On Endurance of Processing in (Non-Volatile) Memory

Salonik Resch, Husrev Cilasun, Zamshed Chowdhury, Masoud Zabihi, Zhengyang Zhao, Jian-Ping Wang, Sachin Sapatnekar, Ulya R. Karpuzcu

University of Minnesota - Twin Cities Department of Electrical and Computer Engineering

International Symposium on Computer Architecture (ISCA) June 18, 2023

Background

- The *memory wall* limits
 performance and energy efficiency
- Processing-in-Memory (PIM) comes to rescue

Image by brgfx on Freepik

PIM Taxonomy

3

PIM

Perform sequence of logic gates

Non-Volatile PIM

- Non-volatile PIM is energy-efficient
 - Resistive RAM (RRAM)
 - Magnetic RAM (MRAM)
- Non-volatile devices fail after too many writes

Endurance Challenge

- Under finite endurance we must be very careful with:
 - Write count
 - Load Imbalance
- Strategies for non-volatile memories (NVM) include:
 - Write cancellation (avoid unnecessary writes)
 - Load-Balancing
- PIM poses new challenges
 - 1. Greatly increases write count
 - Makes write cancellation impossible
 - 2. Restricts load-balancing

Write back (64-writes)

Example: A (32-bit) x B (32-bit) = C (64-bit) PIM

Compute (~10,000 writes) > 150x increase

Writes cannot be cancelled

Load-Imbalance

Some cells are used more than others

On Endurance of Processing in (Non-volatile) Memory Resch et al. ISCA 2023

8

Load Balancing

On Endurance of Processing in (Non-volatile) Memory Resch et al. ISCA 2023

9

Lifetime Limit Study

Benchmark	Maximal Lifetime Improvement
Multiplication	1.5x
Vector-Dot Product	1.5x
Convolution	2.8x

Software and architectural optimization alone is not sufficient

11

Lifetime Limit Study

Benchmark	Lifetime Endurance = 10 ¹² (Pessimistic)	Lifetime Endurance = 10 ¹⁶ (Optimistic)
Multiplication	22 days	602 years
Dot Product	26 days	712 years
Convolution	19 days	520 years

Lifetime critically depends on device-level endurance

Conclusion

- Endurance limitation comes with all NV architectures
- NV PIM increases endurance requirements
- Projected device improvements can enable sufficiently long lifetimes

On Endurance of Processing in (Non-Volatile) Memory

Salonik Resch, Husrev Cilasun, Zamshed Chowdhury, Masoud Zabihi, Zhengyang Zhao, Jian-Ping Wang, Sachin Sapatnekar, Ulya R. Karpuzcu

University of Minnesota - Twin Cities Department of Electrical and Computer Engineering

International Symposium on Computer Architecture (ISCA) June 18, 2023