
57

Energy-efficient and Reliable Inference in Nonvolatile

Memory under Extreme Operating Conditions

SALONIK RESCH, S. KAREN KHATAMIFARD, ZAMSHED I. CHOWDHURY,

MASOUD ZABIHI, ZHENGYANG ZHAO, HUSREV CILASUN, JIAN-PING WANG,

SACHIN S. SAPATNEKAR, and ULYA R. KARPUZCU, University of Minnesota, Twin Cities, USA

Beyond-edge devices can operate outside the reach of the power grid and without batteries. Such devices can

be deployed in large numbers in regions that are difficult to access. Using machine learning, these devices

can solve complex problems and relay valuable information back to a host. Many such devices deployed

in low Earth orbit can even be used as nanosatellites. Due to the harsh and unpredictable nature of the

environment, these devices must be highly energy-efficient, be capable of operating intermittently over a

wide temperature range, and be tolerant of radiation. Here, we propose a non-volatile processing-in-memory

architecture that is extremely energy-efficient, supports minimal overhead checkpointing for intermittent

computing, can operate in a wide range of temperatures, and has a natural resilience to radiation.
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1 INTRODUCTION

Beyond-edge devices collect energy from the environment, allowing them to operate off the grid
and without a battery [13, 63]. This enables them to function in environments that were previously
considered as impossible, such as in the remote wilderness [91], within the human body [41], and
out in space [82]. This capability opens up many opportunities for new applications. Running
machine learning algorithms on beyond-edge devices is particularly attractive due its versatility
[39]. Utilizing neural networks (NN) or support vector machines (SVM), a wide variety of
problems can be solved.

However, engineering devices to operate beyond the edge is difficult. As they must collect en-
ergy from their environment, the power source by construction is unreliable. The devices must
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frequently power off, turning back on when energy is available. This is referred to as intermittent

computing, which comes with performance and energy efficiency overheads. To prevent total loss
of information during intermittent operation, beyond-edge devices must do additional work in
three categories [34]: (1) Backup refers to saving data and the current architectural state (which of-
ten entails writes to non-volatile memory); (2) Dead corresponds to re-performing work that could
not be saved on the last shutdown; and (3) Restore encapsulates all work associated with re-starting
the device after a shutdown. Beyond the additional latency and energy overheads, intermittency
also makes it a challenge to guarantee correctness of a program. Power interuptions can introduce
memory inconsistencies, which can easily lead to incorrect operation [19, 82]. For conventional
embedded systems, sophisticated software strategies are required to ensure that an interruption
at any point during operation does not induce corruption [39, 110].

Previous work has shown that non-volatile processing-in-memory (PIM) architectures are
promising for use in beyond-edge devices. As a representative example, MOUSE [107] is a PIM
architecture that delivers high performance and extreme energy efficiency using low complexity
checkpointing mechanisms. It has three advantages over traditional architectures:

(1) Inherently intermittent safe logic operations;
(2) Automatic and instantaneous data backup;
(3) Highly energy-efficient and highly parallel operations.

Advantage (1) enables minimal overhead accelerator utilizing spintronic RAM for energy-

harvesting applications (MOUSE) to simplify its checkpointing strategies. Operations per-
formed in the memory can be interrupted or performed multiple times without introducing corrup-
tion. Hence, data remains consistent as long as operations are performed sequentially. Advantage
(2) comes from processing in non-volatile memory, and directly reduces the overhead for check-
pointing. Typically, a device has to write volatile data back to memory to save progress before
shutdown. Since MOUSE does all its computation in non-volatile memory, progress is saved auto-
matically after every operation. Finally, Advantage (3) enables high performance within low power
budgets.

Recently, there has been much excitement about the use of beyond-edge devices as nanosatellites
[83] deployed in low Earth orbit (LEO). Such devices can provide valuable services such as secu-
rity along with agricultural [137], environmental or structural monitoring [83]. Nanosatellites can
be much more cost effective than traditional monolithic satellites. However, orbital deployment for
use as a satellite further challenges engineering such devices. For example, the cost of communi-
cation now becomes much greater than the cost of computation (even more so than for terrestrial
deployment) [39, 83]. This shifts emphasis towards performing more computation and holding
more data on the device, and away from frequent communication [27]. MOUSE is well-suited for
this challenge as it has a large memory capacity (due to consisting nearly entirely of high density
non-volatile memory), enabling it to potentially go long periods of time and store many results
before data transmission becomes necessary.

An additional challenge for beyond-edge devices deployed in LEO is that they must operate in
a wide range of temperatures. Satellites can get both very cold (−170◦C) and very hot (123◦C) [74].
Large scale satellites can be engineered to perform temperature modulation [9]. However, small,
cheap beyond-edge devices can typically not use such strategies. Fortunately, complementary

metal-oxide semiconductors (CMOS) can perform well across this wide temperature range,
and the performance of CMOS circuits actually tends to increase with decreasing temperature
[124, 147]. However, cold operation can have an adverse effect on non-volatile memory, where the
energy efficiency degrades [52, 71, 106, 146, 150].
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Another complication of orbital deployment is radiation. Even in terrestrial deployment, radi-
ation can induce soft errors in CMOS circuits [10], potentially corrupting the architectural state.
Without the Earth’s atmosphere to shield radiation from space, satellites are exposed to much
higher levels of radiation. Non-volatile memory is at an advantage in this domain, as the memory
devices it uses are highly resistant to radiation [94]. However, non-volatile memory still relies on
CMOS circuitry for memory access and external control, which also applies to non-volatile PIM.
Circuit level strategies can be used to mitigate the impact of radiation on CMOS hardware [118],
which can incur significant power, latency, and area overheads.

In this work, we extend the design of MOUSE [107] to be suitable for orbital deployment. We
demonstrate that MOUSE can operate over a wide temperature range (despite non-ideal impacts
on non-volatile memory) and evaluate its performance at the extremes. MOUSE has an inherent
resilience to radiation due to ideal properties of the non-volatile memory it uses [37, 65], but it still
requires CMOS circuitry to drive operations. We show that even in the presence of the overhead for
the hardening of CMOS circuitry to radiation [157], MOUSE remains highly energy-efficient and
performant. We also extend the MOUSE PIM instruction set [107] and add architectural support
for branch instructions, which increases the programmability of the device. Finally, we introduce
more hardware-efficient column activation mechanisms for enabling logic in the memory. The
result is a programmable, high performance, and extremely energy-efficient beyond-edge device
that is suitable for deployment in space. In summary, using MOUSE [107] as a representative case
study, our contributions are as follows:

(1) Demonstration that the non-volatile in-memory logic works under a wide operating temper-
ature range and evaluation of the impact on performance.

(2) Evaluation of the overhead in adapting all PIM circuitry to withstand high radiation.
(3) Extension of the MOUSE instruction set for enhanced programmability.
(4) Addition of more efficient hardware mechanisms for enabling logic in the memory.

The rest of the article is as follows. In Section 2, we provide a background on non-volatile
processing-in-memory. In Section 3, we detail the architecture and cover how it maintains cor-
rectness in Section 4. We discuss additional challenges of orbital deployment in Section 5. The
evaluation is set up in Section 6, and the results are reported in Section 7. Finally, related work is
discussed in Section 8, and we conclude the article in Section 9.

2 NON-VOLATILE PIM

Any non-volatile memory technology can be used as a PIM substrate, including RRAM [142] and
PC-RAM [73]. In this work, we focus on Magnetoresistive RAM (MRAM) [97, 139], which fea-
tures both high density and high endurance. Due to its nearly ideal properties, MRAM can even
be considered as a universal memory replacement [29] and a few commercial products are already
available [1, 2]. Spin-torque transfer (STT) MRAM uses the magnetic tunnel junction (MTJ)

as its memory element and each memory cell contains one MTJ and one access transistor.
STT-MRAM arrays can be minimally modified to enable PIM. An example is Computational

RAM (CRAM) [17], which MOUSE [107] is based on. It has a unique advantage in that it does not
require sense amplifiers or any digital circuitry in the array periphery to perform computation.
The structure of CRAM supports Boolean logic operations directly within the memory, simply by
adjusting voltage along the bitlines (to logic function specific levels). The computation remains
entirely inside the array at all times. In this work, use two variants of CRAM, an optimized version
of the standard STT [108] and an extension that increases energy efficiency with a spin-Hall

effect (SHE) channel [153].
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Fig. 1. MTJs connected for a two-input logic gate. Fixed (free) layer is colored in grey (light blue).

2.1 Magnetic Tunnel Junctions

MTJs are the resistive memory elements used by STT-MRAM. MTJs consist of two magnetic layers
(a fixed layer and a free layer) separated by a thin insulator. The polarity of the free layer can
change, but the fixed cannot. If the two magnetic layers are aligned (referred to as the parallel

(P) state), then the MTJ has low resistance and is assigned the logic value 0. When the layers
are not aligned (the anti-parallel (AP) state), the MTJ has high resistance and is assigned logic
value 1. The MTJ changes state if a (relatively) large amount of current is passed through it. The
state it transitions to is determined by the direction of the current. If electrons flow from the
free (fixed) layer to the fixed (free) layer, then the MTJ switches to the AP (P) state. The current
required to change the state is referred to as Iswitch . A current greater than or equal to Iswitch

induces switching and a current below Iswitch leaves the state as is. The voltage required to induce
switching can be referred to asVswitch , and is determined byVswitch ≥ Iswitch×RMT J , whereRMT J

is the resistance of the MTJ. Hence,Vswitch also depends on the state (P or AP) of the MTJ. As will
be discussed in Section 5.1, the operating temperature has a significant impact on this voltage.

To read the value of the MTJ, a voltage below Vswitch (to avoid switching) is applied across
it. The amount of current that passes through it is a function of its resistance (state), which gets
detected by a sense amplifier. To write, i.e., change the state of the MTJ, a voltage higher than
Vswitch is applied across it. This induces a sufficient amount of current to change the MTJ state.

2.2 Logic Operations with MTJs

MTJs can be used to perform logic operations if they are connected together in a circuit. An ex-
ample of a circuit that can perform a two-input logic operation is shown in Figure 1. Two input
MTJs are connected in parallel, which are in series with an output MTJ. Before performing the
logic gate, the two inputs can be in any state. However, the output MTJ must be preset to a known
value. After the logic gate is performed, the state of the output MTJ changes as a function of the
two input MTJs, following the truth table of the corresponding logic gate.

For example, a NAND gate requires the output to be preset to 0 (low resistance). A voltage is
then applied across the terminals V1 and V2, such that electrons flow from the input MTJs to the
output MTJ. If both inputs are 1 (high resistance), then the current is sufficiently low to prevent
switching of the output MTJ, which will remain at 0. If either of the inputs is 0 (low resistance),
then there is enough current to induce switching of the output MTJ. As electrons are flowing from
the free layer to the fixed layer of the output MTJ, it can only switch to 1.1 Hence, the output MTJ
reflects the logical NAND of the two inputs; 0 if both are 1, and 1 if either is 0.

Different gates, such as NOT, AND, and N(OR) can be performed by changing the number of
inputs, the direction of the current, and the preset of the output. Sequences of these gates can be
used to perform more complex operations. For example, a full-adder can be implemented using 9
NAND gates. Multi-bits additions and multiplications can be performed using sequences of full-
additions. As the gate set is universal, any computation can be implemented.

1Due to the direction of the current, the output MTJ can only switch to 1 and cannot switch back to 0.
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Fig. 2. Four cells in two columns and two rows in 1T1M

(one access transistor, one MTJ) STT configuration.
Fig. 3. Demonstration of two-input gate

performed within the array.

2.3 STT Array Architecture

The optimized STT variant of CRAM is nearly identical to a standard STT-MRAM array [108].
Four cells located in two adjacent rows and columns are shown in Figure 2. It has one MTJ and
one access transistor in each cell. A standard STT-MRAM array contains two bitlines (typically
referred to as bitline and bitline bar). CRAM has three bitlines per column, bit line even (BLE),
bit line odd (BLO), and the logic line (LL). BLE connects to even rows and BLO connects to odd
rows (where even or odd refer to the parity of the row number). LL connects to all rows through
the access transistors. The existence of three bitlines is essential for enabling computation, which
is explained below. As with standard STT-MRAM, there is a wordline (WL) in each row that
controls the access transistor. We now describe how memory and logic operations are performed
in the array.

Read: To read from row n, activate WLn. Apply a voltage differential, Vr ead , across LL and the
BLE/BLO. Current can be sensed on the bitlines. Vr ead should be lower than Vswitch .

Write: To write to row n, activate WLn. Apply a voltage differential, Vwrite , across LL and the
BLE/BLO. To write 0 (1), the voltage on BLE/BLO should be higher (lower) than on LL. Vwrite

should be larger than Vswitch .
Logic Operation: To perform a logic gate with two inputs in rows n1 and n2, and the output in

row m, preset row m by performing a write.2 n1 and n2 must have the same parity (i.e., both even
or both odd), and m, the opposite. Activate WLn1, WLn2, and WLm. Apply a voltage differential,
Vloдic , across BLE and BLO. Due to the parity requirement, in Figure 1, if V1 is connected to BLE,
V2 must be connected to BLO, and vice versa. LL connects the free layers (in light blue) of the input
and the output MTJs. Current travels from one bit line (either BLO or BLE, depending on the parity
of the input cells), through the MTJs in rows n1 and n2, through the LL, through the MTJ in rowm,
and back to the other bitline. Depending on the states of the MTJs in rows n1 and n2, the state of
the MTJ in row m will either change or not. Figure 3 shows how a NAND gate can be performed
inside the array.Vloдic must be within a specified range for each type of logic operation [108, 152].

Only one operation (read, write, or logic) can be performed in each column at a time. However,
operations can proceed in many columns simultaneously. The restriction is that (within a single

2This write needs only to be performed if the initial state is different than the corresponding preset value.
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Fig. 4. An MTJ integrated with a spin-Hall effect (SHE) channel has separate read and write paths.

array) it should be the same operation (i.e., type of logic gate) on the same row designation for
inputs and outputs. For example, a NAND gate can be performed in all columns with the inputs in
rows n1 and n2 and the output in rowm.

It may be desirable to perform computation in all columns, or in just a subset of columns. The
peripheral circuitry determines which columns participate in every operation. The mechanism for
activating columns is covered in Section 3.3, and the instructions that control column activation
are covered in Section 3.4.

Effectively, each column acts as an independent thread that has access to the memory cells
within the column. This is highly analogous to the SIMD lanes of a GPU architecture, where each
lane (column) performs the same operation on different data. The active columns act like the bit-
mask in a GPU, where only the active subset columns perform the operation. However, each col-
umn can only perform Boolean logic gates (whereas a GPU has full access to an ALU). Complex
arithmetic/logic translates into performing a sequence of Boolean gates in each column, where
each gate operation can proceed in parallel, in a lock-step fashion. Hence, computations in each
column are relatively slow, but performance is achieved via a high degree of parallelism.

2.4 SHE Array Architecture

The energy efficiency of MTJ write and logic can be significantly improved by utilizing a SHE
channel [153]. SHE channels are compatible with both CMOS and MTJs and prototypes have been
successfully demonstrated [36]. Proposed memory technology based on this same technology is
called spin-orbit torque (SOT) MRAM [36, 97].

The SHE channel provides a more efficient mechanism for switching the state of the MTJ. An
MTJ augmented by a SHE channel is shown in Figure 4. There are two current paths through the
device. For the write path, current passes only through the SHE channel. Despite not travelling
through the MTJ body, this current can change the MTJ state. As a result, a lower current density
is required and the voltageVwrite can be lowered. This benefit also extends to logic operations and
Vloдic However, the read path is still through the MTJ body, and read operations remain the same.

Four augmented cells in two rows and two columns are shown in Figure 5. For the SHE design,
there are two word lines per row, word line for read (WLR) and word line for write (WLW).
WLR connects the cell to the read path, via tr ead . WLW connects the cell to the write path, via twrite .
twrite connects the SHE channel directly to LL, allowing current to bypass the MTJ body. twrite

is activated when the memory cell is being written, or when it is the output of a logic operation.
tr ead connects one end of the MTJ to LL, causing current to travel through the MTJ body. tr ead is
activated when the memory cell is being read, or when it is an input of a logic operation.

The energy efficiency provided by the SHE channel is highly beneficial for beyond-edge devices.
Reducing the amount of energy per operation can reduce the total execution time (if the device
is limited by the available energy), as will be shown in the evaluation. Beyond energy efficiency,
the SHE channel also enables more robust logic operations. When performing logic with STT, the
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Fig. 5. Four cells in two columns and two rows in 2T1M SHE configuration.

resistance of the output MTJ is in series with the input MTJs (Figure 1). With SHE, only the SHE
channel is in series with the input MTJs. This makes it easier to distinguish between the resistances
of the input MTJs, reducing susceptibility to voltage fluctuations [153].

2.5 Memory-centric Architectures

Over the past few decades, CPUs have achieved larger speedups than memory technologies [44].
Consequently, memory has become the limiting factor for performance and energy efficiency. This
has been referred to as the memory wall, and has led to the development of technologies and
architectures performing computation closer to the memory to avoid data transfer bottlenecks.

Memory-array-based computing has been integrated into a number of accelerators, where it is
used in tandem with external dedicated hardware [123, 128, 140, 143]. In this type of architecture,
the memory array acts like a hybrid of scratchpad memory and logical units, rather than a tradi-
tional memory structure. A common approach is to use a cross-bar structure. Inputs are supplied
as voltages along the rows and results are processed by sense amplifiers on the columns, before
being passed to digital circuitry for non-linear operations [16].

In-storage processing (ISP) attempts to alleviate the memory wall for larger-scale computing
(e.g., in data centers) by integrating logic cores closer to the memory. These systems typically
deploy small processors or FPGAs near memory arrays, potentially on the same chip [58, 60, 62,
109, 131, 132].

Processing Near Memory has more fine-grained integration of computation and memory. It main-
tains standard memory structures but moves logic units to the array periphery [125]. In this ap-
proach, data is loaded from memory, computed on by nearby digital circuitry, and then stored back
into the array. Examples include the Hybrid Memory Cube [100] and TESSERACT [3].

PIM represents the extreme, where computation occurs in the memory itself. PIM technologies
include Pinatubo [76], which uses non-volatile memory, and Ambit [122], which uses DRAM. Both
of these require sense amplifiers to perform computation. Multiple rows in the memory are read
simultaneously. The sense amplifiers perform computation by discerning between different possi-
ble analog values. The results are then immediately written back. In contrast, the PIM architecture
we use, CRAM [17, 108, 151], performs the logic directly in the memory cells. As the data does not
have to be pulled to the array periphery, this has been referred to as true in-memory computing
[151].
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Fig. 6. Overview of MOUSE. Each memory array contains an array of MTJs, a row and column decoder, and

a non-volatile register storing the column bitmask. Sense amplifiers are required for reads but are not used

in computation. The memory controller contains non-volatile registers to maintain the architectural state.

3 MOUSE DESIGN

In this section, we describe the architecture of MOUSE and show how it is uniquely well suited
for beyond-edge deployment. MOUSE utilizes CRAM arrays and minimal support circuitry. The
computations performed in MOUSE are energy-efficient, highly parallel, and have an inherent ro-
bustness to intermittent operation. The basic architecture and operation semantics are the same
as our previous work [107]. However, we expand the instruction set, improve the method of acti-
vating memory to perform computation, and add hardware support for branch instructions.

3.1 Hardware Organization

Figure 6 shows the architecture of MOUSE. It consists predominantly of CRAM arrays.3 MOUSE
can afford to have a large number of arrays (and hence more memory than is typical for a beyond-
edge device) due to the ideal properties of MRAM. The memory arrays are not energy costly as
MRAM has near zero standby power. Hence, MOUSE does not have to worry about static power
with large memory capacity (as would be the case for SRAM/DRAM). Additionally, the area over-
head of MRAM is very small.4 For example, NVSIM [30] reports the size of a 64 MB STT-MRAM
array (nearly twice the capacity required by our largest benchmark) as 15.12 mm2. Commercial
products of 256 MB and 1 GB STT-MRAM memory manufactured by Everspin come in a packages
that are 130 mm2 [1, 2]. For reference, MSP430FR5994 micro-controller, commonly used as a sub-
component of beyond-edge devices [20, 39, 45–47, 114], consumes over 100 mm2. Additionally, as
computation is performed within the memory arrays, there is no need for an external processor or
area costly volatile memory (such as SRAM). Nearly the entire area budget of MOUSE is available
for memory arrays. Each CRAM array contains 1,024 rows and 1,024 columns. In addition to the
arrays, MOUSE requires the following minimal hardware to drive operations and maintain the
architectural state:

(1) A memory controller that reads, decodes, and issues instructions;
(2) A non-volatile register for the program counter (PC);

3Each array also contains a row decoder and column decoder.
4The SHE configuration consumes more area than STT because of the second transistor, which we detail in Section 6.

However, the area budget still remains modest.
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(3) A 128 byte data register (DR) that facilitates reads and writes;
(4) Two non-volatile registers, BR1 and BR2, for branch evaluation;
(5) Voltage sensing circuitry for monitoring the power source.

Minimal hardware is required for the memory controller.5 With the exception of resolving
branches (covered in Section 3.4.4) and updating architectural variables, its sole responsibility is
repeatedly reading instructions, decoding them, and broadcasting them to the CRAM arrays. We
use a highly simplified instruction set, covered in Section 3.4, hence decoding requires very little
computation. The DR is the same size as one row of the MOUSE arrays and is used for interme-
diate storage when transferring data to and from different arrays. BR1 and BR2 hold data near
the memory controller, enabling quick comparison tests for branch resolution. Finally, the voltage
sensing circuitry is standard in beyond-edge devices and is as described in Reference [80].

3.2 Row Activation

In standard memory, a row decoder activates wordlines for read and write operations. As described
in Section 2.3 and depicted in Figure 3, logic operations require the activation of multiple rows (up
to three) simultaneously. To avoid increasing complexity of the row decoder, we use a latching
mechanism that holds wordlines high after a row activation [76]. In this manner, the row decoder
can activate rows sequentially with normal operation. The hardware cost is two transistors per row.
Additionally, each logic operation must wait for the three sequential activations, which increases
latency.

3.3 One-hot Column Decoder

Typically, it is desirable to drive logic operations in every column simultaneously. However, it is
frequently preferable to perform computation only in a subset of the columns, leaving data in other
columns unperturbed. Hence, in addition to a row decoder, we also need a column decoder that
will select which columns participate in each operation.

Column activation patterns are different than for rows. With rows, 1–3 rows are activated for
every instruction, and the rows that are activated are typically different for each consecutive in-
struction. When it comes to column activation, typically many columns are activated simultane-
ously (commonly all columns or a large subset). Additionally, columns tend to remain active for
long periods of time—(de)activating columns is a rare event.

The original MOUSE design relies on a decoder that allows bulk addressing [107, 122]. Activation
for the column decoder follows the same semantics as for the row decoder, except that there are
reserved addresses that correspond to groups of columns, and up to 5 column addresses can be
specified simultaneously [107]. In this work, we propose One-hot bitmask decoding to reduce the
complexity of the decoder.

Rather than an address, a bitmask is supplied to the column decoder. In a 1:1 bit to column
scheme, each bit indicates whether a specific column should be activated or not. The bitmask
is stored in a 1,024-bit non-volatile register (corresponding to the 1,024 columns in each array)
within each CRAM array. We call this register the column bitmask register (CBR). The CBR can
be written with a standard write operation. The advantage of One-hot bitmask activation is that
the column decoder complexity is low: no addresses need to be resolved. The activation signal of
each bit can be supplied directly to the columns. The disadvantage is that each activation of the
columns (if the column addresses are changing) must be preceded by a write operation to CBR.

5Our memory controller is a standard memory controller that has been augmented with the capability to read, decode, and

issue PIM instructions. We simply refer to it as the memory controller for the remainder of the article.
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Fig. 7. MOUSE instruction formats. There are three types of instructions, logic, memory, and an additional

activate columns instruction for configuration. Opcodes are 5 bits; array (tile) addresses, 9 bits; and row

addresses 10 bits each. Branch offset is 20 bits. Remaining bits are used by instructions that use an optional

immediate value.

It is possible to use different bit-to-column ratios. Fore example, a 1:32 scheme could be used,
where each bit activates a consecutive set of 32 columns. This would allow a 32-bit mask to activate
all 1,024 columns. The drawback is reduced flexibility as such a bitmask cannot activate less than 32
columns at a time. If computation requires less than 32 columns, then additional (and unnecessary)
operations will be performed in all 32 columns. This wastes energy. As a 1,024-bit bitmask is easily
handled by the CBR, we maintain a 1:1 ratio.

3.4 Instructions

Instructions for MOUSE are 64-bit and have the formats shown in Figure 7. There are four cate-
gories of instructions, which we explain here.

3.4.1 Memory Instructions. Reads and writes are the standard memory operations, but have
additional overhead due to support for intermittent operation. The DR is a non-volatile register
the same size as the rows of the CRAM arrays (128B) that holds data between read and write
instructions. A read instruction reads from a CRAM array (at the specified address) and writes the
data into the DR. A write instruction reads data from the DR and writes it into a CRAM array
(at the specified address). Hence, if there is a power interruption between consecutive reads and
writes, the DR will maintain the data being transferred—circumventing the need to re-perform
the prior read operation. In addition to memory operations that use the DR, there is also a write
immediate instruction, which allows instructions to write data directly into memory.

3.4.2 Logic Instructions. Logic instructions correspond 1:1 with logic gates (as covered in Sec-
tion 2.2). For example, NOT, (N)AND, and (N)OR are all individual instructions. The instruction
specifies the CRAM array address the operation is to be performed in and the row addresses of
the logic gate (which rows the inputs and outputs reside in). NOT requires two row addresses
(1 input, 1 output) and all others require three row addresses (two inputs, one output). For exam-
ple, a NAND instruction may specify that it is to be performed in CRAM array 15, with inputs in
rows 7 and 9, and the output in row 12. We restrict logic operations to at most two inputs, which
are shown to be reliable [108, 152]. As COPY, XOR, and XNOR gates are not natively supported
in CRAM, there are only five unique logic instructions. Analogous to vector instructions, many
logic gates can be performed in parallel (triggered by a single instruction), as long as their inputs
and output reside in the same rows. The number of parallel gates depends on which columns are
active, discussed in Section 3.4.3.

The CRAM array address can specify a single array, or multiple arrays with bulk addressing
[122]. There are reserved memory addresses that correspond to groups of memory arrays. For
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example, it may be desirable to trigger an operation in all CRAM arrays. We designate array address
111111111 as a reserved address, to send an instruction to all arrays.

3.4.3 Activate Columns Instruction. It is necessary to specify which columns should participate
in each operation. As noted in Section 3.3, consecutive operations typically use the same columns.
Hence, which columns to activate changes infrequently. To take advantage of this, we use a strat-
egy where columns are activated and then held active. All following logic operations will be per-
formed in the columns that are held active. To (de)activate columns, we use a dedicated instruction,
the activate columns (AC) instruction. As described in Section 3.3, the column decoder simply
activates the columns depending on the values in CBR. Hence, a column activation consists of two
components:

(1) A write to the CBR (set);
(2) Triggering of the column decoder to activate the corresponding columns (activate).

Typically, an AC instruction handles both components. However, when restarting the device it is
only necessary to do the second. Hence there are two variants of the AC instruction, one that does
both parts (set and activate) and one that only does the second (activate).

The write to CBR acts like a standard write. As noted in Section 3.4.1, a write can use the value
in the DR or an immediate field in the instruction. Hence, there are a total of three unique versions
of the AC instruction:

(1) Re-activate: Activate using pre-existing value in CBR;
(2) Set and Activate: Use data in DR to set CBR and then activate;
(3) Set and Activate (Immediate): Use data in the immediate field of instruction to set CBR and

then activate.

3.4.4 Branch Instructions. Branch instructions involve an update to the PC in the event a logical
condition holds true. As the logic required to evaluate the condition (e.g., checking equality of two
numbers) is not complex, it can be implemented efficiently within the memory controller.

Non-volatile registers, BR1 and BR2, reside in the memory controller and are used for condition
evaluation. We support simple standard branches based on BR1 and BR2:

(1) beq BR1 BR2: branch if BR1 and BR2 contents are equal;
(2) bge BR1 BR2: branch if BR1 is equal or greater than BR2;
(3) beqz BR1: if BR1 equal to 0.

Hence, the memory controller evaluates a simple condition based on BR1 and/or BR2 and updates
the PC accordingly. Additional instructions are required to write values to BR1 and BR2. This
follows the same semantics as writing to the CBR. A dedicated instruction writes to BR1 or BR2,
and the value can come either from the DR or an immediate field in the instruction.

Branch instructions increase programmability by enabling function calls, repetitions of com-
putational blocks, and handling I/O events. However, as the computation for branch instructions
happens in the memory controller, it cannot capitalize on the extreme energy efficiency and the
high degree of parallelism provided by the CRAM arrays. Therefore, efficiency tends to decrease
with larger share of branch instructions in the instruction mix.6

3.4.5 Compilation. Compiling high-level code to MOUSE instructions (or any PIM substrate)
requires knowledge of the PIM hardware to make efficient use of available parallelism. This is

6Avoiding branch instructions is easy for machine learning applications. For our benchmarks, we do not need any branch

instructions during a single inference pass. Branches are used only to repeat inference or to handle I/O.
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similar to compiling Open-CL or CUDA code for GPU architectures. Unfortunately, no equivalent
standard software compiler exists for PIM. There is a rich design space, where a multi-dimensional
trade-off exists between efficiency, area, power, and performance. Higher degrees of parallelism
are possible by spreading computation out over more columns. However, this increases power,
consumes more area, and adds communication overhead, which reduces energy efficiency. Our
strategy rather is to minimize area by using as few columns as possible, to maximize energy effi-
ciency. Our data layout is similar to a number of other works that have mapped applications to
PIM substrates [76, 122], including machine learning algorithms [108].

3.4.6 Issuing Instructions. While operations can occur in multiple arrays simultaneously, arrays
do not operate autonomously. All operations are triggered by the memory controller (discussed
in more detail in Section 4). Effectively, there is a single controlling “thread,” and hence there are
no concurrency concerns between individual arrays. CRAM arrays in MOUSE hold both data and
the instructions. For clarity, we categorize arrays into instruction arrays and data arrays based on
their contents. However, as all arrays have identical hardware, arrays can be re-categorized to fit
the programmer’s needs.

Instructions and required data are written into the arrays prior to deployment. During operation,
the memory controller repeatedly fetches an instruction from the instruction arrays, decodes it,
and then broadcasts it to the data arrays. Instructions are performed entirely sequentially. The next
instruction does not start until the previous has finished. This is to guarantee correctness, which
we will cover further in Sections 3.6 and 4.

Generally, different instructions can take different time to complete. This is mainly because in-
structions can activate different numbers of rows. To guarantee that all instructions complete in
time, for each instruction, the memory controller conservatively allocates as much time as the
the longest instruction takes before starting the next instruction. This time lapse forms a cycle.
This conservative approach to issuing instructions comes with a performance cost, as opposed to
a more complex event-driven strategy. We opt for the conservative approach for three reasons:
(1) MOUSE already delivers higher performance than representative alternatives for beyond-edge
computing (as we cover in Section 6), hence aggressive optimization is unnecessary. (2) Complex
issue logic would be less energy-efficient and make it more difficult to guarantee correctness under
intermittent operation. (3) Simplicity is a strength for beyond-edge devices. In the end, energy effi-
ciency (rather than high performance hardware) is the limiting factor for performance beyond the
edge [40]. Designs consuming less energy complete programs faster, because they spend less time
waiting for the harvested energy to reach sufficient levels for forward progress in computation.

3.5 Power Draw

As power sources for beyond-edge devices are highly variable, it is undesirable to connect them
directly to the compute circuitry. A solution is to utilize an energy buffer (capacitor), which is
charged by the power source. The device can consume energy from this buffer, without having
to match the power supplied from the source in real time [82]. Power delivery systems such as
Capybara [20] are specifically designed to harvest energy and reliably power beyond-edge devices
in this manner. Because MOUSE uses such an energy buffer, it accumulates energy over time and
consumes it in bursts. This allows MOUSE to consume more power during its power-on time than
the power source provides. At the same time, it is possible to program MOUSE to fine-tune its
power consumption. Instructions determine the degree of parallelism, i.e., the number of active
columns. Higher degrees of parallelism, i.e., many active columns, result in higher By controlling
the number of active columns on a per instruction basis, the programmer can explore the power
versus performance trade-off.
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3.6 Intermittent Processing

Beyond-edge devices are powered by unreliable sources and must frequently shutdown. A key
challenge is maintaining program correctness during frequent power cycles, which is referred to
as intermittent processing. Energy is a precious resource for beyond-edge devices, and any energy
spent on guaranteeing correctness would not be available for normal program execution. Hard-
ware for intermittent computing is therefore tightly constrained by energy efficiency in providing
a correctness guarantee.

Previous work covers sophisticated software and hardware strategies for intermittent process-
ing on more traditional architectures [19, 38, 90, 111]. MOUSE operates in significant contrast to
these strategies, in that MOUSE is able to checkpoint after every instruction and still maintain
correctness with extremely limited additional hardware, which boils down to only a valid copy of
the PC and an additional non-volatile status bit. This strategy is extremely simple and would be
crude for more traditional architectures, while more conventional, more sophisticated or complex
strategies are unsuitable and unnecessary for MOUSE.

As MOUSE performs the computation in non-volatile memory, progress is automatically saved
after every operation and MOUSE can checkpoint after every operation with very low overhead.
Hence, there is no additional backup operation required, which typically represents a complex task
of very high overhead in traditional systems. Specifically, when MOUSE restarts, only two pieces
of information are required:

(1) the last instruction that was completed (valid value of the PC),
(2) which columns were active,

where the memory controller writes (checkpoints) the PC into a non-volatile register after the
completion of every instruction. We provide a detailed discussion on the correctness of the PC in
Section 4.2.

In the worst case, MOUSE loses power after an instruction is completed, but before the PC can
be updated and saved. When power is restored, MOUSE re-issues the same instruction, performing
it for a second time. However, this does not break correctness as the same result is obtained if a
single instruction is repeated multiple times, i.e., each such repetition is idempotent [49, 136], as
covered in Section 4.1. The only requirement is that the PC checkpointing happens strictly after
each instruction is performed.

Checkpointing after every instruction not only minimizes the work potentially lost on shutdown
but also simplifies the restart process. The correctness guarantee comes from each operation being
idempotent, which does not apply to sequences of operations (over multiple instructions). This is
because the inputs to logic operations can be overwritten over the course of multiple instructions.
If we re-perform multiple instructions, then these input values may be incorrect. To guarantee cor-
rectness when repeating multiple instructions, software-level policies can help but incur additional
and unnecessary complexity for MOUSE.

The second requirement on restart is to restore the previously active columns. As the active
columns are stored in the CBR of each memory array, all we need is for the memory controller to
issue a re-active AC instruction. The column decoder in each memory array then re-activates its
columns and the memory controller can resume issuing instructions. We cover correctness during
intermittent operation in grand detail in Section 4.

3.7 System Integration

When performing the computation for inference, MOUSE is a self-contained system. Memory ar-
rays hold all the instructions and data and the memory controller drives operations. As a full-
fledged beyond-edge device, MOUSE is integrated with an energy-harvesting power source, a
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sensor to provide input data, and a transmitter. We assume that input data is stored in a non-
volatile buffer within the sensor. The sensor is given a memory address (as if it was a memory
array), where MOUSE can use read instructions to retrieve data from it. Additionally, the sensor
has a non-volatile valid bit, which indicates if new input data is ready. When MOUSE is ready to
receive new input data, it can check the valid bit and begin reading from the sensor and writing
the data into the MOUSE data arrays. These reads and writes are controlled by instructions in the
instruction arrays, hence data transfer is a software controlled (programmable) process.

When MOUSE finishes inference, the memory controller reads out the data from the arrays, and
writes it into a non-volatile buffer for the transmitter. This buffer, as well, is is given a memory
address (as if it was a memory array), where standard write instructions can be used. In this work,
we focus only on the accelerator and do not consider any overhead for the sensor or transmitter.

The programmability of the data transfer process is important. For example, it is possible that
MOUSE loses power during the process of transferring data in. If power is not available for an
extended period of time, then when MOUSE restarts there may be a new set of data in the sensor.
MOUSE can handle this with branch instructions. If the data in the sensor is timestamped, then the
first instruction in the transfer process can be used to copy the timestamp of the first data chunk
into BR1. The last instruction in the transfer process can be used to copy the timestamp of the last
data chunk into BR2. MOUSE can then check the equivalence of BR1 and BR2, and branch back in
case of a mismatch to the beginning of the transfer to overwrite old data.

4 INTERMITTENT CORRECTNESS GUARANTEE

Beyond-edge devices need to ensure program correctness in the presence of power outages. If not
handled carefully, then interruption due to power outage can corrupt the architectural state. In
this section, we show how MOUSE remains correct, even in the presence of unexpected power
outages. There are two crucial components: the correctness of individual in-memory operations
when interrupted or re-performed (Section 4.1) and the correctness of architectural state variables
in transitions between states (Section 4.2). As MOUSE checkpoints after every instruction, we
need to only show that each instruction and the transitions between instructions remain correct
when interrupted. In the following, we show that all instructions and transitions are idempotent

[49, 136], which means that they produce the same results, even if repeated multiple times. The
key to remaining idempotent is not over-writing data that is required on restart (or if the data
gets overwritten, it should be in a manner that does not change the computation outcome). The
architectural state variables and their protection mechanisms are listed in Table 2. Note that the
correctness guarantee covered in this section applies only to interruptions and power outages. It
does not cover errors in the computation itself or perturbations due to soft errors from radiation.

4.1 Operation Level Correctness

In this section, we cover the correctness of individual operations performed in the memory when
interrupted and re-performed. We assume the most general case, where the power can be cut
at any moment (unexpectedly). Hence, we need to consider all possibilities for when (during its
processing) an operation can get interrupted.

4.1.1 Logic Operations. All logic operations are threshold operations (the output MTJ either
switches or it does not). Hence, there are only two stages for each logic operation, pre- and post-
switching. In the following, we use an AND operation as an example. However, the observations
here apply to all gates.

To perform an AND gate, the output MTJ must be in the logic 1 (high resistance) state. Voltage
is applied across the two inputs and the output (as in Figure 1), such that electrons flow from
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Table 1. Four Possible Cases for Re-performing an Interrupted AND Gate

Output did not switch before interruption Output did switch before interruption

Output should not switch Input MTJs prevent the switching of the output
MTJ, both before and after interruption.

Not possible. Input MTJs prevent switching of out-
put MTJ. By construction, repetition cannot in-
duce switching.

Output should switch Inputs and output did not change prior to inter-
ruption. Second attempt has same inputs and will
produce correct output.

The output has already switched to 0 (correct out-
put). Second attempt has the wrong output preset
value. However, due to the direction of the current,
the output MTJ will remain at 0.

The output MTJ either should or should not switch for correct operation, and it either did or did not prior to the power

being cut.

Table 2. Architectural State Variables and How They Are Protected Under Power Interruptions

Variable Volatility Protection Mechanism

Program Counter Non-Volatile Duplicated, valid copy is read only

Parity Bit Non-Volatile Only flipped after instruction has finished. Flip is an atomic operation

BR1 and BR2 Non-Volatile Write operation guarantee (Section 4.1.2)

CBR Non-Volatile Write operation guarantee (Section 4.1.2)

DR Non-Volatile Read and Write operation guarantee (Section 4.1.2)

Active Columns Volatile Bitmask stored in CBR. Re-actived on restart with AC instruction (Section 3.4.3)

Active Rows Volatile Activated by every instruction

Data Non-Volatile Idempotent logic operations (Section 4.1), Read and Write operation guarantee (Section 4.1.2)

the fixed layer to the free layer of the output MTJ. This current can potentially change the state
of the output MTJ to 0. If either of the two inputs is 0 (low resistance state), then the current
becomes sufficiently high to switch the output to 0. If both inputs are 1, then the current is too
low and the output keeps its state of logic 1. We now consider what happens when this operation
is interrupted due to a power outage, and when we need to re-perform AND a second time once
power is restored.

Consider first the case where the output MTJ should not switch. This means that the states of
the input MTJs are preventing the output MTJ from switching. Hence, the output MTJ could not
have switched prior to the interruption. When we re-perform the operation, the initial states of all
MTJs are the same. This is identical to performing AND the first time, and again the output MTJ
does not switch.

Now consider the case where the output MTJ should switch. In this case, there are two possibil-
ities: (1) The output MTJ did not switch before the interruption and, (2) the output MTJ did switch
prior to the interruption. For possibility (1), when re-performing the operation, the initial states
of all MTJs are the same. Hence, performing AND the second time is identical to performing it the
first time (minus the interruption). The second time, the operation finishes, and the output MTJ
switches as desired. In possibility (2), the MTJs do not keep their initial state: the output MTJ has
already switched to 0, whereas it should be preset to 1. Still, the AND operation remains correct
when performing it a second time. This is because the current applied can only cause the output
MTJ to switch to 0, it cannot revert it back to 1. Hence, after performing AND a second time, the
output MTJ will remain in the 0 state, as desired.

All four possible cases are listed in Table 1. The catch here is that repeating a logic gate is
effectively the same as performing the gate for a longer duration. Doing so results in an identical
outcome, whether the output MTJ switched before interruption (i.e., power outage) or not.

4.1.2 Memory Operations. Re-performing a read operation has no effect on the read data, read-
ing it a second time will produce the same results. Re-performing a write will overwrite whatever
was written the first time. If the write was not successful the first time (due to interruption), then
it will be successful the second time. If the write was successful the first time, then the same value
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will be written twice. As noted in Section 3.4.1, read (write) instructions can involve a write to
(read from) the DR. These are protected by the idempotency of both read and write operations—a
memory operation does not write to any address/register that it also reads.

4.1.3 Column Activation. Column activation involves a write to the CBR in a data array and
then a triggering of the column decoder. The write to the CBR is kept correct by the same semantics
as memory operations (a write can be performed multiple times). The column activation by the
column decoder does not change any non-volatile data and hence cannot introduce corruption.
The volatile state is entirely lost on shutdown and will be overwritten on restart.

4.1.4 Summary. Power interruptions can waste energy (due to re-performing instructions) but
cannot corrupt the data in memory. Idempotency of all instructions guarantees that they produce
the same results, even if performed multiple times. Moreoever, idempotency is not required beyond
a single instruction as only one instruction is performed between each checkpoint.

4.2 Maintaining Correct State

The previous section showed that the individual operations performed in the memory are
idempotent. This is necessary but not sufficient for correctness. MOUSE has to guarantee that the
memory controller can drive the operations and maintain the architectural state in an intermittent
safe fashion.

4.2.1 Memory Controller. The memory controller repeatedly reads instructions from the in-

struction arrays, decodes them, and broadcasts them to the data arrays. The memory controller
waits for a sufficient time for each instruction to complete before updating the PC. The PC must
be stored in a non-volatile register to prevent loss on shutdown. However, concern remains if the
update to the PC gets interrupted. If power is lost during a write to the PC register, then it can be
corrupted—resulting in incorrect behavior on startup.

We circumvent this issue by maintaining two PC registers, PC0 and PC1, and an additional non-
volatile parity bit. If the parity bit is 0, then PC0 is valid, and if the parity bit is 1, then PC1 is valid.
When the memory controller updates the PC, it takes the value in the valid PC register, updates
it accordingly, and stores it into the invalid PC register. Then it flips the parity bit, indicating the
advancement to the next instruction. Therefore, the memory controller never writes to the valid
PC register, and there is no risk of corruption.

The setting of the parity bit is analogous to the committing of an instruction in traditional
architectures. As the parity is a single bit, the operation is atomic and cannot be interrupted mid-
way through. The parity bit either is set or not. If an interruption occurs before the parity bit
is set, then the memory controller re-issues the same instruction on restart, which is safe to do
(Section 4.2.2). If the interruption occurs after the parity bit is set, then the instruction is completed
and the memory controller issues the next instruction on restart, as depicted in Figure 8.

There are other non-volatile registers that hold the architectural state. These include the DR,
branch registers (BR1 and BR2), and the CBR in each array. These registers are protected by the
same semantics as in Section 4.1.2. Updates (i.e., writes) to these registers are guaranteed to be
completed before the memory controller commits the corresponding instruction. No register is
both read and written by the same instruction, so no required data can be corrupted.

Active columns is part of the architectural state. When MOUSE restarts, these columns need to
be re-activated. The non-volatile CBR in each memory array maintains the currently valid bitmask
for active columns. All that is required is for the column decoders to re-activate these columns. To
achieve this, the memory controller issues a re-activate columns instruction to all arrays on restart
(Section 3.4.3).
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Fig. 8. Memory controller’s state transitions to ensure the correctness of the program counter as MOUSE

transitions from one instruction to the next. Effect of interruptions are dashed and highlighted in red, cor-

rective measures in blue, and forward progress (guaranteed completion of an instruction) in green.

4.2.2 Data in Arrays. The previous section showed that the memory controller itself remains
correct during intermittent operation. We must also ensure that the memory controller does not
generate any signals that corrupt the data residing in the memory arrays.

The memory controller broadcasts instructions to the data arrays. This broadcast is not atomic,
and thus can be interrupted at any stage. However, all the operations that it can trigger are idem-
potent (Section 4.1), meaning they can safely be interrupted at any point in their progression. As
a direct result, the broadcast cannot cause corruption as its only effect is the initiation of the oper-
ation. Power can be cut before the broadcast reaches a memory array, while the operation is being
performed, or after the operation has finished—none of these cases can introduce error.

5 IMPACT OF ORBITAL DEPLOYMENT

An exciting domain for beyond-edge devices is LEO, where they can act as nanosatellites [83].
One aspect of LEO deployment is that the cost of communication becomes much greater than
computation (even more so than for terrestrial deployment) [39, 83]. MOUSE is especially well
suited for LEO deployment as it has a much larger memory capacity relative to other beyond-
edge devices as MOUSE nearly entirely entails high density non-volatile memory. Due to the large
memory capacity, MOUSE can go long periods of time without offloading data. However, orbital
deployment also introduces challenges related to operating temperature and radiation. We discuss
here how MOUSE can tolerate such conditions.

5.1 Temperature

Satellites in LEO can experience a wide range of temperatures, from −170◦C to 123◦C [74]. Main-
taining the proper temperature on large scale satellites is an important engineering challenge [9].
Nanosatellites, however, typically do not have sufficient resources for any temperature modula-
tion yet they need to operate properly across a wide range of temperatures. Non-volatile memory
characteristics are very sensitive to temperature [106], which further challenges this situation for
MOUSE.

MTJ resistance increases with decreasing temperature, to the extent that the resistance at
−170◦C can be 30% higher than at room temperature [71, 147]. This increases the voltage required
to write MTJs, and consequently, energy consumption. The SHE architecture is less sensitive than
STT, as the SHE channel is metallic (to be more specific, the resistance does not increase with
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Fig. 9. Voltage ranges for correct operation of each logic gate at different temperatures, room temperature

(27◦C), Cold (−170◦C), and hot (123◦C).

decreasing temperature). Therefore, write operations with SHE remain largely unaffected. How-
ever, SHE still requires current to travel through the body of input MTJs for read and logic opera-
tions. Hence, the overall energy efficiency of SHE still decreases. As a result, PIM using MTJs (or
other non-volatile technologies, as well) is less energy-efficient at cold temperatures [106]. How-
ever, the change is modest, within approximately 10% more energy consumption (relative to room
temperature), even at cryogenic (77K) temperatures [106]. Given that MTJs are extremely energy-
efficient [151, 153], this increase in energy consumption remains tolerable. Additionally, there is a
benefit of cold temperature. The ratio between the high and low resistance state increases [71, 150].
This leads to more robust logic gates, which are less susceptible to voltage fluctuations [108, 152].

The inverse is true at high temperatures. The overall MTJ resistance and the ratio between
the high and low resistance states are both lower. MTJ resistance at 123◦C is roughly 86% of its
resistance at room temperature. This translates into more energy-efficient MTJ logic gates, which
at the same time are more susceptible to voltage fluctuations. The latter challenges the power
delivery system. Power systems such as Capybara [20] become necessary to ensure that the proper
voltage is applied across a variety of temperatures. Switched-capacitor voltage converters [59, 103,
103] can generate necessary voltages to facilitate correct operation. We cover the overhead of
voltage generation/conversion in Section 6.

In contrast to the resistive memory, the peripheral circuitry in MOUSE benefits from cold tem-
peratures. At colder temperatures CMOS transistors have higher ON current [147], switch faster
[99], feature a higher trans-conductance, and incur a lower leakage current due to a steeper sub-
threshold slope [124]. However, MOUSE does not benefit significantly from these characteristics.
This is because the non-volatile memory already has extremely low static power, and the latency
is limited by the switching time of the MTJs. CMOS performance can degrade with increasing
temperature due to increased leakage current, while typical CMOS devices can operate well up to
175◦C [61]. Radiation hardened bulk CMOS technology can increase this range further to 250◦C
[61, 81]. Hence, CMOS technology is well suited to operate within the expected temperature range
of LEO satellites. We discuss the overhead of our CMOS components further in Section 6.

5.1.1 Voltage Margins. Logic operations with MTJs discussed in Section 2.2 require proper volt-
ages to be applied across the inputs and output. Correct operation can only be the case if each
gate-specific voltage is within a specified range [108, 151]. The required voltage depends on the
logic operation (which determines the number of inputs and the output preset), the resistances of
the MTJs (RP and RAP ), and the switching current (Iswitch ). Because the MTJ resistance changes
as a function of the temperature, the proper voltage ranges do, as well. Figure 9 shows the voltage
ranges for different logic operations at different temperatures. MTJ resistance is higher at cold
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temperatures, making the required voltages higher. At high temperatures, the MTJ resistance is
lower. In addition to the voltages being lower, the ranges are also smaller. This reduces the margin
for error in the voltage supply. MOUSE relies on a power delivery system that can reliably supply
the appropriate voltage. This becomes an even more challenging task considering temperature
fluctuations.

5.2 Radiation

Radiation can cause errors in electrical circuits. When a stray energetic particle strikes the hard-
ware, it induces a voltage spike that can travel along the circuit and potentially alter output volt-
ages or flip logical values [118]. Corrupted logic values give rise to soft errors. Technology scaling
already makes any circuit ever more susceptible to soft errors [145]. However, when deployed in
orbit, beyond-edge devices are exposed to significantly higher levels of radiation, which translates
into frequent particle strikes.

CMOS components of MOUSE (the memory controller and peripheral circuitry, respectively)
are susceptible to soft errors. Radiation can disrupt the CMOS logic in the memory controller or
the voltage supplied by the power delivery circuitry (required to drive logic operations in memory).
The consequences vary greatly depending on the location. The impact of soft errors in computation
will likely be minor due to the resilience of machine learning to noise. Hirtzlin et al. [50] showed
that frequent bitflips in binary neural networks implemented in STT-MRAM result in negligible
degradations in accuracy. However, a bit flip in the memory controller (corrupting the architectural
state) can lead to undefined behavior. For example, if the memory controller experiences an error
where it incorrectly updates the program counter, the device could attempt to read instructions
from invalid addresses. Such an error could permanently disable the device. Hence, hardening
MOUSE to radiation is imperative.

Many mitigation techniques exist for soft errors, which can be categorized into-system level,
device-level, or circuit-level [117, 118, 120]. As MOUSE must stay correct in transitions from
each instruction to the next (due to check-pointing after each instruction), and as increasing
complexity also increases the overhead for correctness guarantees, system-level mitigation is less
appropriate—i.e., soft errors should be caught before they manifest themselves at the system (ar-
chitecture) level. Additionally, MOUSE relies on pre-existing CMOS devices, making device-level
mitigation impossible.7 Hence, circuit-level mitigation is the most suitable approach.

MOUSE relies on switched-capacitor circuits to supply appropriate voltages to the memory,
which can be particularly susceptible to radiation. Circuit-level techniques can be especially help-
ful in this case, e.g., in the form of additional feedback paths to counteract the impact of particle
strikes [33]. Thereby, if a single path experiences a voltage spike (or drop), an alternate path can
take over to compensate. When properly designed, the impact on the final output can be mini-
mized even if a large disturbance is experienced at the input of a circuit. This comes at a cost in
area and energy efficiency due to the larger number of transistors per circuit.

MOUSE also relies on CMOS logic circuits within the memory controller to decode instructions
and send commands to the memory. CMOS logic can be hardened to soft errors with a variety
of circuit-level techniques. Redundancy can be added, either in space [98] (with area overhead)
or time [92, 95] (with latency overhead), where outputs are checked for consistency. Increasing
the node capacitance and transistor drive current (at a cost of area and energy) can also reduce
the electrical susceptibility to particle strikes [157]. More sophisticated strategies of lower area
overhead involve creating “transmission gates” between stages of a circuit, filtering out pulses
from particle strikes [70, 119, 156].

7A major exception is pre-existing properties of MTJ devices, discussed later.
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While MOUSE does critically rely on CMOS circuitry, the vast majority of MOUSE’s computa-
tion and all of its memory involve MTJs. Fortunately, MTJs are considerably more robust to soft
errors than alternative technologies While short-lived voltage pulses suffice to change the state of
CMOS circuits, MTJs require a significant current (a few microamps) for a sustained period of time
(a few nanoseconds) to switch states. Hence, particle strikes are highly unlikely to flip MTJ states.
In fact, MTJs are shown to be highly resilient to radiation from heavy ions [21, 66], neutrons [105],
protons [53], and gamma rays [53, 105]. Recently, Montoya et al. [94] demonstrated that MTJs are
even resilient to radiation that is 100× greater than what is observed on particularly harsh inter-
planetary travel [11, 154]. Therefore, MTJs represent leading candidates for space applications
[37, 65]. Since MOUSE consists mostly of MTJs, it is less susceptible to radiation than traditional
architectures. As only minimal CMOS circuitry is required external to the memory arrays, circuit
level strategies to increase CMOS resilience to radiation [157] incurs a relatively low overhead.

6 EVALUATION SETUP

Benchmarks: The exact use case of beyond-edge devices can vary significantly, applications
include agricultural monitoring [83, 137], security, and structural and environmental monitoring
[27]. However, general sensor processing algorithms can be used to solve a wide variety of prob-
lems. We use benchmarks that are representative for many possible use cases—machine learning
inference on data sets which are tenable for beyond-edge devices. The specific input problem will
vary depending on the user, however, the computation involved should remain highly similar.

We implement two machine learning algorithms, SVM and BNN. Both are widely used and
light weight, which makes them highly suitable for the beyond-edge domain. For both, we used
only operations that are efficient in MOUSE, all bit-wise and integer arithmetic. Machine learning
applications are well-suited for integer arithmetic as they remain robust under approximation.
Fixed-point representation using integer arithmetic is sufficient to achieve high accuracy [54]. We
designed customized SVM implementations and trained and tested them in R [102]. We were able
to achieve similar accuracy as standard SVM implementations from libSVM [14]. For inference,
the main computation is effectively performing the dot product between an input vector and each
of the support vectors. The results of these dot products are then squared, multiplied by a set of
coefficients, and finally summed together. By construction, SVMs have two class outputs, where
the sign of the output value is the classification. We extend to multi-class classification by training
a separate SVM for each possible output class, where each has the task of identifying a single class.
BNNs are neural networks that use neurons and weights represented by a single bit each [23]. This
enables multiplications to be replaced by XNOR operations and addition is simplified to a popcount
operation. This gives BNNs extreme energy efficiency. Previous work has efficiently mapped BNNs
onto FPGAs, including FINN [134] and FP-BNN [77]. We copy their network configurations exactly.
We modify the algorithms only in transforming them to run on our PIM substrate. Hence, our
accuracy is identical.

Data Sets: For small-scale image recognition, we use MNIST [72]. The task is digit recognition,
where a 28 × 28 pixel image with 8-bit precision is to be classified into one of ten digits (0–9). We
use both BNNs and SVMs on this benchmark. With SVM, the pixels are a 784 element vector. We
also create a binarized version, where pixels that have a value below 255/4 ≈ 63 are assigned 0 and
those above are assigned 1. This allows us to replace multiplications with AND gates, significantly
reducing the time, energy, and area overhead. For BNNs, we use the network configurations of
FPGA-based FINN [134] and FP-BNN [77]. FINN [134] uses binarized input, has three hidden layers
of 1,024 neurons (bits) each, and the output layer has 10 neurons with 10-bit precision. FP-BNN
[77] 8-bit inputs, has three hidden layers of 2,048 neurons each, and the output layer is 10 neurons
with 16-bit precision.
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Table 3. Parameters for MTJ Devices

Parameter Modern Projected

P State Resistance 3.15 kΩ 7.34 kΩ
AP State Resistance 7.34 kΩ 76.39 kΩ

Switching Time 3 ns [96, 113] 1 ns [55, 151]
Switching Current 40 µA [113] 3 µA [151]

Human Activity Recognition (HAR) [4] is a data set that has accelerometer and gyroscope
measurements from a smartphone, which is carried by participants performing a variety of activ-
ities. The problem is to classify the physical activity the individual is performing. Each input is a
vector of 561 elements. We convert the input to fixed point representation with 8-bit precision.

ADULT [67] contains census information. The problem is to classify whether an individual
makes greater than $50K per year or not. We use a reformatted version of the data set from libSVM
[14]. Each input is a 15 element vector where each element is an 8-bit integer.

Performance and Energy Model: We use an in-house simulator to evaluate MOUSE. We set
each array in MOUSE to 1,024 × 1,024, which is a recommended subarray size for non-volatile
memories from NVSIM [30]. Our simulator tracks all instructions issued by the memory controller
and accounts for the time and energy consumed by each. An instruction can consume energy by
performing the following actions:

(1) Reading the instruction from the instruction array.
(2) Sending the instruction to the data arrays.
(3) The activation of rows for computation.
(4) The activation of columns for computation.
(5) The switching energy of the MTJs in memory.
(6) Update of the program counter and parity bit

Items (1) and (6) always occur, while the remaining items occur depending on the instruction type.
All energy consumption comes either from the MTJ devices or from the peripheral circuitry. The
models for both are discussed below.

We simulate with both modern MTJ parameters [112] and with projections of MTJ parame-
ters expected to be possible within a few years [151, 153]. MTJs are expected to be significantly
more energy-efficient as the technology matures. Two techniques will enable a reduction in the
switching current, (1) decreasing the damping constant of ferromagnetic materials [31, 93, 116] and
(2) using a dual-reference layer structure [28, 51]. It is possible switching currents will be as low as
1 µA, however, we assume 3 µA to be conservative. The parameters we use are shown in Table 3.
For Modern MTJs, we use only the STT architecture, and for projected MTJs, we use both the
STT and SHE architectures. The benefit of SHE is providing a more efficient write mechanism. We
model the SHE channel as a 1 kΩ resistance. This provides a conservative estimate of SHE energy
efficiency.

Due to the different switching times of modern and projected MTJs, we clock MOUSE at different
speeds for each. With Modern MTJs MOUSE operates at 30.3 MHz clock rate (33 ns per cycle) and
for projected MTJs MOUSE operates at 90.9 MHz clock rate (11ns per cycle). This enables sufficient
time for instruction read, decode, and the peripheral circuitry latency and MTJ switching time.

For modeling peripheral circuitry, we take data from NVSIM [30], which reports the relative
overhead of peripheral circuitry for modern MRAM memory. We set the overhead of MOUSE so
that it consumes the same relative share of total latency and energy as reported by NVSIM.

We first evaluate MOUSE with continuous power (using a power source that can supply as much
power as MOUSE desires). Then, we evaluate with an energy-harvesting power source where
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MOUSE will have to operate intermittently. We model the energy harvester as a (small) constant
power source that is filling an energy buffer (capacitor). When MOUSE is off, the power source
charges the capacitor and the voltage will rise. When MOUSE is on, it will consume the energy and
the voltage will drop. MOUSE will shut off when the voltage hits a pre-defined minimum value,
hence the voltage on the capacitor will fluctuate within a specified range. When the voltage hits
the lower end of the range, power is instantaneously cut—MOUSE does not do any preparation
for the shutdown. We start all benchmarks with a capacitor that has voltage just below the cutoff,
hence all benchmarks begin with an initial charging time. Modern MTJs and Projected MTJs have
different operating voltages [151], so we use a different voltage range for each technology. We let
the voltage fluctuate between between 400 and 420 mV when using Modern MTJs and between
100 and 120 mV when using Projected MTJs. Switched-capacitor converters are used for upcon-
version and downconversion [43] to supply the required voltages for all operations. All required
voltages can be acquired by using conversion ratios of 0.75, 1, 1.5, and 1.75 [59, 103]. We eval-
uate MOUSE on the power supplied by the converter, the evaluation does not include regulator
efficiency overhead. The converter may have an efficiency anywhere between 35-80%, hence the
energy harvester may need to provide roughly 1.25–2.85× the energy that MOUSE consumes. As
noted in Section 3.4.6, a single instruction is performed in every cycle. A portion of the cycle must
be dedicated to changing the output voltage of the converter (if consecutive operations require
different voltage levels). The time overhead can be overlapped with the row activations.

It is desirable to match the capacitor size to the expected energy consumption. Hence, we also
use different capacitor sizes for modern and project MTJs. We use a 100 µF capacitor (energy buffer)
with Modern MTJs and a 10 µF capacitor for Projected MTJs. The optimal capacitor size depends
on the technology and the program being executed. When deployed, a system such as Capybara
[20] could be used to tune the parameters of the energy buffer.

Given that energy-harvesting power sources can vary significantly in how much power they
can provide, we sweep the power source over a wide range. At the low end, we test from 60 µW,
which is approximately what can be harvested from a 1 cm2 thermal energy harvester running on
body heat [64, 75]. This is well below the operating power of MOUSE. At the high end, we use
5 mW, which is the same power harvested by the beyond-edge device SONIC [39]. This can nearly
power MOUSE continuously. Beyond-edge devices deployed as satellites will likely use solar cells
as power sources [83]. The amount of power that can be harvested will depend on the size of the
cells (typically very small) and their orientation, which is likely to change over time.

Area Overhead: The CRAM arrays used in MOUSE have a similar area overhead as MRAM
arrays. The extra overhead of STT CRAM is an extra bit line per column, which is a minor im-
pact. For SHE CRAM, a second transistor and SHE channel is required in each cell, which has a
significant impact.

We base our cell area estimates on Zabihi et al. [152]. We use configurations where the access
transistors have a resistance less than 1 kΩ and give an extra 10% to account for spacing and
layout issues. The access transistors and MTJs can be placed on separate layers. As the transistors
are much larger, they dominate the area overhead. As the SHE architecture has twice as many
transistors, it is approximately twice as large. We use NVSIM [30] to estimate the area overhead
of peripheral circuitry. NVSIM reports the percentage of chip area that must be dedicated to the
peripheral circuitry for different memory sizes. We increase the area overhead for each benchmark
accordingly. Our conservative area estimates are shown in Table 4.

Impact of Temperature: MTJs have been demonstrated to function over a wide range of tem-
peratures [71, 150]. However, the MTJ resistance increases at colder temperatures, which will in-
crease energy consumption. We test MOUSE both at −170◦C (cold) and 123◦C (hot). To model the
impact on MTJs, we take data from Yuan et al. [150]. For cold temperatures, we conservatively
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Table 4. Area Required for MOUSE for

Different Benchmarks and Configurations

Total Modern Projected SHE
Benchmark Memory STT [152] STT [152]

SVM MNIST 64 MB 28.04 21.27 42.54
Binarized 8 MB 2.99 2.27 4.53

SVM HAR 16 MB 5.97 4.53 9.06

SVM ADULT 1 MB 0.39 0.29 0.58

BNN FINN MNIST 8 MB 2.99 2.27 4.53

BNN FPBNN MNIST 16 MB 5.97 4.53 9.06

Units are in mm2.

estimate the MTJ resistance increases by 30%. For the STT architecture, this increases the write,
read, and logic energy consumption by 30%. For SHE, the write energy remains unaffected as the
SHE channel (which is metallic) is use for write operations. However, energy consumption still
increases for read and logic operations. The CMOS circuitry will generally perform better at cold
temperatures, having a lower latency and potentially lower energy [99, 124, 147]. However, to
be conservative, we assume no additional efficiency of the peripheral circuitry. The latency im-
provement of CMOS does not benefit MOUSE as we choose to maintain the same clock rate across
temperature ranges. Hence, the latency of each instruction remains the same. At hot temperatures,
the MTJ resistance drops by approximately 13% [150]. We model this in an identical fashion to cold
temperatures, where we change the energy efficiency of each operation.

Impact of Radiation: As noted in Section 5.2, MTJs have an inherent resilience to radiation.
However, the CMOS components of MOUSE remain vulnerable. Errors in the CMOS circuits can
lead to undefined behavior. Hence, in order for MOUSE to work in orbital deployment, these errors
must be suppressed. Circuit-level strategies can make CMOS circuits resistant to soft errors [118,
157]. These strategies come with a power and delay cost. We choose to be conservative and assume
a large overhead. We assume a 60% increase in CMOS energy and a 10% increase in CMOS latency,
one of the largest overheads reported by Zhou et al. [157]. Hence, the performance and efficiency
of an orbitally deployed MOUSE will be reduced, relative to that of its counterpart designed for
terrestrial deployment.

Baseline for Comparison: We compare MOUSE with SONIC [39], a beyond-edge device that
performs machine learning inference on the same benchmarks we use. As SONIC was evaluated
at room temperature, we must estimate its performance at different temperature ranges. To be
conservative, we assume SONIC can fully exploit the benefit of CMOS operation at cold tempera-
tures, increasing performance by 30% [99]. We also assume it suffers no negative consequences of
varying temperature (hot or cold) and it pays no overhead resilience to radiation. We also compare
against estimates of the vector architecture MANIC [40]. We also give MANIC overly optimistic
assumptions, a 30% boost in performance and no overhead for temperature or radiation. MANIC
was not evaluated on end-to-end inference, rather on computational kernels required for inference
(i.e., convolution). Hence, we rely on rough estimates of its performance on the same benchmarks.
We follow the authors’ statement, that MANIC 9.6× more energy-efficient than SONIC [40].

7 EVALUATION

Continuous Power: Continuously powered MOUSE at room temperature and related work is
reported in Table 5. MOUSE implements both BNNs and SVMs. SONIC [39] is a beyond-edge device
that uses TI-MSP430FR5994 microcontroller to run neural networks on the same benchmarks. For
reference, our custom SVM implementation and optimized SVMs from libSVM [14] are run on a
Intel Haswell 5-2680v3 processor. To be conservative, we account only for the processor power
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Table 5. Continuously Powered MOUSE at Room Temperature (Using STT Design and

Modern MTJ Devices) and Related Work Under Continuous Power

Benchmark Latency (µs ) Energy (µJ ) #SV I/D Mem (MB) Area (mm2) Accuracy

SVM (CPU)

MNIST 169,824 5,094,702 11,813 — — 97.55

MNIST (Binarized) 192,370 5,771,085 12,214 — — 97.37

HAR (integer) [4, 133] 127,494 3,824,822 2,809 — 95.96

ADULT 4,368 131,052 1,909 — — 76.12

MOUSE SVM (Modern STT)

MNIST 23,116 1,700 11,813 4.5/30.0 28.04 97.55

MNIST (Binarized) 6,071 81.43 12,214 1.25/6.0 2.99 97.37

HAR (integer) [4, 133] 11,312 575.8 2,809 2.25/10.0 5.97 94.57

ADULT 1,104 9.06 1,909 0.25/0.5 0.39 76.12

MOUSE BNN (Modern STT)

MNIST (Binarized) FINN 1,605 18.04 NA 3.15/1.71 2.99 98.4

MNIST FP-BNN 2,150 125.4 NA 4.20/8.00 5.97 98.24

libSVM [14]

MNIST 7,830 234,900 8,652 — — 98.05

MNIST (Binarized) 19,037 571,116 23,672 — — 92.49

HAR (integer) 1,701 51,042 2,632 — — 93.69

ADULT 379 11,370 15,792 — — 78.62

SONIC [39]

MNIST 2,740,000 27,000 NA 0.256 >100 99

HAR 1,100,000 12,500 NA 0.256 >100 88

The CPU does not benefit from MNIST binarization as it still performs 64-bit integer multiplication.

Fig. 10. Latency (µs) vs. Power Source (W) for each MOUSE configuration and SONIC [39]. MOUSE at hot

temperature is shown in Red/Filled shapes and at cold temperature is shown in Blue/empty shapes.

consumption and assume it operates at its idle power. Overall, MOUSE has a significant energy
efficiency advantage and a competitive latency. Notably, MOUSE consumes more memory than
SONIC. However, this is reasonable as MOUSE consists nearly entirely of non-volatile memory,
which has high density. MOUSE does not require external logic or area costly volatile memory.

Intermittent Operation: We now evaluate MOUSE with intermittent computation, where
a small power source is charging a capacitor that MOUSE can draw energy from. The latency
(including time powered off) of all benchmarks with each MTJ device (and different operating
temperatures) over the range of power sources (60 µW–5 mW) is plotted in Figure 10, along with
a comparison to SONIC [39] and MANIC [40]. All MOUSE configurations are able to significantly
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Fig. 11. Latency/Energy Breakdown: Modern STT.

outperform SONIC for the same power budget. Despite conservative estimates of MTJ perfor-
mance, conservative estimates of peripheral circuitry, and very optimistic estimation of MANIC
across the temperature range (30% boost in performance and no overhead for temperature or
radiation) MOUSE has a similar performance with MANIC. On the MNIST data set, if MOUSE uses
8-bit inputs, then its latency is 0.91× (1.15×) that of MANIC at hot (cold) temperatures. On the
HAR data set, MOUSE has a latency that is 0.66× (0.83×) that of MANIC at hot (cold) temperatures.
Hence, MOUSE has better performance on average, with better results at warmer temperatures.

At cold temperatures MOUSE has a higher latency than when hot. At 60 µW, overall cold is
23.4% slower on average. While MOUSE has the same clock rate and issues instructions at the
same rate, the instructions consume more energy when cold. Hence, MOUSE will run out of energy
and have to power off more frequently. Temperature has a varying level of impact on each MTJ
technology. Modern STT has a 33.3% higher latency and Projected STT has 28.5% higher latency
at cold temperature, across all benchmarks. SHE is less effected by temperature, because write and
logic operations use the SHE channel, which is not only more energy-efficient but less affected by
temperature. SHE has an 8.6% higher latency across all benchmarks at cold temperature.

Independent of temperature, SHE is the most energy-efficient. Because of this it drains the capac-
itor less often, and hence has fewer power outages leading to the overall lowest latency. Projected
STT has a lower latency than Modern STT, as it can operate at higher frequency (11 ns per instruc-
tion versus 33 ns) and it is more energy-efficient.

MOUSE spends negligible amounts of energy while powered off. Hence, the energy consumption
is nearly independent of the power supply. The vast majority of the energy is dedicated to normal
program execution. A small portion is dedicated to overhead for intermittent execution, which
will vary depending on the number of interruptions (which is determined by energy efficiency
and the capacitor size). The total energy is plotted in Figure 11(b) for Modern STT; in Figure 12(b)
for Projected STT; and in Figure 13(b) for SHE; assuming a 60 µW power source.

There are metrics specific to beyond-edge devices that indicate how efficient the checkpointing
strategy is [115]. In addition to the total energy, we report the Backup energy, Dead energy, and
the Restore energy. Backup refers to any actions required prior to shutdown to save the state. For
more traditional architectures, this involves writing data back to non-volatile memory. For MOUSE,
the only backup operations are saving the PC, flipping the parity bit, and writing values into the
CBR (to indicate which columns are active). MOUSE does the first two on every instruction, and
the second only AC instructions. Dead refers to any computation that must be re-performed after
restart (which was lost due to the shutdown). For MOUSE, this is at most re-performing the very
last instruction. Restart is any actions required to put the device back into operating condition
after a shutdown. For MOUSE, this is the re-activation of columns with an AC instruction.

Backup has no associated latency, as MOUSE’s backup operations are overlapped with normal
program execution. However, we do report Dead latency, which is the time it takes to re-perform
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Fig. 12. Latency/Energy Breakdown: Projected STT.

Fig. 13. Latency/Energy Breakdown: SHE.

the last instruction, and the Restore latency, which is the time it takes to re-activate columns. To
remain efficient, the Backup, Restore, and Dead latency and energy should be low.

Overhead for Backup, Restore, and Dead are reported in Figure 11 for Modern STT; in Figure 12,
for Projected STT; and in Figure 13, for SHE. Note that the y-axis is log scale. The total energy
encapsulates all energy used for computation, as well as Backup, Restore, and Dead energy. Also
note the total latency is provided for all architectures in Figure 10—where the breakdown figures
capture the data for the 60 µW power source.

The overheads for Backup, Dead, and Restore increase with cold temperature. This is for two
reasons. The first is that the actions required for each will cost more energy due to the MTJ char-
acteristics. For exampling, writing the PC value or re-performing the last instruction will involve
MTJ operations, which will take more energy at cold temperatures. The second reason is that the
overall lower energy efficiency at cold temperatures leads to more power outages. At cold tem-
perature, across all benchmarks and technologies, MOUSE restarts 24.4% more often than at hot
temperatures. This increases the number of instructions that need to be re-performed and the
number of times architectural state variables will be saved.

Modern STT is the least energy-efficient, which means it must restart the most. Because of this
it has the largest relative Dead energy. At the extremely low power of 60 µW, on average, across
all benchmarks, Dead energy is 0.98% (1.09%) of the total energy at hot (cold) temperature. The
projected MTJs have lower overhead, where Dead energy (on average) becomes 0.796% (0.804%)
of the energy for Projected STT and 0.194% (0.323) of the total for SHE at hot (cold) temperatures.
Dead latency, however, is 0.068% (0.084%) of the total for Modern STT, 0.040% (0.050%) of the total
for Projected STT, and 0.020% (0.020%) of the total for SHE with hot (cold) temperatures. Restore
is only 0.013% (0.016%) of the latency and 0.066% (0.069%) of the energy for Modern STT; 0.008%
(0.010%) of the latency and 0.048% (0.049%) of the energy for Projected STT; and 0.0037% (0.0040%)
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of the latency and 0.0436% (0.0436%) of the energy for SHE with hot (cold) temperatures. As Restore
latency and energy is due to peripheral circuitry, SHE has no advantage over STT for an individual
restart. However, SHE still requires fewer restart operations due to its overall increased energy
efficiency. Backup energy is, on average across all benchmarks, 0.304% (0.337%) for Modern STT;
0.350% (0.340%) for Projected STT; and 0.009% (0.009%) for SHE. Backup has no associated latency
as it is performed at the same time as each instruction on every cycle. Overall the Backup, Dead,
and Restore overheads increase only modestly at cold temperatures. Hence, the checkpointing
mechanisms remain efficient across the wide temperature range and MOUSE is suitable for use as
an intermittent accelerator in the harsh environments of LEO.

Restore and Dead latency and energy are all zero for the case of a continuously powered system.
This is because there are no power outages and, hence, never a need to restart the system or re-
perform any potentially unfinished instructions.

CMOS hardening decreases efficiency due the peripheral circuitry consuming more energy. The
overhead varies across benchmarks and technologies, but tends to be higher at lower power (due to
requiring more restarts, which incurs re-activation of the peripheral circuitry) and higher temper-
ature (due to peripheral circuitry having a larger percentage share of the total energy). At 60 µW,
the lowest power tested, CMOS hardening increases energy consumption by 26.9% on average
(44.8% at worst) in cold and by 32.3% on average (49.2% at worst) at hot temperature.

8 RELATED WORK

Orbital Edge Computing was proposed by Denby and Lucia [26, 27] as a new model for satellite
computation. The authors describe architectures for computational nanosatellites. Additionally,
they proposed a strategy called the computational nanosatellite pipeline, which parallelizes compu-
tation across collections of satellites to reduce latency. MOUSE could be used as a sub-component
within such computational satellites.

Traditional architectures have been significantly modified to be intermittent safe. A strategy
has been to tightly integrate non-volatile memory with volatile registers to enable a fast and more
efficient backup process just prior to shutdown. These architectures are known as non-volatile

processors (NVP) [80, 88]. A system utilizing a THU1010N non-volatile processor was analyzed,
where trade-offs in checkpointing strategies are evaluated [80]. Follow up work has increased the
resilience of NVPs to power interruptions [86, 87]. The NVP in Reference [86] can complete the
FFT benchmark from MiBench [42] in 4.2 ms. Cilasun et al. [24] evaluated FFT implementations
on CRAM, the same PIM substrate that MOUSE uses. Performing a similarly sized problem, the
best latency they were able to achieve is 1.63 ms. However, adapting this implementation to be
intermittent safe in the same manner in MOUSE would add a latency overhead. PIM has been
incorporated into beyond-edge devices previously, using RRAM arrays for acceleration [126].
However, this design still requires a CPU to perform logic and orchestrate control. PIM is only
a sub-component of the system, hence the efficient checkpointing strategy of MOUSE cannot be
applied to this architecture.

ResiRCA [101] uses an adaptable RRAM crossbar accelerator for MAC (multiply+accumulate)
operations for CNNs. The architecture is able to adapt to varying levels of input power to
efficiently utilize the PIM components. However, a battery is required to maintain an external con-
troller. Additionally, a significant amount of computation occurs outside the memory array (only
MACs are processed by the memory). Hence, the MOUSE’s checkpointing mechanism is also not
applicable to this architecture. Many RRAM accelerators have been developed [127, 129, 144, 148].
However, these architectures only use the RRAM array as an accelerator for specific operations.
The full system contains much additional circuitry and logic in addition to the memory arrays. This
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significantly increases the difficulty to adapt to intermittent processing. Additionally, they require
analog-to-digital converters for every operation, which has a large area and energy overhead.

Capybara [20] uses a re-configurable hardware energy storage mechanism and a software inter-
face that allows the specification of energy needs for different tasks. This gives the system more
flexibility in satisfying the requirements of different kinds of tasks. In this work, we assumed a con-
stant capacitor size, however, Capybara could enable variable size energy buffers to more closely
match the requirements of each application.

Hibernus [8] is a system that reactively hibernates and wakes up. This is a similar shutdown
policy to MOUSE. However, Hibernus performs an additional back-up operation before shutting
down, whereas MOUSE does not need to.

Many strategies have proposed to enable more traditional systems to operate intermittently.
CleanCut [19] works with LLVM to compile programs with checkpoints, and uses a statistical en-
ergy model to find potential non-terminating paths. Chinchilla [90] uses adaptive checkpointing,
where the frequency of checkpoints is a function of the number of interrupts. Coati [111] developed
methods to ensure correctness of concurrent threads in the presence of interrupts for intermittent
systems. The What’s Next Intermittent Architecture [35] uses approximation to improve perfor-
mance. Rather than following an all-or-nothing approach, What’s Next computes approximate
results and continually improves the output. If an acceptable output is achieved, then it will skip
to processing the next input. This enables the device to process more inputs as it does not waste
time and energy achieving unnecessary accuracy.

The EH model [115] is a design space exploration tool for energy-harvesting architectures. As
noted by the authors, energy-harvesting systems can generally be divided into two types, (1) multi-
backup, which perform many backups between power outages, and (2) single back-up, which only
save state once before a power outage. Multi-backup systems include Mementos, [104], DINO [84],
Chain [18], Alpaca [89], Mayfly [48], Ratchet [136], and Clank [49]. Single-backup systems include
Hibernus [7], QuickRecall [56], and many others [5, 6, 12, 79, 85]. MOUSE is a multi-backup system
as it is constantly saving the architectural state.

Many PIM architectures exist, such as Pinatubo [76], for DRAM with Ambit [122], and for SRAM
with Neural Cache [32]. These technologies target traditional memory hierarchies and have not
considered intermittent operation. Ambit and Neural Cache are not suitable for energy harvesting
as they are volatile technologies. Pinatubo has the potential to be adapted and used similarly as
CRAM in MOUSE. However, Pinatubo uses logic external to the memory array for some operations.
This adds complexity, which is difficult to manage during intermittent execution. Additionally,
Pinatubo requires sense amplifiers for every operation, which comes with a high energy cost.

Neural networks [15, 143] and BNNs [130, 149] have been previously mapped to PIM substrates
for acceleration, including on CRAM [108]. However, such designs have not considered intermit-
tent computing and would be unsuitable for the beyond-edge domain.

A number of high performance and low power accelerator exist, but which have not been
adapted for intermittent execution. The Phoenix processor [121] is an extremely low power pro-
cessor with a sophisticated sleep strategy. A number of accelerators have demonstrated high per-
formance and energy efficiency on inference. PuDianNao [78] is an ASIC accelerator that also
targets SVM. The XNOR Neural engine is microcontroller-based system for BNN acceleration [22].
An in/near memory SRAM substrate is proposed in Reference [138], which performs bit-serial
arithmetic, and which was shown to have high performance and efficiency on the AlexNet [69]
network. A number of PIM accelerators also exist, including a BNN accelerator for Cifar-10 image
classification [57], an analog SRAM accelerator for MNIST classification [155], and another that
does both MNIST and Cifar-10 classification [135]. Adapting such accelerators for intermittency
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is not straight-forward and would likely come, if at all possible, at significant performance and
efficiency cost.

Orthogonal to our work, recent papers have made progress on problems relevant in the energy-
harvesting domain. Low power and accurate time keeping was developed in Reference [25]. SRAM
was used as an efficient check-pointing memory, being able to maintain state for short periods of
power off time [141]. A new platform for intermittent computing is proposed in Reference [68],
which simplifies the task of adapting pre-existing embedded applications to work in intermittent
environments.

9 CONCLUSION

In this article, we improve the hardware efficiency and programmability of MOUSE [107], a non-
volatile PIM accelerator for beyond-edge computing to to enable orbital deployment. Specifically,
we expand the PIM instruction set and add architectural support for branch instructions for en-
hanced programmability. We develop more efficient mechanisms for column activation, reducing
the complexity of the peripheral circuitry. We show that MTJ devices and supporting CMOS cir-
cuitry operate correctly across a wide temperature range. Even accounting for the overhead to
maintain resilience against radiation, this advanced architecture features high performance and
extreme energy efficiency. Combined with the guarantee for intermittent safe operation and in-
herent low-cost checkpointing mechanisms, the final result is a design well suited for use as a
nanosatellite in low Earth orbit.
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