

De novo Transcriptome Sequencing via Binary Neural Networks



S. Karen Khatamifard¹, Meisam Razaviyayn², Ulya R. Karpuzcu¹

¹University of Minnesota, ²University of Southern California

Abstract

- Modern Sequencing platforms: Billions of bases per run
- De novo Transcriptome Sequencing via long reads: clustering of millions of long RNA sequences, termed reads, based on similarity
- Processing data could take up to **days** even with PacBio's commercial package.
- Our solution:
 - Using neural networks to find hashing functions for obtaining similarity → better scalability for parallel implementation (GPU, FPGA, etc.)
 - Designing a hardware accelerator
 - Binarizing the network, for a more efficient hardware implementation

Problem Formulation

Abundance	Transcripts	Full length reads with indels
• 0.58	ACCGATTCAGTA	• ACCATTCAGTA
		• ACCCGATTCAGTA
		• CCGATGTCAGTA
• 0.17 •	• GATTCAACGT	• ACGATGTCAGTA
		• GATCAACGT
	• GTCCTAGTAC	• ATTCACACGT
• 0.25		• GTACTAGTAC
		• GTCCTAGTTAC
		• GCCTAGAATAC

Motivation

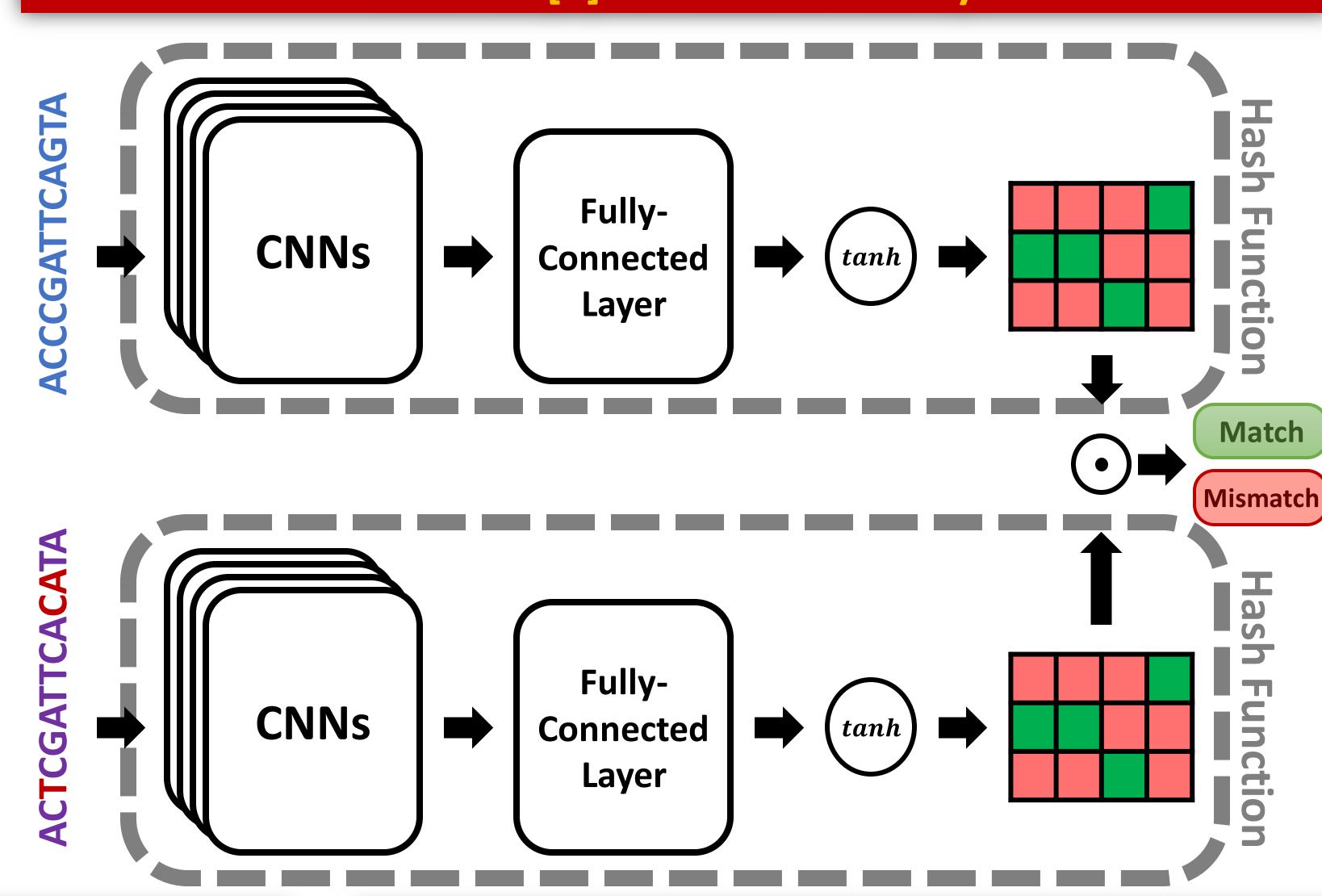
State-of-the-art[1]:

- Clustering based on obtaining the similarity graph between the reads
- Obtaining the graph:
 - Pairwise similarity computation
 - Similarity kernel \rightarrow dynamic programing
 - Latency: $O(p L^2)$
 - L: sequence length
 - p: error (mismatch) probability

Our solution:

- Using Neural Networks to capture similarity
- Mapping to hardware for acceleration
- **Binarization** of the network for efficiency
- Latency: O(H log(L))
 - *H*: number of neural network layers
 - \circ $H \ll L$

HashNet[2] for Read Similarity



Neural Network Binarization

- Only convolutional layers binarized, to maintain accuracy
- Weight Binarization:

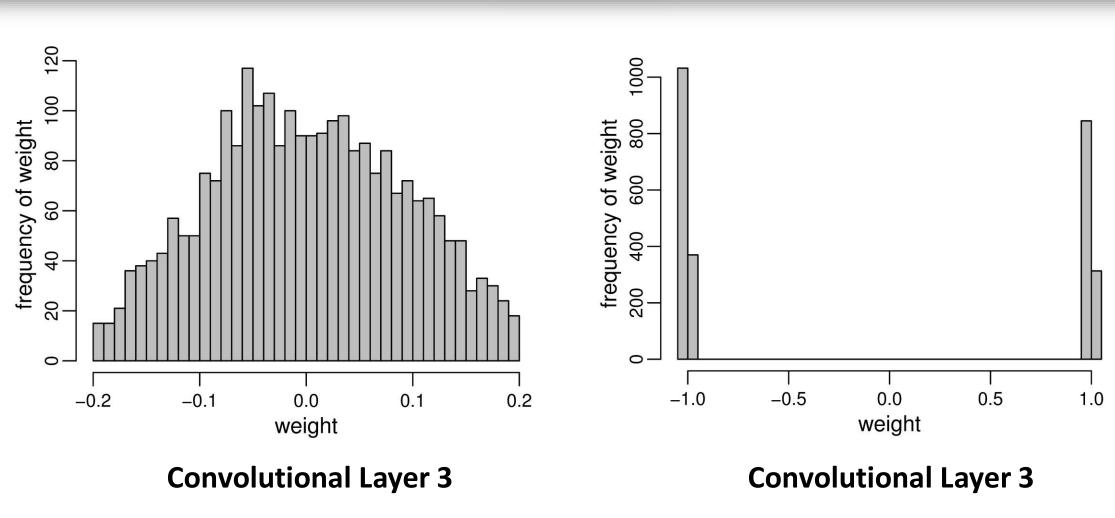
$$C_{bin}(y, y^*) = \|y - y^*\|_2^2 + \sum_{h=1}^{H} \alpha_h \sum_{w \in W_h} ((w - 1)(w + 1))^2$$

• Activation Function Binarization [3]:

$$Sign(r), \qquad \frac{\partial Sign}{\partial r} = r \, \mathbf{1}_{|r| \le 1}$$

- **Deterministic** first convolutional layer
 - 64 masks of length 3
 - Different combinations of {A, C, G, T}

Results



Original		
Accuracy	# Mult.	
99.1%	234K	

Binarized			
Accuracy	# Mult.		
96.3%	4K		

References

Z. Wang et. al., 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10(1), pp.57-63.
Z. Cao et. al., 2017. HashNet: Deep Learning to Hash by Continuation. arXiv preprint arXiv:1702.00758.
M. Rastegari et. al., 2016, October. Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision (pp. 525-542). Springer International Publishing.