the vertices into
two sets, maximizing the number of edges between the sets. The maximum cut is the number of
edges between the sets in a best possible partition, which is the most constraints that can be sat-
isfied simultaneously. Max-Cut is NP-Hard, however, it is not expected that quantum computers
will be able to solve NP-Hard problems in polynomial time. QAOA only provides an approximate
solution and currently has worse performance than classical approximate algorithms [56, 86].
QAOA consists of a sequence of stages. Each stage consists of controlled-Z rotations (determined
by the input graph) followed by single qubit X rotations. The hyperparameter p determines the
number of stages in the quantum circuit. For each stage, there is a parameter γ , which determines
the angle of the controlled-Z rotation, and a parameter β , which determines the angle of the X
rotations. The main challenge of QAOA is to determine an optimal set of parameters to produce
good output [67]. When implemented on a real quantum computer, optimization algorithms such
as SPSA [139] or gradient descent can be used to update the parameters [144]. This requires many
optimization passes, where each pass requires many (thousands or millions of) samples of the
quantum circuit output. The number of samples required heavily depends on the problem size
and noise level in the system. Here, we consider only a pre-optimized circuit with p = 1. When
p = 1, the optimal circuit is guaranteed to produce an output with an expectation value that is
at least 0.6924 times the maximum cut [46, 65] on 3-regular graphs. Here, we use a 3-regular in-
put graph with 8 vertices (represented by 8 qubits), which has a maximum cut of 12. This means
QAOA should produce an expectation value of 8.3 in the case of no error. For this problem, we
use expectation value of the output as the metric. As QAOA is designed to also work on a small
scale, it can be used effectively with continuously parametrized rotation gates available on near
term machines. We implement QAOA with these gates as well as with the Clifford+T set. A useful
tutorial for QAOA is provided in Reference [113].

For our simulations, we assume the quantum computer has an all-to-all connectivity and full
parallelism. This means 2-qubit gates can be performed without any overhead for movement, and
multiple single qubit gates can be performed simultaneously, given that they do not operate on the
same qubits. Moving qubits with swap gates to compute on machines with limited connectivity is
a well-studied problem [89, 167]. Our observations here will also apply, but there will be further
complicating factors depending on the specific topology. For discussion on how noise and topology
interact see Reference [148].

We also view the impact of RC [159] in each of our simulations. RC was designed as a method
to convert coherent noise effectively into stochastic Pauli noise. This is significant, as coherent
noise can be much more destructive and is predominantly seen in physical experiments. Hence,
RC not only provides a significant noise mitigation technique, but also maintains the validity of
previous theorems and results that have been generated by assuming stochastic Pauli noise. We
emphasize, as noted by the original authors [159], that RC is not designed to have any impact
on a Pauli noise model, hence we expect to see no improvement in the fidelity if a Pauli noise
model is used. Additionally, for most of our simulations we are using process fidelity as the figure
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of merit, for which RC is not expected to add as much benefit. RC will provide greater impact
if using a norm-based measure, such as the trace distance in Equation (11). To perform RC, we
need to divide the gate set into “easy” and “hard” gates. Easy and hard can generally be thought
of as the difficulty in implementing the gate, such as the expected error rate, but the essential
requirement is that the physical noise on the easy gates be independent of which easy gate is
performed. We follow [159] and set easy gates as the Pauli gates and the phase gate S; where the
hard gates are H, T, and all 2-qubit gates. However, instead of controlled-Z, we use CNOT. Nearly
all gates in the decomposed circuits are “hard” gates. Hence, it is necessary to interleave these
gates with idle cycles to implement RC. From a high level, simulation perspective, this initially
seems to imply that the cost of RC is a near doubling of the circuit length. However, as noted
by the authors of Reference [159], on real hardware (such as ion traps and superconductors)
entangling operations, which are required for “hard” multiple qubit gates, must be inserted
between local gates. These local gates, which are required even without RC, can be “compiled
into” the randomized gates. Hence, in practice RC can be implemented with no additional
circuit length overhead. Therefore, to make our simulations more representative of physical
experiments, we insert the additional idle operations into our circuits whether RC is performed or
not.

We use four representative noise models that fall into different categories discussed in Section 3.
While no quantum system will have a single source of noise, we use them in isolation to
demonstrate how the nature of the noise (along with the assumptions made in noise models)
significantly impacts the results. The first is a standard Pauli noise, where the probability of X,
Y, and Z errors are all equally likely. While the most commonly used noise model, it generally
provides the worst (and overly optimistic) estimates or error correcting threshold error rates [69].
Pauli noise is a non-unitary and incoherent model. To model purely coherent and unitary noise,
we follow the same approach as in Reference [26], where we assume constant Z-rotations by
angle θ for each qubit, (eiθ Z )⊗n , for various values of θ . While this model makes some simplifying
assumptions, it is representative. The third is a combination of Pauli and coherent noise, where
we follow the model in Reference [63]. This includes static X rotations and X Pauli errors. The
fourth error model is Amplitude Damping, which is a commonly used and realistic noise model. It
models loss of energy from the system to the environment and is a non-unitary process. We sweep
the noise over a range of values that are similar to experimental error rates and are expected
in near term computers, as listed in Table 5. Each noise type is injected in every qubit in every
cycle, regardless if the qubit is operated on or not. We assume the same noise rates for single and
two-qubit gates. While two-qubit gates will typically have a higher rate of noise in a physical
experiment, our values are swept over ranges typically seen for both single- and two-qubit gates.
Unless otherwise stated, our metric of choice is the process fidelity of the noisy operation, G̃,
to the noiseless operation, G, [44, 48]. If the noisy operation G̃ is free of error, then the process
fidelity will be 1. We repeat experiments with different input pure states. We generate the input
states at random in the same manner as in Reference [12], by selecting random polar coordinates
on the Bloch sphere for each qubit and report the average process fidelity.

Numerous quantum simulators exist (References [72, 77, 124, 142, 145]), many of which would
be suitable to run our simulations. However, as we are implementing algorithms and incorporating
noise models from a variety of sources, and did not want to unintentionally bias our experiments by
relying on any specific software, we chose to run our simulations with the statistical programming
language R [121]. This allows us to fully and independently define our experiments. Additionally,
R is highly optimized to perform matrix multiplication, which is the essential component for den-
sity matrix simulation. Our source code is available in Reference [122], which is an extension of
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Table 5. Noise Levels Tested for Each Noise Type

Error Pauli Coherent Pauli+Coherent Amplitude
Level Damping

0 0 0π 0, 0π 0
1 0.01 π/30 0.01, π/30 0.01
2 0.02 π/15 0.02, π/15 0.02
3 0.03 π/10 0.03, π/10 0.03

Noise is inserted in every qubit in every cycle, regardless if it is being
operated on. Pauli noise rate refers to probability of inserting and X, Y, or
Z gate. Coherent noise is the rotation angle applied. For Pauli+Coherent,
only X Pauli gates and X rotations are applied to align with the model in
Reference [63]. Amplitude Damping error rate refers to the parameter γ

[149], which is the probability of relaxation to the ground state.

Fig. 2. Idle circuit with four qubits under various noise models.

our R package QuantumOps [123]. To perform the gate decomposition, we rely on the gridsynth
algorithm [131].

Performing simulation with density matrices allows us to avoid much Monte Carlo simulation.
However, Monte Carlo simulation is still needed due to the randomness introduced by our random
input states, use of RC, and the random circuits for the random circuit benchmark.

9 RESULTS

For the Idle and Random circuits we sweep the noise levels over the values listed in Table 5 and
plot the effect on the fidelity for circuits of different lengths. As the Addition, QFT, and QAOA
circuits have a constant depth, we sweep the four error models over a fine-grained range and plot
the process fidelity or accuracy of the output versus the error rate.

Results for the Idle circuit are shown in Figure 2 and results for the Random circuit are
shown in Figure 3. Both circuits are performed from 2 to 70 cycles. Cycles here indicate the
length of a single gate. Note that error level 0 shows a process fidelity of 1, meaning there is
no corruption of the quantum state. It is highly noticeable how coherent noise affects the Idle
and Random circuits differently. For the Idle circuit, coherent noise has an immediate drastic
impact on the fidelity. We must note the strange behavior of the Idle circuit under coherent noise.
Due to our simplified coherent noise model, the fidelity returns with a periodicity determined
by the constant angle of rotation. This is unlikely to be a physically realistic phenomenon, and
even if it was, it would not be possible to exploit this fact unless one was completely aware of the

exact effects of the physical noise. As physical noise is difficult to model and predict, it is highly
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Fig. 3. Random circuit with four qubits under various noise models.

unlikely one would have such knowledge. Note that randomized compiling removes this periodic
effect.

The true observation from the simulation of coherent noise on the Idle circuit is the immediate
destructive nature of even a slight coherent noise source. Note that randomized compiling miti-
gates this impact and causes the coherent noise to have the same effect as stochastic Pauli noise.
Interestingly, this same coherent noise is not as destructive on the Random circuit. In fact, even
without Randomized Compiling, the error decays exponentially just as it does under stochastic
Pauli noise. This finding is consistent with [18], which says that coherent noise will affect random-
ized circuits much differently than idle or cyclic circuits. The coherent noise gets “smeared out” by
the randomization inherent in a random circuit. Additionally, this suggests that the randomized
benchmark circuits in Quantum Volume [39], depending on the gate decomposition, may not be
representative of many quantum circuits. Noteworthy is that Randomized Compiling may not be
necessary if the circuit already contains a high degree of randomness. However, the vast majority
of useful quantum algorithms do not have such structure.

The chosen quantum noise model has a drastic impact on the performance of quantum algo-
rithms. Hence, one must be sure that the assumptions on the noise present in a physical system
are appropriate. Additionally, the effect of the quantum noise is largely determined by the na-
ture of the quantum algorithm being performed. Hence, one must be cautious when choosing
quantum algorithms for benchmarks.

Results for the addition circuit are shown in Figure 4, the parameterized rotation gate version
of QFT in Figure 5, and the Clifford+T version of QFT in Figure 6. Note that circuits using the
parameterized rotation gates cannot be randomly compiled. Randomized Compiling produces a
significant increase in fidelity when coherent noise is present.

Note that under Pauli noise or Amplitude Damping, Randomized Compiling does not provide a
significant improvement. For Pauli noise, as it is already entirely random, it remains unmodified
by the random compilation. This is noted by the inventors of RC [159]. As RC is designed to
mitigate coherent rotations of the qubit state, it is also intuitive that it would not significantly
mitigate Amplitude Damping, which models energy loss of the system. However, RC may help
in some specific circumstances, such as when a qubit is held in the excited |1〉 for an extended
period of time. As Amplitude Damping models the collapse from |1〉 to |0〉, the |1〉 state is more
vulnerable. As noted by the authors of Reference [127], Amplitude Damping is more destructive
if the quantum data in a program contains more qubits in the |1〉 state. RC could make the state
oscillate, reducing the amount of time the qubit will spend in the excited, more vulnerable state.
However, this condition was not present in our benchmarks.
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Fig. 4. 2-bit addition circuit under various noise models.

Fig. 5. 4-qubit QFT (Clifford+T) under various noise models.

Fig. 6. 4-qubit QFT with parameterized rotation gates under various noise models.

While a critical tool to enable scalable quantum computing, especially for modern machines,
RC cannot be used as a generalized noise mitigation technique. As noted by the original paper
[159], randomized compiling is used to “convert” coherent noise to stochastic Pauli noise. This
is significant, as modern, physical quantum computers are dominated by coherent errors. Addi-
tionally, this conversion to Pauli noise maintains the validity of previously established proofs
that have assumed Pauli noise.

Results for the Clifford+T QAOA are shown in Figure 7. If no error is present, then the QAOA
circuit will produce an expectation value of 8.3, as this is 0.6924× of the maximum cut (12), which is
expected for a QAOA circuit with p = 1. The expectation value of a random guess for the max-cut
problem is at least 50% that of the maximum cut [65]. For the specific problem we used, a random
guess produced an expectation value exactly 50% of that maximum. Hence, increasing the noise,
which increases the entropy of the output, generally caused the expectation value to decay to 6.
Noticeably, the expectation value drops to that of a random guess even for very low levels of noise.
Amplitude Damping noise has significant potential to drop the expectation value below 50%, as
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Fig. 7. QAOA (Clifford+T) expectation value under different noise models.

Fig. 8. QAOA with parameterized rotation gates expectation value under different noise models. As the

circuit is significantly shorter than Clifford+T QAOA, the noise is tested over a significantly larger range.

high levels of this noise will cause the state to transition more toward the |00...0〉 state. The |00...0〉
state does not satisfy any of the input problem’s constraints and hence produces an expectation
value of 0. Notice that RC prevents this drop below 50%.

QAOA using parametrized rotation gates is shown in Figure 8. Due to not using decomposition,
the circuit is much shorter and hence significantly less impacted by noise. Note that this gate set is
not compatible with randomized compiling or quantum error correction. Hence, it is not scalable
but still feasible for the small cases that we are considering. Despite the difference in gate sets,
this version of QAOA shows similar expectation value patterns due to the different noise types.
The expectation value tends to converge toward a value that is 50% of the maximum. Again, a
combination of Pauli and coherent noise is particularly destructive.

10 CONCLUSION

Computer architecture uses layers of abstraction to manage complex problems. This approach has
already been applied to quantum computing. Unfortunately, quantum systems are notorious at de-
fying abstraction and simplifying assumptions. It is easy to make invalid assumptions and generate
inaccurate results. Here, we showed that quantum noise is more complex and difficult to model
than is often assumed. This has profound effects everywhere, and can be felt significantly even
at higher levels of the system stack. This complicates the task of benchmarking, which is already
challenging and full of subtlety for classical computers. The noise model, the target application,
and the performance metric all need to be carefully considered.
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