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Motivation
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P. Kogge, et al., “Exascale computing study: Technology challenges in achieving exascale systems,” 2008.



Amnesic Checkpointing and Recovery

• Challenge:
• Checkpoint &rollback/recovery overheads quickly dominates as the failure rate 

increases

• Need to find ways to mitigate Checkpoint &rollback/recovery overheads

• Idea: reduce the volume of data to be checkpointed by relying on cost-
effective recomputation

• Eliminate values from checkpoint set if they are recomputable (cost effectively)

• Recomputation of eliminated values is necessary only on recovery (which is less 
frequent than checkpointing)
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Amnesic Checkpointing and Recovery
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ochk = #chk x owr,chk

ACR: Amnesic Checkpointing and Recovery



Amnesic Checkpointing and Recovery

5

ochk = #chk x owr,chk

ACR: Amnesic Checkpointing and Recovery

ochk,ACR = #chk x owr,ACR



Amnesic Checkpointing and Recovery
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orecovery = #recovery x (owaste + orollback)

ochk = #chk x owr,chk

ochk,ACR = #chk x owr,ACR



Amnesic Checkpointing and Recovery
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orecovery,ACR = #recovery x (owaste,ACR + orollback,ACR + orecomp,ACR)

orecovery = #recovery x (owaste + orollback)

ochk = #chk x owr,chk

ochk,ACR = #chk x owr,ACR



Amnesic Checkpointing and Recovery
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orecovery,ACR ≤ orecovery iff (orollback,ACR + orecomp,ACR) ≤ orollback
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Baseline Checkpointing

• Global checkpointing

• In-memory

• Log-based
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Baseline Checkpointing
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Ckpt 1Ckpt 0

values to be checkpointed
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Ckpt 1Ckpt 0

values to be checkpointed

checkpoint

ACR: Amnesic Checkpointing and Recovery



Amnesic Checkpointing
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Ckpt 1Ckpt 0

values to be checkpointed

values can be recomputed

checkpointx x
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Baseline Recovery

14

Ckpt 1Ckpt 0
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Baseline Recovery
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Ckpt 1Ckpt 0
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Amnesic Recovery
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Ckpt 1Ckpt 0
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values to be checkpointed
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Amnesic Recovery
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Amnesic Recovery

18

Ckpt 1Ckpt 0
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fault values can be recomputed
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restore and rollback
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recompute +
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How to Recompute a Value?
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How to Recompute a Value?
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How to Recompute a Value?
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How to Recompute a Value?
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i j i j

j = i* j

incr i

sumArr[i] = i + j



How to Recompute a Value?
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i j i j

j = i* j

incr i

sumArr[i] = i + j

slice



How to form Slices?
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i j

j = i* j

incr i

sumArr[i] = i + j

slice

• Compiler identifies them
• Select cost-effective ones (i.e., short ones)

(orollback,ACR + orecomp,ACR) ≤ orollback



How to use Slices?
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• Need to know start address of the slice

• Need to communicate it to runtime
• ASSOC-ADDR: <memory address,  slice address>

• automatically executed with the corresponding store

• <memory address,  slice address> is recorded in buffer: AddrMap

• If recovery needed
• Look into AddrMap for active Slices

• Recompute values whose Slices are recorded in AddrMap



Amnesic Checkpoint and Recovery
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Amnesic Checkpoint and Recovery
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Amnesic Checkpoint and Recovery
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checkpoint
needed

A value can be 
recomputed? 
(i.e., has slice)

omit from checkpoint 
& update AddrMap

add to checkpoint

yes no

recovery needed

AddrMap has a 
match?

recompute values 
that are missing

restore the values 
from checkpoint

yes no

restore the rest from 
checkpoint
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Evaluation
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Recomputation Enabled Checkpointing – Setup
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• NAS benchmarks

• Amnesic compiler pass mimicked by binary instrumenting Pintool

• Microarchitecture and scheduler implemented in Snipersim

• 1.09 GHz, 4-issue, inorder core: 8/16/32 cores and 8/16/32 threads

• L1: 32KB, 4-way

• L2: 512KB, 8-way

• Ideal Baseline (no checkpoint, no recovery)

• Global coordinated

• Local coordinated
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Performance Overhead – Checkpoint and Recovery
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Performance Overhead – Checkpoint and Recovery
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up to 26.68% (12.39% on average) reduction on checkpoint and recovery 
overhead
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EDP Reduction – Recovery

35ACR: Amnesic Checkpointing and Recovery



36

up to 48.07% (23.41% on average) EDP gain
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EDP Reduction – Recovery



Footprint Size Reduction
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Footprint Size Reduction
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up to 58.3% (23.91% on average) memory footprint size reduction
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Thread Count
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Thread Count
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up to 28%, 17% (is), and 19% (mg) reduction for 8-, 16-, 32-threads,respectively
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Global vs Coordinated Local Checkpointing
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Global vs Coordinated Local Checkpointing
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up to 42% (ft) reduction w.r.t. Ckpt_NF of global checkpointing
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Global vs Coordinated Local Checkpointing
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up to 33% (ft) reduction w.r.t. Rec_Ckpt_NF of global checkpointing
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up to 42% (ft) reduction w.r.t. Ckpt_NF of global checkpointing



Global vs Coordinated Local Checkpointing
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Global vs Coordinated Local Checkpointing
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up to 31% (is) reduction w.r.t. Ckpt_F of global checkpointing
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Global vs Coordinated Local Checkpointing
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up to 26% (mg) reduction w.r.t. Rec_Ckpt_F of global checkpointing
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up to 31% (is) reduction w.r.t. Ckpt_F of global checkpointing



Summary

• Effective in reducing checkpoint overhead

• Power and performance

• Reduces checkpoint footprint size (i.e., storage reduction)

• Low-cost recovery
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Questions and Comments

???
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