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Motivation
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Amnesic Checkpointing and Recovery

e Challenge:

* Checkpoint &rollback/recovery overheads quickly dominates as the failure rate
increases

* Need to find ways to mitigate Checkpoint &rollback/recovery overheads

e [dea: reduce the volume of data to be checkpointed by relying on cost-
effective recomputation
e Eliminate values from checkpoint set if they are recomputable (cost effectively)

e Recomputation of eliminated values is necessary only on recovery (which is less
frequent than checkpointing)
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Amnesic Checkpointing and Recovery

Ochk = #enk X Owr chk
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Ochk = #enk X Owr chk
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Amnesic Checkpointing and Recovery

Ochk = #enk X Owr chk

Ocnk AcR = 7 chk X OwrAcr
O =

recovery recovery * (Owaste + Orollback)

Orecovery,ACR = #recovery X (Owaste,ACR + Orollback,ACR + Orecomp,ACR)
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Amnesic Checkpointing and Recovery

Ochk = #enk X Owr chk

Ocnk AcR = 7 chk X OwrAcr

Orecovery = recovery * (Owaste + Orollback)

Orecovery,ACR = #recovery X (Owaste,ACR + Orollback,ACR + Orecomp,ACR)

Orecovery,ACR S Orecovery 'ff (Orollback,ACR + Orecomp,ACR) S Orollback
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Baseline Checkpointing

e Global checkpointing
® [n-memory
e Log-based
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Baseline Checkpointing
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Baseline Checkpointing
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Amnesic Checkpointing
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Amnesic Checkpointing
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Baseline Recovery
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Baseline Recovery
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Amnesic Recovery
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Amnesic Recovery
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Amnesic Recovery
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How to Recompute a Value?

int sumArr[10]

load (i)

load ())

load (k)

k=1/]

while (i <=10)
sumaArrfi] =i +j
j=i%]
incr i
if (k>1)

incr k

store (sumaArr)
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load (i)

load ())

load (k)

k=1/]

while (i <=10)
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How to Recompute a Value?

int sumArr[10]
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How to Recompute a Value?

int sumArr[10]
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How to Recompute a Value?

int sumArr[10]

-----

P
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How to form Slices?

e Compiler identifies them
e Select cost-effective ones (i.e., short ones)

(Orollback,ACR + Orecomp,ACR) < Orollback
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How to use Slices?

e Need to know start address of the slice

e Need to communicate it to runtime

e ASSOC-ADDR: <memory address, slice address>

e automatically executed with the corresponding store
e <memory address, slice address> is recorded in buffer: AddrMap

e |f recovery needed
e Look into AddrMap for active Slices
e Recompute values whose Slices are recorded in AddrMap
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Amnesic Checkpoint and Recovery

|
i I-Cache .| Fetch/Decode
ASSOC-ADDR Logic v
recompute - = |
| ) " Recompute g
Recovery ||Checkpoint Logic “ c ’
xecution
H.':mcller‘t Handler;n Input | rename [ Units
check |record |B Operands &issue -
¥ s ¥ i
2 Register f
AddrMap = | D-Cache < » €Yl
3 File
N N
ﬁ L2 Cache store recomputed value
=
S vl
= 5 Memory Y
restore the rest " Ccl’”t{””er
- Memory
Checkpoint
[

ACR: Amnesic Checkpointing and Recovery



Amnesic Checkpoint and Recovery
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Amnesic Checkpoint and Recovery
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Evaluation
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Recomputation Enabled Checkpointing — Setup

NAS benchmarks
* Amnesic compiler pass mimicked by binary instrumenting Pintool

* Microarchitecture and scheduler implemented in Snipersim

1.09 GHz, 4-issue, inorder core: 8/16/32 cores and 8/16/32 threads
L1: 32KB, 4-way
L2: 512KB, 8-way

|deal Baseline (no checkpoint, no recovery)

Global coordinated

Local coordinated
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Performance Overhead — Checkpoint and Recovery
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Performance Overhead — Checkpoint and Recovery

2 B no ckpt ckpt & recovery recomp. ckpt & recovery

Normalized Execution Time

up to 26.68% (12.39% on average) reduction on checkpoint and recovery

overhead
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EDP Reduction — Recovery
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EDP Reduction — Recovery
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up to 48.07% (23.41% on average) EDP gain
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Footprint Size Reduction
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Footprint Size Reduction
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up to 58.3% (23.91% on average) memory footprint size reduction
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Thread Count
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Thread Count
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Global vs Coordinated Local Checkpointing
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Global vs Coordinated Local Checkpointing
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up to 42% (ft) reduction w.r.t. Ckpt_NF of global checkpointing
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Global vs Coordinated Local Checkpointing
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up to 33% (ft) reduction w.r.t. Rec_Ckpt_NF of global checkpointing
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Global vs Coordinated Local Checkpointing
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Global vs Coordinated Local Checkpointing
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up to 31% (is) reduction w.r.t. Ckpt_F of global checkpointing
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Global vs Coordinated Local Checkpointing

1.2

Normalized Execution Time

up to 31% (is) reduction w.r.t. Ckpt_F of global checkpointing

up to 26% (mg) reduction w.r.t. Rec_Ckpt_F of global checkpointing
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Summary

e Effective in reducing checkpoint overhead
e Power and performance

e Reduces checkpoint footprint size (i.e., storage reduction)

e Low-cost recove ry
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Questions and Comments

27?7
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