VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches

S. Karen Khatamifard, Michael Resch, Nam Sung Kim†, Ulya R. Karpuzcu

University of Minnesota
{khatao06, resc0059, ukarpuzc}@umn.edu

†University of Illinois
nskim@illinois.edu

10/5/2016
Motivation

• Manufacturing process becomes less controllable under aggressive scaling.
Motivation

• Manufacturing process becomes less controllable under aggressive scaling.
 ➢ Deviation of device parameters from nominal becomes more likely.
Motivation

• Manufacturing process becomes less controllable under aggressive scaling.
 ➢ Deviation of device parameters from nominal becomes more likely.
 ➢ Performance and power of manufactured hardware become unpredictable.
Motivation

• Manufacturing process becomes less controllable under aggressive scaling.
 ➢ Deviation of device parameters from nominal becomes more likely.
 ➢ Performance and power of manufactured hardware become unpredictable.
 ➢ We need system-level models of variation at early stages of the design.
Motivation

• Manufacturing process becomes less controllable under aggressive scaling.
 ➢ Deviation of device parameters from nominal becomes more likely.
 ➢ Performance and power of manufactured hardware become unpredictable.
 ➢ We need system-level models of variation at early stages of the design.

• Contribution: VARIUS-TC
Motivation

• Manufacturing process becomes less controllable under aggressive scaling.
 ➢ Deviation of device parameters from nominal becomes more likely.
 ➢ Performance and power of manufactured hardware become unpredictable.
 ➢ We need system-level models of variation at early stages of the design.

• **Contribution: VARIUS-TC**
 ➢ Modeling process variation in emerging devices at architecture-level.
Thin Channel (TC) devices

Thin Channel (TC) devices

Traditional Planar CMOS

Thin Channel (TC) devices

Traditional Planar CMOS

Channel Thickness

Thin Channel (TC) devices

Traditional Planar CMOS

SOI

Channel Thickness

Thin Channel (TC) devices

Traditional Planar CMOS

SOI

Channel Thickness

Thin Channel (TC) devices

Traditional Planar CMOS SOI

Channel Thickness

Thin Channel (TC) devices

Traditional Planar CMOS

SOI

FinFET

Channel Thickness

Thin Channel (TC) devices

Traditional Planar CMOS
SOI
FinFET

Channel Thickness

Thin Channel (TC) devices

Traditional Planar CMOS SOI FinFET

Channel Thickness

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
VARIUS-TC: Overview
VARIUS-TC: Overview

VARIUS-TC

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
VARIUS-TC: Overview
VARIUS-TC: Overview

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
VARIUS-TC: Overview

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
VARIUS-TC: Overview

Floorplan

- **Device Module**
 - LUT
 - Path delay distribution
- **Circuit Module**
- **Architecture Module**

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
VARIUS-TC: Overview
VARIUS-TC: Overview

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
VARIUS-TC: Overview

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
VARIUS-TC: Overview

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
Hierarchical Variation Modeling

Systematic variation
Hierarchical Variation Modeling

Systematic variation

- Spatial correlation
Hierarchical Variation Modeling

Systematic variation
• Spatial correlation
Hierarchical Variation Modeling

Systematic variation
• Spatial correlation
Hierarchical Variation Modeling

Systematic variation

• Spatial correlation
• Grid granularity
Hierarchical Variation Modeling

Systematic variation
- Spatial correlation
- Grid granularity

Random variation
- Independent
- Device granularity

Systematic variation + Random variation
VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
Look-Up Table
Look-Up Table

LUT

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltages</td>
<td></td>
</tr>
<tr>
<td>Technology Parameters</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
</tr>
</tbody>
</table>
Look-Up Table

![LUT Diagram]

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatges</td>
<td></td>
</tr>
<tr>
<td>Technology Parameters</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
</tr>
</tbody>
</table>
Look-Up Table
Look-Up Table

LUT

Input

<table>
<thead>
<tr>
<th>Voltaages</th>
<th>Technology Parameters</th>
<th>Temperature</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output

Voltages

Temperature
Look-Up Table

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
Look-Up Table

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
Look-Up Table
Look-Up Table

• LUT vs. closed-form formula:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltages</td>
<td></td>
</tr>
<tr>
<td>Technology Parameters</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
</tr>
</tbody>
</table>
Look-Up Table

- LUT vs. closed-form formula:
 - Modularity eases experimentation with different designs (e.g., SOI variants)
Look-Up Table

- LUT vs. closed-form formula:
 - Modularity eases experimentation with different designs (e.g., SOI variants)
 - Robust closed-form formula may not always be available for emerging switches
VARIUS-TC: Overview

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
Logic Timing Model
Logic Timing Model
Logic Timing Model

Probability of a path with $\tau = \tau_i$ being exercised

τ_i
Logic Timing Model
Logic Timing Model
Logic Timing Model

\[\text{pdf} \]

\[\tau \]

\[\tau_{\text{NOM}} \]
Logic Timing Model

\[\text{pdf} \]

\[\tau_{\text{NOM}} \quad \tau_{\text{MIN}} \]
Logic Timing Model

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches

τ_{NOM} τ_{MIN}

Safe operating point
Logic Timing Model

\[f_{\text{MAX}} = \frac{1}{\tau_{\text{MIN}}} \]

Safe operating point

\(\tau_{\text{NOM}} \) \hspace{1cm} \(\tau_{\text{MIN}} \)
Logic Timing Model

\[\tau_{\text{MAX}} = \frac{1}{\tau_{\text{MIN}}} \]

Safe operating point
Logic Timing Model

Error probability if clocked at τ_{NOM}

Safe operating point

$f_{\text{MAX}} = \frac{1}{\tau_{\text{MIN}}}$
VARIUS-TC: Overview

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
Memory Model
Memory Model

- Supports 6T and 8T memory cell
Memory Model

• Supports 6T and 8T memory cell
• Timing errors
 • Write timing
 • Read timing
Memory Model

• Supports 6T and 8T memory cell
• Timing errors
 • Write timing
 • Read timing
• Stability errors
 • Hold error
 • Write Stability
Hold Error
Hold Error
Hold Error
Hold Error

- The cell is not accessed.
Hold Error

- The cell is not accessed.
- Node V_L looses its state.
Hold Error

- The cell is not accessed.
- Node V_L looses its state.
 - Excessive leakage
Hold Error

- The cell is not accessed.
- Node V_L loses its state.
 - Excessive leakage

VARIUS-TC

- Minimum V_{dd} (V_{MIN}) to exclude state loss
Evaluation Setup
Evaluation Setup

- Device parameters
 - PTM, FinFET, 16nm
Evaluation Setup

• Device parameters
 • PTM, FinFET, 16nm

• Parametric sweep
 • L_{Fin}, T_{Fin}, ϕ_g
Evaluation Setup

- Device parameters
 - PTM, FinFET, 16nm

- Parametric sweep
 - L_{Fin}, T_{Fin}, ϕ_g

- 3 levels of variation
 - low, medium, high

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low var.</th>
<th>Medium var.</th>
<th>High var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{Fin}</td>
<td>3.5%</td>
<td>7%</td>
<td>10.5%</td>
</tr>
<tr>
<td>T_{Fin}</td>
<td>3.5%</td>
<td>7%</td>
<td>10.5%</td>
</tr>
<tr>
<td>ϕ_g</td>
<td>0.16%</td>
<td>0.32%</td>
<td>0.48%</td>
</tr>
</tbody>
</table>
Evaluation Setup

• Device parameters
 - PTM, FinFET, 16nm

• Parametric sweep
 - L_{Fin}, T_{Fin}, ϕ_g

• 3 levels of variation
 - low, medium, high

• Many-core system
 - 16 tiles

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low var.</th>
<th>Medium var.</th>
<th>High var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{Fin}</td>
<td>3.5%</td>
<td>7%</td>
<td>10.5%</td>
</tr>
<tr>
<td>T_{Fin}</td>
<td>3.5%</td>
<td>7%</td>
<td>10.5%</td>
</tr>
<tr>
<td>ϕ_g</td>
<td>0.16%</td>
<td>0.32%</td>
<td>0.48%</td>
</tr>
</tbody>
</table>
Evaluation Setup

- Device parameters
 - PTM, FinFET, 16nm

- Parametric sweep
 - L_{Fin}, T_{Fin}, ϕ_g

- 3 levels of variation
 - low, medium, high

- Many-core system
 - 16 tiles
 - 4 core per tile
 - Private L1, Shared L2

Parameter Sweep Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low var.</th>
<th>Medium var.</th>
<th>High var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{Fin}</td>
<td>3.5%</td>
<td>7%</td>
<td>10.5%</td>
</tr>
<tr>
<td>T_{Fin}</td>
<td>3.5%</td>
<td>7%</td>
<td>10.5%</td>
</tr>
<tr>
<td>ϕ_g</td>
<td>0.16%</td>
<td>0.32%</td>
<td>0.48%</td>
</tr>
</tbody>
</table>
Impact on Logic Timing
Impact on Logic Timing

Planar CMOS

Kernel Density

τ_{MIN}
Impact on Logic Timing

![Graph showing kernel density for FinFET and Planar CMOS](image)

- **FinFET**
- **Planar CMOS**

The graph illustrates the impact on logic timing between FinFET and Planar CMOS technologies, showing distinct kernel density distributions for each.
Impact on Logic Timing
Impact on Logic Timing

![Graph showing kernel density distribution of τ_MIN]

- VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
- ICCD’16
- 10/5/2016
Impact on Logic Timing

more variation
Impact on Logic Timing

PV can still cause significant performance loss.
Impact on V_{MIN}
Impact on V_{MIN}
Impact on V_{MIN}

more variation
Impact on V_{MIN}

![Graph showing impact on V_{MIN}]

The graph depicts the kernel density of V_{MIN} with an arrow indicating an increase in variation. More variation is observed in the distribution.
Impact on V_{MIN}

PV can still increase the minimum operating voltage significantly.
Example Use Case
Example Use Case

- Reducing operating voltage reduces power consumption.
Example Use Case

• Reducing operating voltage reduces power consumption.
 ➢ Frequency reduces, too.
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

\[
\text{Throughput} \propto N_{\text{cores}} \times f_{\text{cores}}
\]
Example Use Case

• Reducing operating voltage reduces power consumption.
 ➢ Frequency reduces, too.

Throughput \propto N_{\text{cores}} \times f_{\text{cores}}

• Process Variation ...

\[\text{Throughput} \propto N_{\text{cores}} \times f_{\text{cores}} \]
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$

- Process Variation ...
Example Use Case

• Reducing operating voltage reduces power consumption.
 ➢ Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$

• Process Variation ...

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$

- Process Variation ...

\[\text{Throughput} \propto N_{\text{cores}} \times f_{\text{cores}} \]
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$

- Process Variation ...

Throughput vs. Power

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$
Example Use Case

• Reducing operating voltage reduces power consumption.
 ➢ Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$

• Process Variation ...

![Graph showing throughput and area vs. power for different voltages.]

Throughput is proportional to the number of cores (N_{cores}) multiplied by the frequency of the cores (f_{cores}). The graph illustrates the relationship between throughput, area, and power for different voltages, demonstrating the impact of process variation on performance metrics.
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

\[\text{Throughput} \propto N_{\text{cores}} \times f_{\text{cores}} \]

- Process Variation ...

Graph showing throughput and area vs. power for different voltages.
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$

- Process Variation ...
 - If $> 2x$ area increase is not affordable...

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$

- Process Variation...
 - If > 2x area increase is not affordable...
Example Use Case

- Reducing operating voltage reduces power consumption.
 - Frequency reduces, too.

Throughput $\propto N_{\text{cores}} \times f_{\text{cores}}$

- Process Variation ...
 - If $> 2x$ area increase is not affordable...

![Graph showing throughput and area as functions of power for different voltage levels.](image)

VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches
Related Work
Related Work

- **VARIUS-NTV** is tailored for planar CMOS only.
Related Work

- VARIUS-NTV is tailored for planar CMOS only.
- FinCANON and McPAT-PVT are architecture-level FinFET-based models.
Related Work

- **VARIUS-NTV** is tailored for planar CMOS only.
- **FinCANON** and **McPAT-PVT** are architecture-level FinFET-based models.
 - Modular
Related Work

- **VARIUS-NTV** is tailored for planar CMOS only.
- **FinCANON** and **McPAT-PVT** are architecture-level FinFET-based models.
 - Modular
 - TCAD-based device-level simulations
Related Work

• **VARIUS-NTV** is tailored for planar CMOS only.

• **FinCANON** and **McPAT-PVT** are architecture-level FinFET-based models.

 • Modular

 • TCAD-based device-level simulations

• **VARIUS-TC**’s strength
Related Work

• VARIUS-NTV is tailored for planar CMOS only.
• FinCANON and McPAT-PVT are architecture-level FinFET-based models.
 • Modular
 • TCAD-based device-level simulations
• VARIUS-TC’s strength
 • Probabilistic model to analyze processor logic and error modes of memory
Conclusion
Conclusion

- VARIUS-TC
Conclusion

• **VARIUS-TC**
 • Models process variation in *emerging devices* at *architecture-level*.
Conclusion

• **VARIUS-TC**
 • Models process variation in *emerging devices* at *architecture-level*.

• **VARIUS-TC facilities**
Conclusion

• **VARIUS-TC**
 • Models process variation in *emerging devices* at architecture-level.

• **VARIUS-TC facilities**
 • Extraction of a safe operating frequency and voltage
Conclusion

- **VARIUS-TC**
 - Models process variation in *emerging devices* at *architecture-level*.

- **VARIUS-TC facilities**
 - Extraction of a safe operating frequency and voltage
 - Generation of critical path delay, power, and V_{MIN} distributions
Conclusion

• **VARIUS-TC**
 - Models process variation in **emerging devices** at **architecture-level**.

• **VARIUS-TC** facilities
 - Extraction of a safe operating frequency and voltage
 - Generation of critical path delay, power, and V_{MIN} distributions
 - Calculation of error probabilities for
Conclusion

- **VARIUS-TC**
 - Models process variation in *emerging devices* at *architecture-level*.

- **VARIUS-TC** facilities
 - Extraction of a safe operating frequency and voltage
 - Generation of critical path delay, power, and V_{MIN} distributions
 - Calculation of error probabilities for
 - logic (timing)
Conclusion

• **VARIUS-TC**
 - Models process variation in **emerging devices** at **architecture-level**.

• **VARIUS-TC facilities**
 - Extraction of a safe operating frequency and voltage
 - Generation of critical path delay, power, and V_{MIN} distributions
 - Calculation of error probabilities for
 - logic (timing)
 - memory (timing and stability) error modes
Conclusion

• **VARIUS-TC**
 - Models process variation in *emerging devices* at *architecture-level*.

• **VARIUS-TC facilities**
 - Extraction of a safe operating frequency and voltage
 - Generation of critical path delay, power, and V_{MIN} distributions
 - Calculation of error probabilities for
 - logic (timing)
 - memory (timing and stability) error modes
 - Design space exploration
Conclusion

• **VARIUS-TC**
 - Models process variation in *emerging devices* at *architecture-level*.

• **VARIUS-TC facilities**
 - Extraction of a safe operating frequency and voltage
 - Generation of critical path delay, power, and V_{MIN} distributions
 - Calculation of error probabilities for
 - logic (timing)
 - memory (timing and stability) error modes
 - Design space exploration

• Modularity eases experimentation with different designs (e.g., SOI variants)
VARIUS-TC: A Modular Architecture-Level Model of Parametric Variation for Thin-Channel Switches

S. Karen Khatamifard, Michael Resch, Nam Sung Kim†, Ulya R. Karpuzcu

University of Minnesota
{khatami, resc0059, ukarpuzc}@umn.edu

†University of Illinois
{nskim}@illinois.edu

http://altai.ece.umn.edu/varius

10/5/2016