
On Endurance of Processing in (Nonvolatile) Memory
Salonik Resch

resc0059@umn.edu
University of Minnesota

Husrev Cilasun
cilas001@umn.edu

University of Minnesota

Zamshed Chowdhury
chowh005@umn.edu

University of Minnesota

Masoud Zabihi
zabih003@umn.edu

University of Minnesota

Zhengyang Zhao
zhaox526@umn.edu

University of Minnesota

Jian-Ping Wang
jpwang@umn.edu

University of Minnesota

Sachin Sapatnekar
sachin@umn.edu

University of Minnesota

Ulya R. Karpuzcu
ukarpuzc@umn.edu

University of Minnesota

ABSTRACT
Processing-in-Memory (PIM) architectures have gained popularity
due to their ability to alleviate the memory wall by performing large
numbers of operations within the memory itself. On top of this, non-
volatile memory (NVM) technologies offer highly energy-efficient
operations, rendering processing in NVM especially promising. Un-
fortunately, a major drawback is that NVM has limited endurance.
Even when used for standard memory, nonvolatile technologies
face limited lifetimes, which is exacerbated by imbalanced usage
of memory cells. PIM significantly increases the number of oper-
ations the memory is required to perform, making the problem
much worse. In this work, we quantitatively analyze the impact of
PIM applications on endurance considering representative memory
technologies. Our findings indicate that limited endurance can eas-
ily block the performance and energy efficiency potential of PIM
architectures. Even the best known technologies of today can fall
short of meeting practical lifetime expectations. This highlights the
importance of research efforts to improve endurance especially at
the device technology level. Our study represents the first step in
characterizing the very demanding endurance needs of PIM appli-
cations to derive a detailed technology level design specification.

CCS CONCEPTS
• Hardware→ Emerging technologies.

KEYWORDS
processing in memory, endurance, nonvolatile memory
ACM Reference Format:
Salonik Resch, Husrev Cilasun, Zamshed Chowdhury, Masoud Zabihi, Zhengyang
Zhao, Jian-Ping Wang, Sachin Sapatnekar, and Ulya R. Karpuzcu. 2023. On
Endurance of Processing in (Nonvolatile) Memory . In Proceedings of the
50th Annual International Symposium on Computer Architecture (ISCA ’23),
June 17–21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3579371.3589114

1 INTRODUCTION
The performance of modern computing systems is limited by the
performance of the memory. This is because CPU performance has
increased more rapidly than memory performance for the past few

This work was partially supported by a Cisco Research Fellowship.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ISCA '23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 979-8-4007-0095-8/23/06…$15.00
https://doi.org/10.1145/3579371.3589114

decades [15]. This limitation is referred to as the memory wall, and
it has created the search for new architectures which do not suffer
from this problem. A promising candidate is processing-in-memory
(PIM) which can perform computation directly in memory. PIM
architectures can enhance both performance and energy efficiency
of numerous emerging applications significantly [33]. Non-volatile
PIM is particularly interesting due to its extreme energy efficiency
[6, 20, 21] and high density [31, 43].

Unfortunately, nonvolatile memory (NVM) devices suffer from a
low endurance. Memory cells can only be written a certain number
of times before failing. The endurance varies significantly between
technologies, but all are at risk of premature failure, which would
render them impractical. Hence, there has been much research
into evenly distributing (standard memory) write operations across
NVM cells (i.e., load-balancing) [13, 26, 27]. However, PIM signif-
icantly changes the access patterns and drastically increases the
number of write operations. For example, our analysis shows that
an in-memory multiplication requires over 150× more write opera-
tions than it would require in a conventional architecture. Not only
are there more writes, but they are more difficult to balance in PIM
than in standard memory. PIM computations must be triggered
where the relevant data is stored in memory. There is less flexibility
for remapping PIM computations, and hence the resulting writes,
when compared to standard memory writes. We therefore need to
revisit strategies which are sufficient for NVM in the context of
nonvolatile PIM (NVPIM).

In this work, we characterize the impact of PIM operations on
the endurance of representative NVM technologies. We start by
investigating write patterns of PIM applications to estimate ex-
pected lifetime of PIM arrays. We test basic strategies to improve
endurance and show their effectiveness. Our findings indicate that
NVPIM is significantly limited by endurance, underlining an urgent
need for progress at the device technology level.

The contributions of this work are as follows:
• We show that PIM induces many more writes in memory
compared to traditional architectures.
• We show how PIM arrays are particularly susceptible to
failed memory cells.
• We provide estimates for expected lifetimes of PIM arrays
considering characteristic workloads.
• We adapt load-balancing principles from standard memory
to implement generalizable and simple load-balancing strate-
gies for PIM and demonstrate how they can improve lifetime
for characteristic workloads.

The rest of the paper is structured as follows: Section 2 provides
a background on PIM devices, PIM architectures, and how logic is
implemented. Section 3 covers typical data layout patterns and the
natural consequences of standard operation. Section 3.1 investigates
the impact of limited endurance. Section 3.2 introduces strategies to
improve lifetime with load balancing specific to PIM.We discuss the
possibility of using PIM arrays with failed devices in Section 3.3. In
Section 4 we set up the evaluation, including commonly used PIM

1107

https://orcid.org/0000-0002-9050-3685
https://doi.org/10.1145/3579371.3589114
https://doi.org/10.1145/3579371.3589114
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589114&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Resch, et al.

applications and how they are laid out in memory. In Section 5 we
showwrite distributions of these applications inside PIM arrays, the
impact of basic load-balancing strategies, and remaining problems
due to limited endurance. Finally, we conclude in Section 7.

2 BACKGROUND
In this section we cover NV devices used for PIM, how logic op-
erations are performed in memory, and how we can synthesize
complex computations using these logic operations.

2.1 Nonvolatile Devices
In this paper, we consider NVMs which hold their state in their
resistance. The state of a device can be determined by applying a
voltage and sensing the current that flows through it, which consti-
tutes a read. The specifics for changing the state (write operation)
varies between technologies. We now cover the most promising
representatives.

Magnetic RAM (MRAM) is based on Magnetic Tunnel Junctions
(MTJs) which have two magnetic layers, a fixed layer and a free
layer. If the layers are aligned, the MTJ has low resistance (parallel
state); if not aligned; high resistance (anti-parallel state). The state
can be changed by driving a current of sufficiently high magnitude
through the MTJ, where the direction of the current determines
the state. When electrons flow from the free (fixed) layer to the
fixed (free) layer, the MTJ is put into the anti-parallel (parallel)
state. The main advantages of MTJs are relatively high density
and high endurance with respect to other nonvolatile technologies.
Specifically, when it comes to endurance, current MTJs can switch
as many as 1012 times [23, 34] until permanent failure. In contrast
to its competitors, MTJ writes involve no moving atoms. Hence, it
is believed that the write endurance can be drastically improved
with newer generations of devices [18]. A disadvantage of MTJs is
that the resistance difference in the anti-parallel and parallel states
is relatively low, which makes them more sensitive to noise such
as voltage fluctuations.

Resistive RAM (RRAM) consists of a metal-insulator-metal stack
[11]. Applying a voltage differential causes the formation of a con-
ductive filament, creating a low resistance state. Applying a voltage
differential in the opposite direction removes this filament and
creates a high resistance state [3]. RRAM has more than 2 possi-
ble states, as it can take on a range of resistance values between
the two extremes. However, it is common in practice to use only
the highest and the lowest resistance states to reduce noise. An
advantage of RRAM is the high ratio between the high and low
resistance states, reducing sensitivity to noise. A major drawback
is limited endurance, currently permitting approximately 108-109
writes before failure [18, 35, 46].

Phase-Change Memory (PCM) has a state based on the structure
of the atoms within the channel for electric current [40]. The write
operation involves heating up the device by passing an electrical
current through it. Quickly reducing the current causes the device
to cool rapidly into an amorphous state, which has high resistance.
Cooling the device slowly allows it to form a more uniform struc-
ture, which has low resistance. PCM currently allows around 106 -
109 writes before failure [18, 19].

NVM is an emerging technology, hence device characteristics
are subject to change. Numerous works have predicted orders of
magnitude improvements to the write endurance [18, 37].

2.2 PIM Architectures
PIM architectures modify traditional memory hardware to enable
logic operations to occur either within or very close the memory.
In this work, we consider architectures which perform Boolean

(digital) logic operations directly in memory1, where the input and
outputs of every operation are memory cells in the array. Such
architectures maintain the basic memory hardware and operating
semantics, allowing them to replace standard memory structures
with little modification to the overall architecture. Additionally,
hardware modification to the memory array itself is relatively mod-
est. Typical solutions involve adding additional bitlines [29, 31],
row-decoders which support multi-row activation [21, 33], or extra
transistors in each cell [6, 43]. These architectures have demon-
strated high performance and energy efficiency both for use in
traditional computing systems [21, 31, 33] and in embedded sys-
tems [29, 30] for commercially relevant applications.

Regardless of the specific approach, the mechanics of PIM oper-
ations on memory devices are nearly identical. Current is passed
through one or two input memory devices, and a single output
memory device is written to. Therefore, we can abstract out the
specific cell design when analyzing endurance. In the remainder of
this section, we discuss PIM operating semantics accordingly.
Basic Logic Operations (Gates): PIM architectures enable logic
operations at the bit level directly in memory. Basic logic operations
–such as NOT, (N)AND, or (N)OR)– take one or two memory bit
cells as input, compute the output, and store the result in another
bit cell, which is typically in the same row or column as the inputs.
Depending on the architecture, this can be done with or without
the involvement of sense amplifiers. For architectures using sense
amplifiers [21], the procedure is:

(1) Read multiple input cells simultaneously.
(2) To calculate the output according to the underlying truth

table, perform thresholding using the sense amplifier.
(3) Write back the result to the designated output cell.

For architectures which do not use sense amplifiers [31]:
(1) Apply a voltage differential on the bitlines connecting the

inputs and outputs.
(2) Current travels through the inputs to outputs, conditionally

switching the output according to the truth table of the
operation being performed.

Both approaches are shown in Fig.1, for column based computa-
tions without loss of generality. Regardless of the approach, input
cells effectively go through read operations and the output cell
goes through a write operation. If possible logic operations form a
universal set, any computation can be carried out in the respective
row or column, limited by the number of memory cells available.
Complex Logic Operations: In traditional architectures, an arith-
metic logic unit (ALU) can be used to perform complex logic opera-
tions relatively quickly. For example, addition and multiplication
can be performed within a few cycles of the system clock. In con-
trast, PIM architectures require a series of logic gates to perform
such operations.

The operation must be decomposed into a set of gates the archi-
tecture is capable of (e.g., NOT, AND, NAND). Each of these gates
must then be scheduled within the array. When processing within
a single column (or row), only a single logic gate can be performed
at a time due to structural hazards – the hardware used to perform
logic is shared by all cells in the column (or row). Hence, even if
gates are logically independent (i.e., no data hazard applies) they
must still be performed sequentially2. For example, a full-adder can
be implemented with 9 NAND gates, taking 9 time steps, as shown
in Fig.2. Hence, optimizing both the latency and energy of a PIM

1In contrast to analog architectures which are specialized accelerators, and typically
do not maintain standard memory operation.
2There are PIM architectures that are exceptions to this [12], however, they require
additional transistors which significantly increase complexity.

1108

On Endurance of Processing in (Nonvolatile) Memory ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) With SA (b) W/o SA

Figure 1: Column based PIM logic approaches. Inputs (output)
are (is) shown in green (red). SA: Sense Amplifier.

Figure 2: Full-Adder circuit and equivalent in-memory im-
plementation.

computation (within a single row or column) is simply finding the
decomposition which requires the fewest logic gates.
𝑏-bit addition can be done with a ripple-carry adder with 𝑏 − 1

full-adds and 1 half-add. Note that, while it is slow in traditional
digital circuitry, a ripple-carry adder is optimal for PIM as it uses the
fewest gates (which must be performed sequentially). A DADDA
multiplier [36], on the other hand, can perform 𝑏 bit multiplication
with 𝑏2 − 2𝑏 full-adds, 𝑏 half-adds, and 𝑏2 AND gates.

While specifics vary across architectures, our discussion so far
covers the most representative prior and state of the art work, as
listed in Table 1. Here we list each design with the original mem-
ory technology used, but for most of these architectures, different
memory technologies (MRAM, RRAM, PCM) can be exchanged for
one another and the basic operating principles would remain the
same.
Parallelism: The sequential nature of logic operations (gates) de-
scribed in Section 2.2 leads to a high latency for any single operation.
However, it is compensated for by high degrees of parallelism. PIM
architectures are capable of much higher degrees of parallelism than
other architectures, including GPUs. Potentially as many gates as
the number of rows (or columns) within an array can be performed
at the same time. This is because while a row (column)- parallel
PIM architecture can only perform one operation in each row (col-
umn) at a time, the same operation can be performed in many rows

Design Parallelism Memory Technology
Pinatubo [21] Column PCM
MAGIC [20] Row and Column RRAM
MAGIC [22] Column MTJ
Felix [12] Row and Column RRAM

CRAM 2T [6, 43] Row MTJ
CRAM 1T [8, 29–31] Column MTJ
CRAM [7, 14, 45] Row SOT-MTJ

Table 1: Architectures which perform logic gates in memory
and follow the operation principle considered in this paper.

(a) Row-Parallel (b) Column-Parallel

Figure 3: Parallel two-input logic gates in row- and column-
parallel architectures. Inputs (output) shown in green/light
(blue/dark).

(columns) simultaneously. Whether parallelism comes from the
rows or the columns depends on the architecture, both kinds are
shown in Fig.3. Within a single array of a row (column)-parallel
architecture, gates can be performed simultaneously if:

(1) The logic operation is the same.
(2) Input(s) and outputs are in the same columns (rows).
For example, a common memory array dimension is 512 × 512,

which would allow for 512 parallel operations. Additionally, PIM
architectures allow for array level parallelism, as independent logic
operations can be performed in different arrays. Hence, the limit-
ing factor for PIM performance at scale is the number of arrays,
the energy efficiency of the operations, and the overhead for any
communication between arrays.

Row-parallel and column-parallel architectures are logically equiv-
alent, except that in row (column)- parallel architectures the logic
operations have the same orientation as (are perpendicular to) the
read and write operations. While these differences can largely be
accounted for with different data layout optimizations, row- and
column-parallel architectures place different constraints on possible
optimizations.

In the following, we will use the word lane to refer to the collec-
tion of cells (either in a row or a column) which can work together
to perform computation. For column-parallel architectures, a lane
is a single column; and for row-parallel architectures, a single row.
Data Layout for Computation: Data layout design is critical and
has a significant impact on latency, energy, and endurance. PIM
lanes can only compute on values contained within them, hence all
data values needed in each step of computation must be properly
placed in memory through standard memory writes first. Any data
value to be processed which cannot fit into the lane contributes to
additional communication (read and write) cost.

Typically, a single primitive operation is mapped onto a single
lane. Data is aligned across different lanes to allow parallel process-
ing of independent operations in different lanes. Each lane contains
cells dedicated to input data, output data, and temporary workspace,
respectively. For example, a 3-bit integer multiplication, 𝐴 × 𝐵 = 𝐶

can be mapped to a lane as shown in Fig.4: First, space for the bits of

1109

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Resch, et al.

Figure 4: Cells within a lane of a PIM array are dedicated to
inputs (A, B), outputs (C), and temporary workspace for the
multiplication of two 3-bit integers.

𝐴 and 𝐵 is allocated and the corresponding values are written into
the lane. Commonly, one of the operands is static (e.g., the weights
of a neural network) and the other is not (e.g., new inputs to a
neural network layer). A number of logic gates are then performed
in order to produce the product (output). These intermediate logic
operations require storage for their outputs and temporary scratch
bits. We call this storage the workspace. The minimum size for the
workspace depends on the algorithm. However, when fully con-
sumed, the workspace needs to be reset (overwritten or re-used)
to enable further computation. Once computation is complete, the
product𝐶 becomes ready in a dedicated set of cells, where they are
available to be read out or used in further computation.

Effectively, all PIM architectures with the compute capability
discussed in Section 2.2 follow this format. Large scale applications,
such as convolutional or fully-connected neural networks, are de-
composed into multiplications, additions, and subtractions which
are performed within the lanes of the array. Different applications
will only result in different data layouts and data transfers.
Application Mapping: Embarrassingly parallel operations can
easily be mapped onto lanes: Each independent operation occu-
pies a separate lane, such that all lanes can perform the same logic
gate operation on different data values. For example, element-wise
multiplication of 𝑁 -element vectors can be mapped to 𝑁 multipli-
cations in 𝑁 lanes3, following the data layout in Fig.4 for 𝑁 = 3
on a per lane basis. However, many applications are not so easily
mapped. For example, an 𝑁 -element dot-product initially requires
the same 𝑁 parallel multiplications. But then all products must be
added together to produce the final sum. This requires read and
write operations to move bits scattered across parallel lanes into the
very same lane. This mapping process is the subject of prior work
[21, 31], and typically involves complex optimization. In summary,
any application can be mapped to a PIM architecture, but only those
which exploit a high degree of parallelism will be performant [31].

3 IMPACT OF PIM ON ENDURANCE
In this section we cover PIM induced performance challenges in
the face of endurance limitations and revisit potential mitigation
strategies.

3.1 Endurance Demand under PIM
While nonvolatile PIM architectures show a great potential for
high performance and extreme energy efficiency, a major problem
they face is limited endurance. Underlying memory devices simply
break down after having performed a specific number of write
operations. While this is a well studied problem for NVM, it has
not been addressed for NVPIM.

PIM architectures impose a significantly different access pattern
on memory cells than standard memory architectures. This ren-
ders a tighter design specification at the memory technology level.
Specifically, PIM results in many more memory reads and writes
while performing the same computation when compared to a tra-
ditional architecture featuring separate memory and logic blocks,
which taxes the endurance of memory devices significantly. For

3Assuming there is a sufficient number of bits in each lane to complete computation.
Practical array sizes (256×256, 512×512, 1024×1024) can easily accommodate the
multiplication of 64-bit integer operands.

(a) Write Count (b) Read Count

Figure 5: Number of read and writes per cell in a lane is
heavily imbalanced. Workspace cells are used many more
times than input cells in producing a single result.

example, 32-bit integer multiplication on a standard architecture
entails reading two 32-bit numbers, performing the multiplication
using an ALU, and writing the 64-bit product back to memory. In
total, this incurs 64 cell reads and 64 cell writes. If 1024 NVM cells
are available to facilitate this computation, an average of 0.0625
reads and writes per cell applies. In a PIM architecture, using an
in-memory DADDAmultiplier [36] as a representative example, the
same multiplication requires 9,824 in-memory gates, which incurs
9,824 cell writes and 19,616 cell reads. This produces an average of
19.16 reads/cell and 9.59 writes/cell. Hence, PIM can burn through
the endurance of NVM much quicker.

An upper limit on the lifetime of a memory array can be quickly
calculated. Let us assume that each memory cell is capable of 1012
writes before failure [23, 34], which is optimistic for current MTJs
and well beyond what current RRAM can support. An 1024 × 1024
array can perform a total of 10242 × 1012 writes before failure in
this case. Using the multiplication example and assuming perfect
load balancing, this array can perform at most

10242 × 1012

9824
= 1.07 × 1014 (1)

32-bit multiplications before total break-down. For high perfor-
mance, a PIM array typically performs many multiplications in
parallel [31]. At full utilization (all 1024 lanes computing in parallel)
and assuming a reasonable switching time per gate of 3ns [31, 32],
it would take

10242 × 1012

1024 × 1
3×10−9

= 3, 072, 000 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 35.56 𝑑𝑎𝑦𝑠 (2)

until total failure (when every cell breaks down).
Worse, under practical conditions, even a small number of failed

devices can cause incorrect operation, so effective failure can occur
much sooner. Using current RRAM endurance of approximately 108
writes, time to failure would take just over 5 minutes. Clearly, PIM
comes with a very demanding endurance requirement for the un-
derlying nonvolatile technologies. Endurance has been improving
and will undoubtedly continue to improve to enable practical PIM
applications as NV technology tailored for PIM comes to maturity.
At the same time, higher level mitigation strategies such as load
balancing are going to be critical in order to extend the system
lifetime as much as possible.

Standard NVM operation may already cause more frequent (read
or write) accesses to some rows, which may lead to an imbalance
in memory cell lifetime. NVPIM exacerbates such imbalance by
performing logic gates in some lanes more frequently than others.
Even 32-bit integer multiplication with a data layout similar to Fig.4
can cause a large imbalance in the usage of each cell within the lane,
as shown in Fig.5. Specifically, cells dedicated to workspace are used
much more frequently, resulting in a significant load imbalance
which can make these cells fail significantly sooner than others.
Hence, load balancing becomes even more critical in maximizing
the lifetime in this case.

1110

On Endurance of Processing in (Nonvolatile) Memory ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

3.2 Load Balancing under NVPIM
We will next revisit basic load balancing strategies to increase the
lifetime of NVPIM arrays in the face of limited endurance. Any
imbalance in cell usage, as noted in Section 3.1, can cause some
memory cells to fail much more quickly than others. Load balancing
is a well-known strategy to address this problem in the context of
NVM applications [13, 24, 39, 42, 47]. The idea is distributing write
operations as evenly as possible to all memory cells and thereby
preventing premature cell failure due to excessive use. The question
is to what extent classic load balancing strategies tailored for NVM
can help under NVPIM. Memory cell usage under NVPIM is not
just determined by write operations, but does evolve with actual
computations. Hence, designing effective load balancing for NVPIM
is inherently a different challenge, beyond the capabilities of prior
strategies targeting memory functionality only.
Load Balancing for NVM vs. NVPIM:While the rich literature
on load balancing for NVM [4, 16, 36] features a variety of (software
and/or hardware) techniques, the underlying fundamental strategy
never changes: redistribute write operations by modifying the vir-
tual to physical address mapping over time to prevent imbalanced
cell wear-out.4 Here we show why this core mechanism is not di-
rectly applicable to PIM, as load balancing for PIM is fundamentally
different than load balancing for memory.

Algorithm 1 shows an example code excerpt where themain com-
putation simply corresponds to the bitwise AND of two variables
x and y residing in memory. Using this example, Fig.6 illustrates
what classic load balancing entails for regular NVM vs. NVPIM. Let
us assume that in NVM x gets written to Row 0 and y; to Row 1.
If PIM is not the case, the alignment of x and y in their respective
rows does not have any direct implication for computing, hence
y can be shifted in Row 1 as shown in Fig.6(a) for load balancing
purposes. In this case the CPU performs the computation after
both variables are read from memory. Any write redirection (in the
form of a shift in this example) has no effect on the correctness
of the computation. For NVPIM, on the other hand, this type of
load balancing would not work, as depicted in Fig.6(b). Correct
computation constrains data layout by requiring alignment of the
input operands in memory. Specifically, input operands must reside
in the same lanes (columns in this example). Hence, the very same
“load-balanced” memory layout would lead to a computation error
under PIM.

Write re-mapping works for standard memory because a mem-
ory word is the typical granularity for data access. This makes
relocation relatively easy. The data access granularity of a typical
PIM operation (i.e., computation), on the other hand, is the entire
array. This is because in-memory operations can use all lanes (i.e.,
all columns and any set of rows in Fig.6(b)) simultaneously. Hence,
relocating any memory word in the conventional fashion can easily
corrupt the contents of a PIM array, i.e., the input data of a PIM op-
eration. This complexity holds even if we restrict write redirection
to only across rows. For example, y in Fig.6(b) can be remapped
into Row 2, but within the same columns as x, potentially allowing
for correct completion of the example computation. Even then, we
cannot guarantee correctness, since contents of Rows 1 and 2 now
become inconsistent. As a result, if Row 1 or 2 is used in PIM oper-
ations later in the program, subsets of each may have unexpected
contents.

In an nutshell, any memory load-balancing strategy is based on
such write redirects. PIM introduces additional constraints that

4Some load-balancing strategies use write cancellation [26] to prevent writes from
even occurring in the first place. Unfortunately this is not directly applicable to PIM,
where all computation happens in the memory.

Algorithm 1 Example code
𝑥 ← 5
𝑦 ← 6
𝑧 ← 𝑥&𝑦 ⊲ Bitwise AND

Figure 6: Load balancing for standard NV memory vs. PIM.
Remapping writes a) works for standard memory as data
layout in memory is decoupled from actual computation; b)
does not work for PIM as computation in memory requires
input operands to be physically aligned.

must be satisfied. Importantly, the physical location of variables
in memory are dependent on each other. Hence, write operations
cannot be remapped without careful consideration of the entire
algorithm, a complexity that is not handled by state-of-the-art
load-balancing strategies. In the following, we show how basic
load-balancing can be tailored to PIM architectures.
Software Load Balancing refers to changes made to the program
in order to evenly distribute the write operations. The benefit of
software approaches is that they do not require any hardware mod-
ifications to the architecture, which can cost extra energy and in-
crease latency for every operation. Significantly, software strategies
have a greater ability to re-distribute write operations by arbitrar-
ily modifying the program. However, a key drawback of software
approaches is that they require either knowledge from the pro-
grammer or compiler support. Additionally, software strategies
may require periodic re-mapping (re-compilation) in order to be
effective, which incurs a time and energy overhead.
(Software) Load Balancing within Lanes: Fig.5 shows that some
cells within a lane are used more often than others, even in un-
dertaking a single computation. Notably, cells holding temporary
values are used much more frequently than cells that hold the in-
puts and the outputs. If this imbalance of usage persists for long
periods of time, workspace cells will fail much sooner. Hence, it is
desirable to allow cells holding inputs and outputs to also be used
as workspace.

An optimized operation (e.g., multiplication or addition) uses the
same number of gates with the same inputs and outputs each time.
However, individual logic gates that the operation is composed of
can have the inputs and the output anywherewithin a lane, i.e., logic
gates can be re-mapped by modifying their input operand (e.g., row)
addresses within the lane (e.g., column). It is conceptually easy to
implement fine-grained re-mapping in software by maintaining the
logical to physical address mapping for each bit. Programs operate
on logical bits and remain intact. Logical to physical mapping can
change periodically, arbitrarily re-mapping logcic gate operations
within lanes. This process is shown in Fig.7.

As intuition suggests, changing logical to physical address map-
ping randomly throughout computation can be highly effective at
leveling cell wear-out within lanes. We will be referring to this
strategy as Random Shuffling. Unfortunately, this solution has a
significant drawback for row-parallel architectures. For example, an
32-bit variable may reside in consecutive bits in the first 4 bytes of
a row (lane). A row parallel architecture can access this variable in

1111

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Resch, et al.

Figure 7: Logical to physical address mapping of bits via
software can arbitrarily remap logic gate operations.

Figure 8: Re-arranging the bits of an operand within a PIM
lane can disrupt memory operations. For row-parallel ar-
chitectures, bits of the operand can be read in parallel, but
they will be out of order and potentially in different bytes.
Column-parallel architectures read bits out of the lane se-
quentially, and are less impacted by such re-arrangement.

a single cycle with a standard read or write operation. Re-mapping
logic gate operations can cause individual bits of the variable to
spread out to different bytes across the lane. Hence, many more
bytes may need to be accessed in order to read or update the vari-
able. Additionally, when the bits are read out of the array, they
can be in any permutation. This requires external post-processing
to re-order the bits. This is less of an issue for column-parallel
architectures, as depicted in Fig.8.

One promising strategy which does not complicate memory
accesses is, instead of randomizing, simply periodically shifting
the logical to physical address mapping. To maintain proper (byte-
addressable) read and write operations, shifts should be by an in-
teger number of bytes, hence we call this strategy Byte-Shifting.
Shifting has been proposed both for standard memory [47] and for
crossbars for neural network acceleration [39], and Byte-Shifting
represents a generic adaptation for PIM.

Re-mapping logical to physical addresses, whether randomized
or shifted, has the advantage of no overhead during the execution
of the program. However, both require periodic re-compilation in
order to balance load. ByteShift is more memory access friendly as
it maintains the order and coherency of bits in the memory. The
different re-mapping strategies are depicted in Fig.9.
(Software) Load Balancing Between Lanes: Just as with in-lane
usage, usage, hence wear, across lanes can vary, as well. However,
the causes of imbalance are different. Imbalance in lanes comes
from the mapping of individual logic operations, which can be re-
mapped. In contrast, imbalance between lanes is more of a function
of the application, which restricts re-mapping.

Imbalance between lanes typically is the case when results from
many lanes need to be combined. For example, an 𝑁 -element dot-
product requires 𝑁 parallel multiplications, which can be balanced
on 𝑁 lanes. But all products must be added together to calculate

Figure 9: Representative placement of an 32-bit operand
within a lane for different re-mapping strategies. Static ex-
cludes any load balancing.

the final sum. This necessitates a series of memory operations
to bring the products into the same lanes where they represent
inputs to addition. Reduction operations such as the addition in
this example limit lane-level parallelism, hence some lanes get used
more than others. Heavily used lanes will wear out sooner. Still,
strategies for software load balancing within lanes mostly apply
here. Physical bit addresses can be periodically changed over time.
Complete randomization is likely to balance load most optimally.
However, a byte shift may be more desirable as it keeps addresses
aligned for memory accesses.
Hardware Load Balancing:Hardware based load balancing strate-
gies for standard NVM typically rely on estimating write counts
per cell and re-directing memory accesses accordingly [13]. How-
ever, the incurred complexity is not feasible at the level of a single
PIM array: The main benefit of nonvolatile PIM is extreme energy
efficiency. Unless exceedingly light-weight by design, hardware
dedicated to balancing may easily become the bottleneck. Maintain-
ing counters to track writes at the bit-level is unreasonable. Luckily
simpler strategies do exist.
(Hardware) Load Balancing Within Lanes:We observe that the
well-known practice of register renaming in traditional architectures
can be used to perform lightweight hardware load balancing. This
process is similar to the software based logical to physical address re-
mapping, however it requires logical to physical address translation
at execution time and it cannot arbitrarily re-map computations. In
the following, we will refer to this strategy as Hardware re-mapping.

Hardware re-mapping requires a spare bit which can be used to
swap logical addresses. For a lane with 𝑁 physical bits, there are
𝑁 − 1 logical bit addresses and 1 free bit address. Re-mapping in a
NVPIM array can be applied upon a write or a logic operation as
follows: As an example, without loss of generality, when a write
operation is performed to logical bit address 𝐴 in all lanes, the
hardware re-directs the write to the free physical address, over-
writing its contents. It then marks the free physical address as
logical address 𝐴, and assigns the previous physical address of 𝐴 as
the free address. The same procedure seamlessly applies if only a
subset of lanes are involved, as well.

For architectures like Pinatubo [21] which perform computation
at the array periphery using sense amplifiers, the initial value of
the output memory cell does not matter. Re-mapping can occur
entirely in-place. In other words, bit re-mapping does not require
additional data transfers as all we need is to redirect the output
of an operation. Both writes and logic operations can be renamed
without complication. However, for architectures like CRAM [6],
the initial value of the output cell affects computation and often
needs to be preset before computation. For this type of architecture,
an additional write operation would be required.
(Hardware) Load Balancing Between Lanes: In principle, the
same re-mapping scheme can be applied between lanes, as well.

1112

On Endurance of Processing in (Nonvolatile) Memory ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Figure 10: COPY gates can be used to directly shuffle the input
operands and the output during execution. Initially, only 𝐴
and 𝐵 contain meaningful data and need to be shuffled. After
computation, only 𝐶 contains necessary data and requires
un-shuffling.

However, this may not always be practical depending on the ar-
chitecture. For row-parallel architectures, memory operations can
access the entire lane (row) at once. This makes lane re-mapping
feasible by swapping row addresses on write operations. However,
for column-parallel architectures, memory operations can only ac-
cess 1 bit from each lane at a time. Reading and writing an entire
lane requires accessing each bit sequentially. Since a regular mem-
ory write can only overwrite 1 bit in a lane at a time, a lane cannot
be renamed using a single memory write. The brute force approach
of copying a logical lane (column) from one physical column to
another over many sequential accesses would likely be too complex,
slow and energy hungry for practical use.
Memory Access Aware Re-mapping: Load balancing strategies
we introduced so far focus on PIM, but inevitably have an impact
on regular memory operations (i.e., reads and writes). It is possible
to re-map computations but return the result of computation to
the original addresses afterwards, to prevent any change to regular
memory read and write access patterns. Prior to a computation,
input operands can be shuffled arbitrarily by performing COPY (or
two sequential NOT5) gates. Then, the computation can proceed as
normal, only with different column (row) addresses for each gate
in a row (column)-parallel architecture. After the computation is
finished, COPY or NOT gates can again be used to re-order the
output bits at the expected destination. This process is depicted
for a multiplication operation in Fig.10 considering a row-parallel-
architecture without loss of generality.

One drawback of this approach, contrary to previously discussed
strategies, is that it requires additional logic gates to implement the
shuffling. The relative overhead for this shuffling process depends
on the operations being performed in memory. For a precision of
𝑏 bits, shuffling requires 2 × 𝑏 COPY gates (or 4 × 𝑏 NOT gates)
to move the two input operands to their new locations. Note that
the output and the workspace bits do not need to be physically
shuffled as they do not yet contain meaningful data, however, write
operations may be required to pre-set them depending on the PIM
architecture. The number of gates required to un-shuffle the output
depends on the output size. For multiplication, if roll-over is ignored,
the output has the same number of bits as the inputs. However, in
many applications allocating more bits to the output is useful. We
consider this more general case here. For multiplication, the output
has twice as many bits, so 2 × 𝑏 COPY (or 4 × 𝑏 NOT) gates are
required to move the output back to the original location. In total,
we need 4 × 𝑏 COPY (or 8 × 𝑏 NOT) gates.

This overhead for multiplication is small relative to the number
of gates required for computation. A DADDA multiplier [5, 28, 36]

5Some PIM architectures do not natively support COPY [29] and have to use NOT
gates instead.

Table 2: Percentage of extra COPY gates required by memory
access aware randomized shuffling during execution. Over-
head corresponds directly to extra latency and energy as all
gates must be performed sequentially.

Bit Multiplication (DADDA) Addition (Ripple Carry)
Precision Overhead (%) Overhead (%)

4 25 76.47
8 10 67.57
16 4.55 63.64
32 2.17 61.78
64 1.06 60.88

requires 𝑏2 − 2𝑏 full-adds, 𝑏 half-adds, and 𝑏2 AND gates. Using 2-
input logic gates, a full-add requires a minimum of 5 gates and a half-
add requires 2 gates. Hence, a multiplication requires 6𝑏2 − 8𝑏 gates
in total, and the relative overhead (in terms of the additional number
of gates) for shuffling becomes 1/(32𝑏 − 2). For 32-bit numbers,
this equates to an extra 2.17%. The relative overhead for addition,
on the other hand, is much higher, due to the significantly lower
complexity of the algorithm. Ripple-Carry addition (optimal for
PIM) requires 𝑏 − 1 full-adds and 1 half-add. The output is 1 bit
longer than the inputs, hence the shuffling cost is 3𝑏 + 1 additonal
gates. The relative overhead in this case becomes 3𝑏+1

5𝑏−3 . For 32-
bit numbers, this equates to an extra overhead of 61.78%. Table 2
captures how this overhead evolves with bit precision.

An additional drawback of this approach is that it requires more
complex software support. It still requires periodic changes to phys-
ical bit addresses. However, these changes cannot be performed
by simply modifying a logical to physical address mapping (as it
is the case for software-based strategies). Additional logic opera-
tions must be inserted directly into the program to perform the
shuffling. This requires modification to the original program, hence
full-fledged re-compilation. In summary, this approach can load
balance without perturbing standard memory read and write access
patterns at the expense of a significant logic gate overhead and
additional software support.

3.3 Using PIM Arrays with Failed Cells
Provided that nonvolatile cells are subject to failure due to limited
endurance, we will next discuss to what extent NVPIM arrays can
remain functional in the presence of failed cells. Applications need
to exploit the inherent parallelism of NVPIM to achieve high per-
formance. This usually translates into most, if not all, of the lanes
participating in computation simultaneously. To this end, cells stor-
ing input operands have to reside at the same addresses within each
lane. Hence, even a single cell failure in a single lane can deem all
cells at the same address in other lanes useless, as shown in Fig.11a.
In an 𝑁 × 𝑁 PIM array, there are 𝑁 2 cells which can fail, but only
𝑁 cells in each lane. The available space therefore quickly reduces
with failed cells, as captured in Fig.11b. We observe that irrespective
of the array size, the number of available cells can quickly reach a
point where even multiplication is not possible due to insufficient
space.

A workaround solution is to divide lanes into different sets, and
to only use lanes in the same set in parallel. This can extend the
array lifetime, by increasing the number of usable cells at any given
time. However, this comes at a quickly increasing cost in latency,
as different sets must run sequentially. In summary, even a few cell
failures in a PIM array can significantly disrupt operation.

1113

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Resch, et al.

(a) A single cell failure
removes bits from all
lanes

(b) Percentage of bits in lane that can be used
versus percentage of bits in array that have failed.

Figure 11: Failed cells quickly reduce the number of bits
available in each lane. A single failed cell prevents the use of
bits at the same address in all lanes.
4 EVALUATION SETUP
PIM arrays are used to accelerate computational kernels which can
exploit the inherent parallelism in hardware. If used in an embedded
device, the device can only function as long as the PIM arrays persist.
If used in a server, the accelerator must be replaced once a sufficient
number of PIM arrays fail. Hence, we need to analyze how long
PIM arrays can function in the face of endurance limitations.
Benchmarks: Large-scale applications must be broken down into
computations that can be performed within PIM arrays. PIM arrays
can process data independently. As necessary, standard memory
read and write operations can handle data transfers between PIM
arrays. Our analysis focuses on computations that can be performed
within a single array, with the assumption that many such arrays
perform similar work in parallel. Without loss of generality, we
use three representative case studies which cover extreme ends of
potential computations: 1) Embarrassingly parallel multiplications,
2) Neural network (NN) inference (convolution), and 3) Vector dot-
products. Embarrassingly parallel multiplication represents an ideal
application for PIM. Each lane of the PIM array can operate inde-
pendently without any intermediate communication. Dot-products,
on the other hand, represent a non-ideal case. Results from all ac-
tive lanes must eventually be combined into a single output, which
leads to considerable data communication. NN inference is a middle
ground, where independent computations are typically too large
to fit into a single lane, but do not require all lanes at the same
time. Computations less complex than multiplication become trivial.
Computations more complex than dot-product typically require
multiple arrays or are not suitable for PIM. Applications featuring
lower degrees of parallelism or incurring high intra- or inter-array
data communication traffic perform poorly on PIM architectures.
Embarrassingly Parallel Multiplication: The first benchmark
features a simple parallel integer multiplication of 32-bit operands.
A single multiplication is performed within each lane (e.g., column).
There is no communication between lanes, and all lanes are utilized.
Hence, there should be no imbalance between lanes. However, the
multiplication algorithm (DADDAmultiplier) may have imbalanced
usage within each lane.
Dot-Product: A dot-product of two vectors 𝐴 and 𝐵 consists of
an element-wise multiplication followed by a summation. If each
vector has 𝑁 elements, the final output can be written as:

𝐶 =

𝑁 −1∑︁
𝑖=0

𝐴𝑖 × 𝐵𝑖 (3)

The dot-product can be performed using the multiplication and
addition operations described in Section 2.2. Fig.12 shows two exam-
ples of a dot-product of two-element vectors performed in memory.
Here, 𝐴0 is multiplied with 𝐵0 and 𝐴1 with 𝐵1, after which, the

(a) Sequential (b) Parallel

Figure 12: Vector dot-product mapped to a row-parallel PIM
array. a) Computation on elements stored in a single row
can only proceed sequentially. b) Computation on elements
stored in different rows can be done in parallel, but requires
data transfer to extract the final result.

Figure 13: 2-dimensional convolution in a PIM array.
results are added. Assuming a row-parallel architecture, Fig. 12a
shows a sequential computation within a single row; Fig. 12b, a par-
allel computation spread over two rows. In the parallel version the
multiplications proceed simultaneously in separate rows. However,
this requires an intermediate read and write data transfer to bring
the results to the same row so that they can be added. In general,
an 𝑁 element dot-product having 2 ×𝑀 elements in each row uses
𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑁

𝑀
) rows. With larger numbers of rows, a larger number of

reads and writes would be required to move intermediate results
to the same rows. However, logic operations dominate the latency,
energy, and endurance. A single data transfer takes 2 sequential
operations (read/write) and at most 1 read and 1 write per cell in a
row. A multiplication takes over 20,000 sequential operations (logic
gates) and requires roughly 40 reads and writes per cell (Section
3.1). Hence, regardless of the specific data layout chosen, the per-
formance of dot-products within the memory is dominated by the
latency and efficiency of the underlying NVPIM technology’s logic
operations. For our benchmark we use 1024 element vectors with
32-bit operands.
Convolution: Inference applies a filter to a set of input neurons.
The filter consists of a set of weights. The number of weights is
typically small relative to the number of input neurons. The filter
is “slid” over the neurons. At each location the weights of the filter
are element-wise multiplied with the neurons they overlap with.
The results of these multiplications are then summed together and
finally become subject to some non-linear transformation (such as
threshold, sigmoid, or htan). The neurons and filter can be 1-, 2-, or
3-dimensional. Typically they have the same depth (z dimension),
and the filter is slid over the neurons in the x and y dimensions. Fig.
13 covers a 2-dimensional example, along with the corresponding
data placement in a PIM array.

A filter with𝐾 rows and 𝐿 columns requires𝐾×𝐿multiplications.
Each multiplication requires the corresponding input neuron and
filter weight. Fig. 13 shows all 𝐾 × 𝐿 (i.e., 4 × 4) multiplications
occurring on the same lane, hence, each lane contains 4 neurons
and 4 weights. However, they may also be distributed to multiple
lanes. For example, a single multiplication can be performed in each
lane, in which case each lane will have a single neuron and weight.

1114

On Endurance of Processing in (Nonvolatile) Memory ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

Following the layout in Fig. 13, the 4 multiplications in each lane
proceed sequentially (using the techniques described in Section
2.2). All 4 lanes can perform this computation in parallel. After
multiplication, partial results all reside within the same lane. Then,
the final sum can be generated using addition. For typical NNs, the
sum is read out from each lane, and external circuitry performs the
non-linear transformation. However, for binary NNs (BNNs) [9],
a simple comparison operation (Section 2.2) can perform a logical
threshold operation [31], producing the single bit output. In the
case where neurons and weights for a single filter location are
placed in separate lanes, the results of each multiplication cannot
be directly summed (as they reside in different lanes). Read and
write operations become inevitable after the multiplication to move
the partial results to a single lane.

In summary, regardless of the specific data layout, convolution
in a PIM array consists entirely of multiplications, additions, inter-
mediate reads and writes, and (potentially) a non-linear operation.
For our benchmark, we perform two-dimensional convolution with
a 4× 3 filter on a set of 16× 16 neurons with 8-bit precision, using a
comparison as the non-linear operation. Three multiplications are
performed sequentially and the products are added into a partial
sumwithin each lane. Then the partial sums from 4 lanes are moved
to a single lane to compute the final sum and output.
Simulation and Modeling Framework: We choose a PIM array
size of 1024 × 1024, which is a typical subarray size used for NVM
[10], large enough to perform non-trivial computations, yet small
enough to maintain electrical properties to feasibly enable PIM
[44]. We evaluate a column-parallel architecture as a more realistic
hardware implementation, requiring few modifications to existing
NVM designs [21]. We also account for the overhead for pre-setting
the output memory cell of logic operations, as is required by CRAM
architectures [6, 8, 29, 31, 43].

Due to temporally fine-grained hardware based re-mapping, each
repetition (iteration) of a benchmark can have a different write
distribution. Hence, it is necessary to fully simulate a large number
of iterations. We simulate each benchmark 100,000 times to obtain
an estimate of the overall write distribution over time. We find
write distributions for all combinations of load balancing strategies.
Specifically, we experiment with two strategies in software, random
shuffling of addresses and byte-shifting of addresses, respectively,
which we refer to as Ra and Bs. We also include a static strategy,
St, which excludes any re-mapping. Each of these strategies can be
used within lanes (rows) or between lanes (columns), giving rise to
a total of 9 different load balancing configurations (3 row strategies
× 3 column strategies). Hardware re-mapping, Hw, is applied only
within the lane (within columns and across rows) and can be turned
on or off. Hence, there is a total of 18 load balancing configurations
per benchmark.

Software re-mapping can be invoked every time the program is
recompiled. Recompiling does not come for free, hence cannot be
performed very frequently. However, more frequent re-mapping
is more effective at balancing load. Accordingly, we sweep the re-
mapping frequency (i.e., every 10, 100, 1000, and 10000 iterations
of the application) to characterize this trade-off space. Hardware
re-mapping, on the other hand, does not incur any recompilation
overhead. In this case we experiment with the most extreme case
of re-mapping on every gate that uses all lanes. For all types of re-
mapping, we assume oracular operation, as our focus is finding the
upper limit of the benefits of re-mapping6. Otherwise, we account
for architecture specific latency and energy efficiency overheads.

6As we are going to show in Section 5, even in their idealized form with no overhead,
these techniques cannot be of much help due to fundamental physical limitations.

We use write distributions to estimate the lifetime of the PIM
array by finding when the first memory cell fails. We consider this
as the failure of the entire array, because at this point the array
can produce incorrect results. Additionally, even a few failed cells
can significantly disrupt operation (Section 3.3). The lifetime of the
array hence corresponds to:

𝐿𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 =
𝐶𝑒𝑙𝑙 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒

𝑚𝑎𝑥 (𝑊𝑟𝑖𝑡𝑒𝐶𝑜𝑢𝑛𝑡) × 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (4)

We assume the same endurance for each cell, which makes our
analysis more pessimistic as the actual endurance is more likely
to vary across cells (our approach can be thought of as using the
average endurance for the expected lifetime). Specifically, we base
our analysis on MTJs (ReRAM has a much worse endurance as de-
tailed in Section 2) and assume an endurance of 1012 writes [23, 34].
Application latency is the time it takes to complete each benchmark.
We compute this by summing the latency of all operations (read,
write, and logic), assuming 3ns per operation [29, 32].

We assume that the PIM array performs each benchmark re-
peatedly, i.e., as soon as it computes the final results a new set of
inputs is loaded and the process repeats. This is indicative of typical
operation, as PIM arrays (whether used in embedded applications
or high performance servers) serve as accelerators for computa-
tional kernels. For example, an embedded device which performs
machine learning will likely only offload dot-products (used for
matrix-vector multiplication) or convolution operations to the PIM
array. Hence, the PIM array will likely have many repetitions of
the same computation.

The code for the benchmarks and the simulator to emulate the
PIM array are available at [1]. The benchmarks use a variety of
logical operations, such as multiplications, additions, and compar-
isons. These operations are mapped to sequences of logic gates
that operate on a set of logical bits (virtual memory), using rules
developed in prior work [31, 43]. For each gate in the program,
1 new bit of logical memory is allocated for the output. Logical
bits are freed once they are no longer needed. During simulation,
logical bits are mapped to physical bits consistent with the previ-
ously described load-balancing strategies (statically, randomly, or
periodically shifted). The simulation is instruction-level accurate,
and each write to each memory cell is counted. To see effects of
load-balancing over time, we simulate for 100,000 iterations.
5 EVALUATION
We start by inspecting the write distributions within the PIM array.
The more uniform the write distribution, the better. Even distribu-
tions make better use of all cells, increasing the expected time to
failure. We use heatmaps to visualize write density as shown in
Fig.14 for embarrassingly-parallel multiplication; Fig.15, for convo-
lution; and Fig.16, for dot-product, respectively. Results are labeled
by within lane (row) mapping strategy × between lanes (column)
mapping strategy along with a +Hw if hardware re-mapping applies.
As detailed in Section 4, the three options for row mapping strategy
and column mapping strategy are: Static St, Random shuffling Ra,
and Byte-shifting Bs.

For multiplication (Fig.14), the inputs are only written once,
where workspace cells are used many times. Hence, there is a large
imbalance across rows when the row mapping is static (i.e., no
within lane balancing strategy is applied). On the other hand, as this
benchmark uses all columns for computation, there is no imbalance
between columns. Row mapping strategies Ra and Bs significantly
balance the writes over rows. Adding hardware re-mapping (Hw)
on top produces a nearly even write distribution.

The convolution benchmark performs 3 × 4 convolution, with
each neuron-filter product mapped onto four columns. One of

1115

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Resch, et al.

(a) StxSt (b) RaxSt (c) BsxSt (d) StxRa (e) RaxRa (f) BsxRa (g) StxBs (h) RaxBs (i) BsxBs

(j) StxSt+Hw (k) RaxSt+Hw (l) BsxSt+Hw (m) StxRa+Hw (n) RaxRa+Hw (o) BsxRa+Hw (p) StxBs+Hw (q) RaxBs+Hw (r) BsxBs+Hw

Figure 14: Multiplication write distribution (1: maximum utilization) with re-compilation every 100 iterations.

(a) StxSt (b) RaxSt (c) BsxSt (d) StxRa (e) RaxRa (f) BsxRa (g) StxBs (h) RaxBs (i) BsxBs

(j) StxSt+Hw (k) RaxSt+Hw (l) BsxSt+Hw (m) StxRa+Hw (n) RaxRa+Hw (o) BsxRa+Hw (p) StxBs+Hw (q) RaxBs+Hw (r) BsxBs+Hw

Figure 15: Convolution write distribution (1: maximum utilization) with re-compilation every 100 iterations.

(a) StxSt (b) RaxSt (c) BsxSt (d) StxRa (e) RaxRa (f) BsxRa (g) StxBs (h) RaxBs (i) BsxBs

(j) StxSt+Hw (k) RaxSt+Hw (l) BsxSt+Hw (m) StxRa+Hw (n) RaxRa+Hw (o) BsxRa+Hw (p) StxBs+Hw (q) RaxBs+Hw (r) BsxBs+Hw

Figure 16: Dot-product write distribution (1: maximum utilization) with re-compilation every 100 iterations.
the four columns is used for the final sum. Hence, convolution
(Fig.15) over-utilizes one-fourth; under-utilizes three-fourths of
the columns. Convolution also uses an initial parallel multiplica-
tion, which results in an imbalance across rows. Row re-mapping
strategies are generally effective at balancing out the row usage.
For columns, on the other hand, Bs is ineffective as highly used
columns overlap when shifted by an integer number of bytes.

Dot-product (Fig.16) heavily uses columns at low addresses, as
partial sums are repeatedly moved to lower addresses to perform
the reduction sum. Hence, there is a significant imbalance across
columns, which both Ra and Bs manage to overcome.

Considering the write distributions, we compute the lifetime
of the PIM array with Equation 4. Assuming 3ns per operation
[31, 32], and and endurance of 1012 writes [23, 34], the lifetime

1116

On Endurance of Processing in (Nonvolatile) Memory ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) Multiplication (b) Convolution (c) Dot-Product

Figure 17: Lifetime improvement under different load-balancing strategies in terms of number of operations before failure.
Strategies: Static (St), Random-shuffling (Ra), and Byte-shifting (Bs) in software, along with remapping in hardware (Hw).
Table 3: Lifetime improvement of a 1024 × 1024 PIM array
performing each benchmark continuously.

Benchmark Avg Lane Utilization Lifetime Improvement
Multiplication 100% 1.59×
Convolution 84.78% 2.22×
Dot-Product 65.2% 2.11×

in days for a PIM array performing each benchmark non-stop is
reported in Table 3. Also reported is the maximum lifetime achieved
with load balancing strategies. It should be noted that imbalance
impacts lifetime in multiple ways. For example, the large imbal-
ance in dot-product causes some cells to fail sooner, which reduces
lifetime. However, the imbalance also means that many columns
are inactive for a large percentage of the time (dot-product exploits
less parallelism than embarrassingly parallel multiplication, and
therefore has fewer writes per unit time). If pre-mature failures
resulting from imbalance are avoided, dot-product can result in a
longer lifetime as it is less demanding on the PIM array.

Lifetime estimates under different load-balancing strategies rel-
ative to no re-mapping (i.e., St × St) are provided in Fig.17a for
multiplication; in Fig.17b, for convolution; and in Fig. 17c, for dot-
product, respectively. Multiplication has no imbalance between
lanes (columns), so it only benefits from within-lane (row) balanc-
ing strategies. Specifically, St × Ra and St × Bs do not provide any
benefit. Convolution has some imbalance between lanes (columns),
and therefore benefits from balancing between lanes (columns).
Notably, since convolution is write-heavy in every fourth column,
byte shifting (Bs) the columns does not help (St × Bs provides no
benefit): Shifting columns by an integer number of bytes re-maps
write-heavy columns to other write-heavy columns. Dot-product,
which has a large imbalance in both rows and columns, shows
significant improvement from load-balancing in both dimensions.

For software strategies, we found that the frequency of re-compiling
does not need to be high. Over 100,000 total iterations of the bench-
marks, we tested re-mapping every 10000, 1000, 500, 100, 50, and 10
iterations. We found that the expected lifetime saturates at approxi-
mately every 50 iterations. Over all benchmarks and configurations
that improved from 50 to 10 iterations, the improvement was on
average only 1.6%. Hence, re-compiling every 50 iterations over
100,000 iterations (after every 0.05% of the total iterations) provides
nearly optimal write distributions. As the PIM array is expected
to perform many more than 100,000 iterations, the frequency of
re-compilation can be significantly reduced. For benchmarks that
were re-compiled every 0.05% of the iterations, the expected life-
time was on average 1.71 × 1011 iterations. Hence, re-compilation

on average would only need to be performed approximately ev-
ery 85,000,000 iterations. This infrequent re-compilation incurs
relatively low overhead.

6 RELATEDWORK
Prior work primarily has developed load balancing techniques for
NVM, which are not directly applicable to NVPIM. In the following
we will briefly cover the most representative. Prior to Start-Gap
[27] large tables were typically used to track write counts and
consequently remap virtual addresses to physical addresses. Start-
Gap instead only uses a couple of registers to perform algebraic re-
mapping, significantly reducing overhead. Methods to cancel write
operations to reduce the total number of writes to memory also
exist [26]. WELCOMF [24] develops a word compression algorithm
to reduce the number of required writes to NVM. Wen et. al. [38]
develop strategies to lower the strain on RRAM crossbars during
write operations. WoLFRaM [42] randomly remaps write operations
on the fly and avoids failed cells via remapping. Very few papers
cover PIM, and only for limited applications. For example, ReNew
[39] develops numerous strategies mitigating writes for neural
network training on RRAM cross-bars.

7 CONCLUSION
Many NVPIM accelerators have been proposed in recent years
[12, 17, 31, 41], promising high performance and energy efficiency.
Unlocking this performance and energy efficiency potential is im-
possible without addressing endurance limitations, especially for
high-performance systems such as [17, 21, 31]. Architectures for
low-power, embedded applications such as [2, 25, 29], on the other
hand, typically have lower duty-cycles (performing computations
relatively infrequently) which result in longer lifetimes. Still, en-
durance limitations remain a critical design challenge.

Unfortunately, despite significant improvements in lifetime due
to re-mapping strategies shown in Fig.17, and further highlighted in
Table 3, the limitations imposed by endurance remain. Even with ag-
gressive load balancing strategies estimated lifetime of NVPIM arrays
remain dramatically lower than the expected lifetime of standard
NVM, typically spanning several years [27]. This underlines the need
for PIM specific optimizations at the technology (device and material)
level to match the unprecedented endurance demand of NVPIM. While
endurance limitations make it a challenge to build NVPIM systems
with devices available today, major improvements to device endurance
[18, 37] are expected in the coming years.

1117

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Resch, et al.

REFERENCES
[1] 2023. PIM Endurance Simulator. https://github.com/SalonikResch/

PIMenduranceSimulator.git.
[2] Shahanur Alam, Chris Yakopcic, and Tarek M Taha. 2022. Memristor Based

Federated Learning for Network Security on the Edge using Processing in Mem-
ory (PIM) Computing. In 2022 International Joint Conference on Neural Networks
(IJCNN). IEEE, 1–8.

[3] Elia Ambrosi, Alessandro Bricalli, Mario Laudato, and Daniele Ielmini. 2019.
Impact of oxide and electrode materials on the switching characteristics of oxide
ReRAM devices. Faraday discussions 213 (2019), 87–98.

[4] Zhenhua Cai, Jiayun Lin, Fang Liu, Zhiguang Chen, and Hongtao Li. 2020. NVM-
Cache: Wear-Aware Load Balancing NVM-based Caching for Large-Scale Storage
Systems. In 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applica-
tions, Big Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE,
657–665.

[5] Peter R Cappello and Kenneth Steiglitz. 1983. A VLSI layout for a pipelined
Dadda multiplier. ACM Transactions on Computer Systems (TOCS) 1, 2 (1983),
157–174.

[6] Zamshed Chowdhury, Jonathan D Harms, S Karen Khatamifard, Masoud Zabihi,
Yang Lv, Andrew P Lyle, Sachin S Sapatnekar, Ulya R Karpuzcu, and Jian-Ping
Wang. 2017. Efficient in-memory processing using spintronics. IEEE Computer
Architecture Letters 17, 1 (2017), 42–46.

[7] Zamshed Chowdhury, S Karen Khatamifard, Salonik Resch, Husrev Cilasun,
Zhengyang Zhao, Masoud Zabihi, Meisam Razaviyayn, Jian-Ping Wang, Sachin
Sapatnekar, and Ulya R Karpuzcu. 2022. CRAM-Seq: Accelerating RNA-Seq
Abundance Quantification using Computational RAM. IEEE Transactions on
Emerging Topics in Computing (2022).

[8] Hüsrev Cılasun, Salonik Resch, Zamshed Iqbal Chowdhury, Erin Olson, Masoud
Zabihi, Zhengyang Zhao, Thomas Peterson, Jian-PingWang, Sachin S Sapatnekar,
and Ulya Karpuzcu. 2020. Crafft: High resolution fft accelerator in spintronic
computational ram. In 2020 57th ACM/IEEE Design Automation Conference (DAC).
IEEE, 1–6.

[9] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[10] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P Jouppi. 2012. Nvsim: A circuit-
level performance, energy, and area model for emerging nonvolatile memory.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
31, 7 (2012), 994–1007.

[11] Alessandro Grossi, Elisa Vianello, Mohamed M Sabry, Marios Barlas, Laurent
Grenouillet, Jean Coignus, Edith Beigne, Tony Wu, Binh Q Le, Mary K Wootters,
et al. 2019. Resistive RAM endurance: Array-level characterization and correction
techniques targeting deep learning applications. IEEE Transactions on Electron
Devices 66, 3 (2019), 1281–1288.

[12] Saransh Gupta, Mohsen Imani, and Tajana Rosing. 2018. Felix: Fast and energy-
efficient logic inmemory. In 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 1–7.

[13] Christian Hakert, Kuan-Hsun Chen, Paul R Genssler, Georg von der Brüggen,
Lars Bauer, Hussam Amrouch, Jian-Jia Chen, and Jörg Henkel. 2020. Softwear:
Software-only in-memory wear-leveling for non-volatile main memory. arXiv
preprint arXiv:2004.03244 (2020).

[14] Zhezhi He, Yang Zhang, Shaahin Angizi, Boqing Gong, and Deliang Fan. 2018.
Exploring a SOT-MRAM based in-memory computing for data processing. IEEE
Transactions on Multi-Scale Computing Systems 4, 4 (2018), 676–685.

[15] John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier.

[16] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sengupta,
Bikash Sharma, and Moinuddin K Qureshi. 2017. FlashBlox: Achieving Both
Performance Isolation and Uniform Lifetime for Virtualized SSDs.. In FAST, Vol. 17.
375–390.

[17] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. Floatpim:
In-memory acceleration of deep neural network training with high precision.
In Proceedings of the 46th International Symposium on Computer Architecture.
802–815.

[18] Andrew D Kent and Daniel C Worledge. 2015. A new spin on magnetic memories.
Nature nanotechnology 10, 3 (2015), 187–191.

[19] SangBum Kim, Geoffrey W Burr, Wanki Kim, and Sung-Wook Nam. 2019. Phase-
change memory cycling endurance. MRS Bulletin 44, 9 (2019), 710–714.

[20] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald,
Eby G Friedman, Avinoam Kolodny, and Uri C Weiser. 2014. MAGIC—Memristor-
aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs 61, 11
(2014), 895–899.

[21] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.
Pinatubo: A processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories. In Proceedings of the 53rd Annual Design
Automation Conference. 1–6.

[22] Jeffry Louis, Barak Hoffer, and Shahar Kvatinsky. 2019. Performing memristor-
aided logic (MAGIC) using STT-MRAM. In 2019 26th IEEE International Conference
on Electronics, Circuits and Systems (ICECS). IEEE, 787–790.

[23] Sadahiko Miura, Koichi Nishioka, Hiroshi Naganuma, TV Anh Nguyen, Hiroaki
Honjo, Shoji Ikeda, Toshinari Watanabe, Hirofumi Inoue, Masaaki Niwa, Takaho

Tanigawa, et al. 2020. Scalability of Quad Interface p-MTJ for 1X nm STT-MRAM
With 10-ns Low Power Write Operation, 10 Years Retention and Endurance>
1011 . IEEE Transactions on Electron Devices 67, 12 (2020), 5368–5373.

[24] Arijit Nath and Hemangee K Kapoor. 2020. WELCOMF: wear leveling assisted
compression using frequent words in non-volatile main memories. In Proceedings
of the ACM/IEEE International Symposium on Low Power Electronics and Design.
157–162.

[25] Keni Qiu, Nicholas Jao, Mengying Zhao, Cyan Subhra Mishra, Gulsum Guduk-
bay, Sethu Jose, Jack Sampson, Mahmut Taylan Kandemir, and Vijaykrishnan
Narayanan. 2020. ResiRCA: A resilient energy harvesting ReRAM crossbar-
based accelerator for intelligent embedded processors. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 315–327.

[26] Moinuddin KQureshi, MicheleM Franceschini, and Luis A Lastras-Montano. 2010.
Improving read performance of phase change memories via write cancellation
and write pausing. In HPCA-16 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture. IEEE, 1–11.

[27] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-
vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In Proceedings of the 42nd
annual IEEE/ACM international symposium on microarchitecture. 14–23.

[28] S Ravi, Govind Shaji Nair, Rajeev Narayan, and Harish M Kittur. 2015. Low power
and efficient dadda multiplier. Research Journal of Applied Sciences, Engineering
and Technology 9, 1 (2015), 53–57.

[29] Salonik Resch, S Karen Khatamifard, Zamshed I Chowdhury, Masoud Zabihi,
Zhengyang Zhao, Husrev Cilasun, Jian-Ping Wang, Sachin S Sapatnekar, and
Ulya R Karpuzcu. 2020. MOUSE: Inference in non-volatile memory for energy
harvesting applications. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 400–414.

[30] Salonik Resch, S Karen Khatamifard, Zamshed I Chowdhury, Masoud Zabihi,
Zhengyang Zhao, Husrev Cilasun, Jian-Ping Wang, Sachin S Sapatnekar, and
Ulya R Karpuzcu. 2021. Energy Efficient and Reliable Inference in Nonvolatile
Memory under Extreme Operating Conditions. ACM Transactions on Embedded
Computing Systems (TECS) (2021).

[31] Salonik Resch, S Karen Khatamifard, Zamshed Iqbal Chowdhury, Masoud Zabihi,
Zhengyang Zhao, Jian-Ping Wang, Sachin S Sapatnekar, and Ulya R Karpuzcu.
2019. Pimball: Binary neural networks in spintronic memory. ACM Transactions
on Architecture and Code Optimization (TACO) 16, 4 (2019), 1–26.

[32] Daisuke Saida, Saori Kashiwada, Megumi Yakabe, Tadaomi Daibou, Naoki Hase,
Miyoshi Fukumoto, Shinji Miwa, Yoshishige Suzuki, Hiroki Noguchi, Shinobu
Fujita, et al. 2016. Sub-3 ns pulse with sub-100 𝜇A switching of 1x–2x nm
perpendicular MTJ for high-performance embedded STT-MRAM towards sub-20
nm CMOS. In 2016 IEEE Symposium on VLSI Technology. IEEE, 1–2.

[33] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 273–287.

[34] Yohei Shiokawa, Eiji Komura, Yugo Ishitani, Atsushi Tsumita, Keita Suda, Yuji
Kakinuma, and Tomoyuki Sasaki. 2019. High write endurance up to 1012 cycles
in a spin current-type magnetic memory array. AIP Advances 9, 3 (2019), 035236.

[35] Zainab Swaidan, Rouwaida Kanj, Johnny El Hajj, Edward Saad, and Fadi Kurdahi.
2019. RRAM Endurance and Retention: Challenges, Opportunities and Implica-
tions on Reliable Design. In 2019 26th IEEE International Conference on Electronics,
Circuits and Systems (ICECS). IEEE, 402–405.

[36] Whitney J Townsend, Earl E Swartzlander Jr, and Jacob A Abraham. 2003. A
comparison of Dadda andWallace multiplier delays. InAdvanced signal processing
algorithms, architectures, and implementations XIII, Vol. 5205. International Society
for Optics and Photonics, 552–560.

[37] Jian-Ping Wang, Sachin S Sapatnekar, Chris H Kim, Paul Crowell, Steve Koester,
Supriyo Datta, Kaushik Roy, Anand Raghunathan, X Sharon Hu, Michael Niemier,
et al. 2017. A pathway to enable exponential scaling for the beyond-CMOS era.
In Proceedings of the 54th Annual Design Automation Conference 2017. 1–6.

[38] WenWen, Youtao Zhang, and Jun Yang. 2018. Wear leveling for crossbar resistive
memory. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
IEEE, 1–6.

[39] Wen Wen, Youtao Zhang, and Jun Yang. 2019. ReNEW: Enhancing lifetime for
ReRAM crossbar based neural network accelerators. In 2019 IEEE 37th Interna-
tional Conference on Computer Design (ICCD). IEEE, 487–496.

[40] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson. 2010. Phase change
memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[41] T Patrick Xiao, Christopher H Bennett, Ben Feinberg, Sapan Agarwal, and
Matthew J Marinella. 2020. Analog architectures for neural network acceleration
based on non-volatile memory. Applied Physics Reviews 7, 3 (2020), 031301.

[42] Leonid Yavits, Lois Orosa, Suyash Mahar, João Dinis Ferreira, Mattan Erez, Ran
Ginosar, and Onur Mutlu. 2020. WoLFRaM: Enhancing wear-leveling and fault
tolerance in resistive memories using programmable address decoders. In 2020
IEEE 38th International Conference on Computer Design (ICCD). IEEE, 187–196.

[43] Masoud Zabihi, Zamshed Iqbal Chowdhury, Zhengyang Zhao, Ulya R Karpuzcu,
Jian-Ping Wang, and Sachin S Sapatnekar. 2018. In-memory processing on the
spintronic CRAM: From hardware design to application mapping. IEEE Trans.
Comput. 68, 8 (2018), 1159–1173.

1118

https://github.com/SalonikResch/PIMenduranceSimulator.git
https://github.com/SalonikResch/PIMenduranceSimulator.git

On Endurance of Processing in (Nonvolatile) Memory ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

[44] Masoud Zabihi, Arvind K Sharma, Meghna G Mankalale, Zamshed Iqbal Chowd-
hury, Zhengyang Zhao, Salonik Resch, Ulya R Karpuzcu, Jian-Ping Wang, and
Sachin S Sapatnekar. 2020. Analyzing the effects of interconnect parasitics in
the stt cram in-memory computational platform. IEEE Journal on Exploratory
Solid-State Computational Devices and Circuits 6, 1 (2020), 71–79.

[45] Masoud Zabihi, Zhengyang Zhao, DC Mahendra, Zamshed I Chowdhury, Sa-
lonik Resch, Thomas Peterson, Ulya R Karpuzcu, Jian-Ping Wang, and Sachin S
Sapatnekar. 2019. Using spin-Hall MTJs to build an energy-efficient in-memory
computation platform. In 20th International Symposium on Quality Electronic

Design (ISQED). IEEE, 52–57.
[46] Meiran Zhao, Huaqiang Wu, Bin Gao, Xiaoyu Sun, Yuyi Liu, Peng Yao, Yue Xi,

Xinyi Li, Qingtian Zhang, Kanwen Wang, et al. 2018. Characterizing endurance
degradation of incremental switching in analog RRAM for neuromorphic systems.
In 2018 IEEE International Electron Devices Meeting (IEDM). IEEE, 20–2.

[47] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy
efficient main memory using phase change memory technology. ACM SIGARCH
computer architecture news 37, 3 (2009), 14–23.

1119

	Abstract
	1 Introduction
	2 Background
	2.1 Nonvolatile Devices
	2.2 PIM Architectures

	3 Impact of PIM on Endurance
	3.1 Endurance Demand under PIM
	3.2 Load Balancing under NVPIM
	3.3 Using PIM Arrays with Failed Cells

	4 Evaluation Setup
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

