
Barrier Synchronization vs. Voltage Noise: A
Quantitative Analysis*

Zamshed I. Chowdhury
University of Minnesota
chowh005@umn.edu

Tali Moreshet
Boston University

talim@bu.edu

S. Karen Khatamifard
University of Minnesota

khatami@umn.edu

R. Iris Bahar
Brown University

ruth bahar@brown.edu

Zhaoyong Zheng
Brown University

zhaoyong zheng@brown.edu

Ulya R. Karpuzcu
University of Minnesota

ukarpuzc@umn.edu

Abstract—Synchronization is the key to guaranteeing correct
execution of parallel programs at any scale. Barriers represent
heavily used synchronization primitives which prevent parallel
tasks from proceeding to subsequent stages of computation before
all tasks are done with previous stages. Accordingly, all tasks
wait at a barrier until the slowest tasks finish, at which point all
tasks can proceed to the next stage of computation. This usually
translates into an abrupt change in the activity, i.e., current
demand from the power delivery network, and if not orchestrated
properly, can easily lead to voltage emergencies. In this study we
characterize the impact of different barrier structures on voltage
noise.
Index Terms—barrier synchronization, voltage noise

I. MOTIVATION

By construction, the current demand from the power delivery
network (PDN) closely tracks activity of logic and memory
blocks. Therefore, over the course of execution, changes in
workload activity inevitably result in spatio-temporal changes
in the current demand I . Under a fixed power budget P , due
to P = V × I , this in turn renders fluctuations in the supply
voltage V . As a result, V may deviate from its nominal value,
VNOM (the ideal operating voltage for which the system is
designed). While overshoots over VNOM challenge the physical
integrity of the PDN, undershoots, which form the focus of this
study, directly affect the operating speed due to the operating
frequency f being proportional to V. A lower effective operating
V than VNOM can result in significant slow-down such that
operation at the nominal frequency fNOM becomes impossible
and timing errors emerge.

The typical design practice for dealing with voltage noise
(i.e., worst-case fluctuations around VNOM) is to add a voltage
guardband to mask its impact. Voltage noise comes in two
flavors: 1) The parasitic resistance R of the PDN causes a
voltage drop (with respect to VNOM), proportional to I ×R,
irrespective of the rate of change in activity, and 2) the parasitic
inductance L of the PDN causes voltage undershoots or droops
(again, with respect to VNOM), proportional to L×dI/dt. For
case 2), the magnitude of voltage droops evolves as a function
of how abruptly the activity (i.e., current demand) changes over
time (dI/dt). Tailoring the voltage guardband to mask dI/dt
induced droops is more challenging, simply because predicting
potential changes in runtime activity is harder, where an overly

This work was supported in part by NSF grant no. CCF-1438286.

conservative guardband can only degrade energy efficiency.
At the same time, even a conservative guardband may miss
worst-case droops and can still lead to voltage emergencies.
This is especially concerning for activity patterns matching the
resonance frequency of the PDN, where PDN parasitics, and
hence voltage noise, assume their peak values.

As a fundamental construct to guaranteeing correct execution
of parallel programs, barrier synchronization, by definition, can
induce particularly problematic activity patterns. All parallel
tasks or threads wait at a barrier until the slowest thread
finishes computation. Only at that time, all threads can proceed
to the next stage of computation. This usually translates
into an abrupt change in the activity, i.e., dI/dt, and if not
orchestrated properly, can induce voltage emergencies. Figure 1
demonstrates this effect, which gets exacerbated at higher thread
(core) count.

Time (ns)

Vo
lta

ge
 (V

)

0.
2

0.
6

1.
0

1.
4

900 1000 1100 1200

8 cores
16 cores
32 cores

Fig. 1: Barrier induced voltage noise. Each thread runs on a
separate core. The x-axis captures the activity in the vicinity
of a representative barrier.

As critical constructs for the correctness and speed of
parallel execution, the vast majority of barrier proposals are
performance-optimized [1], [2]. Barrier synchronization has
three phases: (i) arrival at the barrier; (ii) waiting in the barrier
(for arrival of the slowest thread); (iii) release from the barrier.
Performance optimization aims to minimize the time spent
across all phases, irrespective of the impact on voltage noise.
Program specifics and execution dynamics dictate phases (i)
and (ii), which leaves very limited room for performance
optimization. This picture, however, changes for phase (iii),
which features a rich optimization space for thread release
schedules. At the other end of the spectrum reside power-
optimized barriers [3], [4], where the focus shifts to phase (ii),
usually by bringing threads to deep-sleep states to minimize

*This paper was accepted as a short paper978-1-7281-4045-2/19/$31.00 ©2019 IEEE 263

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

power waste during waiting, irrespective of the impact on
voltage noise. In fact, power-optimized barriers thereby increase
the activity differential and exacerbate voltage noise.

As intuition suggests, a voltage-noise-optimized barrier must
prevent such abrupt activity changes, i.e., avoid transitioning
between highest and lowest activity states. The goal in this
case primarily becomes smoothening the activity differential
between phases (ii) and (iii), respectively, which usually
translates into a slower thread release schedule than enabled
by performance-optimized barriers. While voltage-noise-aware
barrier proposals exists (e.g., [5]), we argue in this paper that
performance-optimized barriers often can achieve a similar
voltage signature, at the same time, without compromising
performance. This is because performance-optimized barriers
cannot afford deep-sleep states in phase (ii) which incur very
long wake-up times. Therefore, the activity differential between
phases (ii) and (iii) cannot be substantial, by construction.

Both, the (dynamic) barrier count and the (time) distance
between subsequent barrier invocations determine the voltage
signature. Typical scientific applications feature many barriers
that usually are close enough (in the dynamic execution trace)
to exhaust the voltage guardband. Such barriers primarily
demarcate parallel loops to prevent race conditions. Voltage
droops can only become more pronounced if the PDN does
not have enough time to recover between subsequent barrier
invocations. At the same time, most of these applications
conform to weak scaling [6], i.e., the problem size naturally
expands as higher number of cores (i.e., threads) become
available, which challenges barrier-induced voltage noise
mitigation further (see Figure 1).

We demonstrate, in this paper, that performance-optimized
barriers often provide a better performance versus voltage-
noise trade-off than naı̈ve voltage-noise-aware barriers. The
rest of the paper is organized as follows: Section II covers the
related work; Section III, the basics; Sections IV and V, the
evaluation; and Section VI, a discussion and summary of our
findings.

II. RELATED WORK

As we will detail in Section III, different implementations
of performance-optimized barriers [1], [2] and voltage-noise-
aware barriers [5] exist. On the other hand, power-optimized
barriers [3], [4], focus on minimizing power dissipation during
the wait time in the barrier by having the waiting threads
transition to lower power states and staying there until the
slowest thread arrives. For example, the Thrifty Barrier [3]
determines specific low power states of each waiting thread as
a function of anticipated wait time at the barrier, which in turn
gets estimated from past execution history. Unfortunately, these
policies typically exacerbate voltage noise. Previous stressmark
generation proposals focusing on capturing and characteriz-
ing resonance [7]–[10] also emphasize the significance of
synchronization and alignment of microarchitectural events.
EmerGPU [11] further analyzes resonance effects in GPUs due
to lock-step (SIMD) execution. Orchestrator [12] demonstrates
how activity-guided thread scheduling can help mitigate voltage

noise. However, none of these studies, including the rich body
of work on voltage noise mitigation at the architecture level
(e.g., [13]), focus on barrier-induced voltage noise.

III. BASICS

We will next take a closer look into representative performance-
optimized and voltage-noise-aware barriers, and will compare
and contrast them, considering the three phases of barrier
execution.

A. Voltage-Noise-Aware Barriers

Voltage-noise-optimized barriers must avoid abrupt activity
changes, specifically when it comes to transitioning from phase
(ii) to phase (iii). Threads may go to deep sleep or simply
wait idle in phase (ii). Even if deep sleep is not the case, there
is a significant difference in activity between idle wait in phase
(ii) and (active) release in phase (iii). Therefore, releasing
threads in a staggered fashion can help prevent abrupt changes
in activity.

Linear Exit (LE) and Bulk Exit (BE) barriers [5] represent
two voltage-noise-aware barrier implementations based on this
idea. The LE barrier releases one thread at a time, in the
reverse order of arrival. The time between the release of each
individual thread, ∆, is a critical design parameter dictating
the performance overhead. The performance overhead grows
as N × ∆, where N reflects the number of threads. The BE
barrier, on the other hand, releases threads in batches of size
B, where 1 < B < N applies. Similar to LE, before release,
each batch waits ∆ time after the release of the previous batch.
Accordingly, the performance overhead grows asymptotically
by N/B × ∆. While the performance overhead reduces with
increasing batch size B, the activity differential between phases
(ii) and (iii) tends to increase. Therefore, compared to LE,
BE results in higher voltage noise in exchange for lower
performance overhead.
B. Performance-Optimized Barriers

Performance-optimized barriers cannot afford deep-sleep states
in phase (ii), since they usually incur very long wake-up times.
The distinctive feature of performance-optimized barriers is
some form of busy-wait in phase (ii), which usually also helps
optimize the thread release schedule in phase (iii). In phase
(iii), threads can leave the barrier in batches or individually.
The key is communicating to each thread that it is time to
proceed. Accordingly, the busy-wait in phase (ii) mainly entails
communicating the other threads’ arrival among all the threads
until reaching a consensus that all threads have arrived at the
barrier. We will cover three representative examples next.

Dissemination Barrier (DB): Dissemination Barriers [2]
rely on multiple rounds of pair-wise communication among
threads based on a predefined gossip protocol in order to
disseminate arrival information in phase (ii). After the last
round of communication in phase (ii), staggered thread release
in phase (iii) takes a very similar form to LE, but assuming a
much smaller ∆.

Tree Barrier (MCS): Tree Barriers [1] maintain a tree to
record and communicate the thread arrival times in phase (ii).

264

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

Every node in the arrival tree has a preset number of children
nodes corresponding to threads, which notify their parents as
soon as they arrive at the barrier. Once the root node and all
of its children have arrived at the barrier, thread release can
start in phase (iii). The thread release schedule follows the
traversal of this tree starting from the root, where each node
triggers the release of its children once done. Therefore, MCS
releases threads in batches as well, but the batch size increases
as we get closer to the leaves.

Tournament Barrier (TOURN): Tournament Barriers [2]
are similar to DB, except that at each round two threads
compete with each other, where only the winner proceeds
to the next round. A champion emerges at the end of the
last round, which indicates that all threads have arrived at the
barrier. At this point, the champion triggers thread release in
phase (iii), and the trigger signal propagates to previous rounds
recursively. TOURN, as well, releases threads in batches. As
each round features a different number of threads, the batch
size varies during release.

IV. EVALUATION SETUP

Simulation Framework: We deploy Sniper [14] integrated
with a revised version of McPAT [15] to collect runtime power
traces which capture microarchitectural activity as a function
of time. The simulated system closely mimics POWER7 [16]
in accordance with the revised power model [15], where
VNOM=1.01V. We experiment with a core (thread) count of 8
and 32. Voltage noise analysis comes from Voltspot, a pre-RTL
PDN model [17]. In all experiments, we pin threads to cores
to minimize simulation noise.
Barriers: We implement different performance optimized (DB,
MCS, TOURN) and voltage noise aware (LE, BE) barriers
using both OpenMP and POSIX threads. We experiment
with two representative values of ∆ for LE, 10 cycles and
20 cycles, respectively. We exclude ∆ > 20 cycles, which
results in smoother voltage signatures, yet incurs an excessive
performance overhead with increasing thread count. For a fair
comparison, we evaluate the voltage signatures under each
barrier implementation at iso-performance, i.e., we set timing
related degrees of freedom for each barrier implementation in
a way such that the performance overhead incurred by each
implementation is equal. Thereby, we equate the time spent
at each barrier, from the arrival of the first thread until the
release of the last. For each node in the arrival tree of the
MCS barrier there is a maximum of 4 children, and in the
thread release tree there is a maximum of 2. For thread release,
we experiment with batch sizes B of 2, 4, 8, and 16 for BE.
The batch size for MCS and TOURN varies between 2–16
(depending on the round of communication).
Thread Release Schedules (BE, MCS, TOURN): Since BE,
MCS, and TOURN, release threads in multiple batches, we
have the option of releasing the intermediate batches at different
points in the time window tw, between the end of release of
the first batch and the start of release of the last batch. This
decision does not have an impact on performance overhead
(where the release time of the last batch matters), but can affect

the voltage noise as different release schedules give rise to
different activity patterns over tw. To capture this effect, we
align such release times to the start (S), middle (M), and end
(E) of the time window tw in the experiments.
Baseline for Comparison: As a comparison baseline through-
out the evaluation we use an ideal, performance-optimized
barrier which does not incur any performance overhead during
release, (i.e., all threads are released simultaneously upon the
arrival of the last thread at the barrier). By construction, this
barrier features the worst voltage noise.

V. EVALUATION
A. Maximum Droop

Using ∆ = 10 cycles, Figure 2 shows the percent improvement
in maximum voltage droop (due to barrier synchronization),
compared to the maximum droop under the ideal, performance-
optimized barrier from Section IV (which by construction incurs
the worst voltage noise). We experiment with a thread count of
8 and 32 (labeled M8 and M32 for LE and DB, respectively).
As explained in Section IV, we have an additional degree of
freedom for batch scheduling during thread release for BE,
MCS and TOURN: For intermediate batches we can align the
release of any other batch to the start (S), middle (M), or end
(E) of the time window between the release of the first and last
batch. Bars labeled by SX, MX, and EX, respectively, capture
this effect for different thread counts of X=8 and 32.

Not surprisingly, we observe that LE and DB provide a
better percentage improvement when compared to other barriers
that release threads in batches with a batch size B > 1. LE
and DB both release threads one after another; therefore, the
activity differential between the waiting period in the barrier
and the release from the barrier – between phases (ii) and
(iii) – increases in the smallest possible steps over time, which
does not lead to a significant droop overall. Moreover, DB
outperforms LE by 1.53X and 1.13X for 8 and 32 threads,
respectively, since DB keeps threads highly active whereas LE
allows threads to go to sleep while waiting in the barrier. DB
thereby reduces the activity differential between phases (ii)
and (iii).

LE DB BE MCS TOURN

%
 im

pr
ov

em
en

t i
n

m
ax

 d
ro

op

0
20

40
60

80
10

0

S8 M8 E8 S32 M32 E32

Fig. 2: % improvement in maximum droop for ∆ = 10 cycles.

MCS and TOURN barriers, which rely on batch release
of threads, exhibit very similar behavior for 8 threads since
their thread release schedule takes a very similar form under
a thread count of 8. However, as the thread count increases
to 32, TOURN shows a higher improvement due to a more

265

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

pronounced difference in batch release patterns at higher thread
count. More specifically, over the course of release, the batch
size tends to reduce for TOURN, but monotonically increase
for MCS. As results show, S8, M8 and E8 differ by up to
11.6% for MCS and only by 2.5%, for TOURN. This indicates
a higher sensitivity of MCS to the alignment of batch release
schedules. As the thread count increases to 32, the difference
in S32, M32 and E32 gets even less pronounced for both.

Δ=10 Δ=20

%
 im

pr
ov

em
en

t i
n

m
ax

 d
ro

op

0
20

40
60

80

B2T8 B4T8 B2T32 B4T32 B8T32 B16T32

Fig. 3: BE’s sensitivity to batch size. BXTY : B=batch size,
T=thread count (X , Y = corresponding value of B, T).

In comparison to BE, which represents a voltage-noise-aware
barrier, both MCS and TOURN exhibit a lower improvement
in maximum voltage droop, mainly because BE features the
smallest batch size (and thereby smallest activity differential
during release) among the three. To look into this effect closer,
Figure 3 captures the impact of the batch size on the maximum
droop under BE, for both ∆ = 10 cycles and 20 cycles. Overall,
we observe that the percent improvement in maximum droop
under BE reduces with increasing batch size B, for both 8
and 32 threads. The only exception is B4T32, which shows
a marginal increase over B2T32. This is likely due to the
combined effect of B being too small relative to the total
thread count 32, and the relative alignment between the release
of batches. When the maximum batch size in MCS and TOURN
gets closer to the batch size in BE, the percent improvement
in maximum droop for each differs by less than 2% compared
to BE. This indicates that, for equal (or similar) batch size,
MCS and TOURN can closely match BE in terms of maximum
droop.

LE DB BE MCS TOURN

%
 im

pr
ov

em
en

t i
n

m
ax

 d
ro

op

0
20

40
60

80
10

0

S8 M8 E8 S32 M32 E32

Fig. 4: % improvement in maximum droop for ∆ = 20 cycles.
Figure 4 shows how the picture changes for ∆ = 20 cycles,

as the duration between two successive thread releases doubles.
Overall, when compared to Figure 2, we observe a slightly
higher improvement for all barrier implementations, as a result
of releases being further apart from each other in time, which

in turn provides more time for the PDN to settle down between
successive releases. DB outperforms LE in this case, as well,
for both 8 and 32 threads. Similar to Figure 2, MCS and
TOURN exhibit smaller improvement in comparison to BE,
mainly due to the larger effective batch size.

We have two takeaways from these experiments: First,
gradual thread release results in less voltage noise than batch
release. This makes sense intuitively since a larger batch
size implies more threads being released at the same time,
which in turn leads to a higher activity differential. Second,
at higher thread counts, performance-optimized barriers can
closely match or even exceed the maximum droop improvement
achieved by voltage-noise-aware barriers, while delivering a
better voltage noise vs. performance trade-off.

VI. CONCLUSION & DISCUSSION

As a critical construct for the correctness and the speed of
parallel execution, barrier synchronization can result in abrupt
changes in activity, and thereby induce significant voltage
noise. While the vast majority of classic proposals cover
only performance optimization to reduce the timing overhead,
recent voltage-noise-aware variants trade voltage noise with
performance.

Contrary to intuition, we argue and demonstrate in this paper
that performance-optimized barriers can achieve a similar (or
even less-noisy) voltage signature, when compared to voltage-
noise-aware variants, without compromising performance. This
is simply because performance-optimized barriers cannot afford
putting threads in deep-sleep states while waiting in the barrier,
which naturally reduces the activity differential between waiting
in the barrier and release from the barrier, the main contender
for voltage noise.

Specifically, we confirm that gradual thread release (one at
a time) renders less voltage noise than releasing threads in
batches, where performance-optimized barriers such as DB
(already relying on gradual thread release), can deliver a better
voltage noise vs. performance trade-off than voltage-noise-
aware barriers such as LE. Similarly, performance-optimized
barriers such as MCS and TOURN, which rely on batch release,
can result in similar voltage noise when compared to the
voltage-noise-aware counterpart BE, without compromising
performance.

We did not assume any specific voltage guardband through-
out the evaluation and analyzed raw voltage traces instead.
In fact, any improvement in voltage noise (i.e., maximum
droop) can translate into a reduction in the required voltage
guardband, which in turn leads to lower power dissipation at
the same performance point. We also explicitly did not include
power-optimized barrier implementations in the evaluation, as
these barriers by construction feature the highest voltage noise.
This is because minimizing power dissipation during the wait
time in the barrier almost exclusively results in the maximum
activity differential. That said, the voltage-noise-aware barriers
that we analyzed in this study all put threads to sleep (while
waiting at the barrier), hence represent voltage-noise-aware
power-optimized barriers.

266

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM TOCS, 1991.

[2] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms for barrier
synchronization,” Int. J. Parallel Prog., 1988.

[3] J. Li, J. F. Martinez, and M. C. Huang, “The thrifty barrier: energy-aware
synchronization in shared-memory multiprocessors,” in HPCA, 2004.

[4] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin, “Exploiting
barriers to optimize power consumption of cmps,” in IPDPS, 2005.

[5] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu, “Vrsync: Charac-
terizing and eliminating synchronization-induced voltage emergencies in
many-core processors,” in ISCA, 2012.

[6] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Commun. ACM, 1988.
[7] R. Bertran, A. Buyuktosunoglu, P. Bose, T. J. Slegel, G. Salem, S. Carey,

R. F. Rizzolo, and T. Strach, “Voltage noise in multi-core processors:
Empirical characterization and optimization opportunities,” in MICRO,
2014.

[8] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L. Bircher, and
M. S. S. Govindan, “Audit: Stress testing the automatic way,” in MICRO,
2012.

[9] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y. Wei,
and D. Brooks, “Voltage smoothing: Characterizing and mitigating voltage
noise in production processors via software-guided thread scheduling,”
in Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’43, (Washington, DC, USA),
pp. 77–88, IEEE Computer Society, 2010.

[10] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J. Reddi, “Safe
limits on voltage reduction efficiency in gpus: A direct measurement
approach,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 294–307, Dec 2015.

[11] R. Thomas, N. Sedaghati, and R. Teodorescu, “Emergpu: Understanding
and mitigating resonance-induced voltage noise in gpu architectures,” in
ISPASS, 2016.

[12] X. Hu, G. Yan, Y. Hu, and X. Li, “Orchestrator: A low-cost solution to
reduce voltage emergencies for multi-threaded applications,” in DATE,
2013.

[13] V. J. Reddi, M. S. Gupta, G. Holloway, G. Wei, M. D. Smith, and
D. Brooks, “Voltage emergency prediction: Using signatures to reduce
operating margins,” in 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, pp. 18–29, Feb 2009.

[14] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,”
in SC, 2011.

[15] S. L. Xi, H. Jacobson, P. Bose, G. Y. Wei, and D. Brooks, “Quantifying
sources of error in mcpat and potential impacts on architectural studies,”
in HPCA, 2015.

[16] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A.
Van Norstrand, B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie,
et al., “IBM power7 multicore server processor,” IBM J. Res. Dev., 2011.

[17] R. Zhang, K. Wang, B. H. Meyer, M. R. Stan, and K. Skadron,
“Architecture implications of pads as a scarce resource,” SIGARCH
Comput. Archit. News, 2014.

267

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

