ACR:

Amnesic Checkpoint and Recovery

Ismail Akturk Ulya R. Karpuzcu
University of Missouri, Columbia University of Minnesota, Twin Cities
akturki@missouri.edu ukarpuzc@umn.edu

@ M UNIVERSITY OF MINNESOTA

University of Missouri

Motivation

1.0
—

0.9 —\\

S 0.8 \\ \

E 0.7 \ —~

N 0-6 \

5 0.5 \

S 0.4

-3 0.3 [Failures per socket per year

S 0.

‘—;_ —0.001
0.2

Q —0.01

< ‘\\\
0.1 +{—0.1 \
0.0 T T T T T T T T T

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

P. Kogge, et al., “Exascale computing study: Technology challenges in achieving exascale systems,” 2008.

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing and Recovery

e Challenge:

* Checkpoint &rollback/recovery overheads quickly dominates as the failure rate
increases

* Need to find ways to mitigate Checkpoint &rollback/recovery overheads

e [dea: reduce the volume of data to be checkpointed by relying on cost-
effective recomputation
e Eliminate values from checkpoint set if they are recomputable (cost effectively)

e Recomputation of eliminated values is necessary only on recovery (which is less
frequent than checkpointing)

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing and Recovery

Ochk = #enk X Owr chk

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing and Recovery

Ochk = #enk X Owr chk

Ocnk AcR = 7 chk X OwrAcr

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing and Recovery

Ochk = #enk X Owr chk

Ocnk AcR = 7 chk X OwrAcr

Orecovery = recovery * (Owaste + Orollback)

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing and Recovery

Ochk = #enk X Owr chk

Ocnk AcR = 7 chk X OwrAcr
O =

recovery recovery * (Owaste + Orollback)

Orecovery,ACR = #recovery X (Owaste,ACR + Orollback,ACR + Orecomp,ACR)

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing and Recovery

Ochk = #enk X Owr chk

Ocnk AcR = 7 chk X OwrAcr

Orecovery = recovery * (Owaste + Orollback)

Orecovery,ACR = #recovery X (Owaste,ACR + Orollback,ACR + Orecomp,ACR)

Orecovery,ACR S Orecovery 'ff (Orollback,ACR + Orecomp,ACR) S Orollback

ACR: Amnesic Checkpointing and Recovery 8

Baseline Checkpointing

e Global checkpointing
® [n-memory
e Log-based

ACR: Amnesic Checkpointing and Recovery

Baseline Checkpointing

ACR: Amnesic Checkpointing and Recovery

¥ values to be checkpointed

10

Baseline Checkpointing

Ckpt O Ckpt 1

--1—1—u1—1

... l Values to be Checkpointed

B BER B B checkpoint

ACR: Amnesic Checkpointing and Recovery 11

Amnesic Checkpointing

Ckpt O Ckpt 1

0, [guy

\ I \
Hi—i—1—

\', \'I

... l Values to be Checkp0|nted

B values can be recomputed

checkpoint

ACR: Amnesic Checkpointing and Recovery 12

Amnesic Checkpointing

Ckpt O Ckpt 1

0, [guy

\ I \
i

\', \'I

... l Values to be Checkp0|nted

B values can be recomputed

checkpoint

ACR: Amnesic Checkpointing and Recovery 13

Baseline Recovery

Ckpt O

Ckpt 1

fault

ACR: Amnesic Checkpointing and Recovery

¥ values to be checkpointed

14

Baseline Recovery

Ckpt O
e mm

Ckpt 1

¥ values to be checkpointed

fault

|

Innnn restore and rollback

ACR: Amnesic Checkpointing and Recovery 15

Amnesic Recovery

Ckpt O

Ckpt 1

fault

ACR: Amnesic Checkpointing and Recovery

¥ values to be checkpointed

B values can be recomputed

16

Amnesic Recovery

Ckpt O
18

Ckpt 1

fault

¥ values to be checkpointed

B values can be recomputed

recompute

ACR: Amnesic Checkpointing and Recovery 17

Amnesic Recovery

Ckpt O Ckpt 1
B B B I—X ¥ values to be checkpointed
fault B values can be recomputed
_/

m B B recompute + restore and rollback

ACR: Amnesic Checkpointing and Recovery 18

How to Recompute a Value?

int sumArr[10]

load (i)

load ())

load (k)

k=1/]

while (i <=10)
sumaArrfi] =i +j
j=i%]
incr i
if (k>1)

incr k

store (sumaArr)

ACR: Amnesic Checkpointing and Recovery

19

How to Recompute a Value?

int sumArr[10]

load (i)

load ())

load (k)

k=1/]

while (i <=10)
sumaArrfi] =i +j
j=i%]
incr i

if (k>1)

llllllllllllll

llllllllllllll

ACR: Amnesic Checkpointing and Recovery

20

How to Recompute a Value?

int sumArr[10]
load (i)
load ())
load (k)

lllllllllllllllllllllllllllllll

llllllllllllll

llllllllllllll

llllllllllllll

ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

int sumArr[10]

lllllllllllllllllllllllllllllll

llllllllllllll

llllllllllllll

llllllllllllll

ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

int sumArr[10]

lllllllllllllllllllllllllllllll

llllllllllllll

llllllllllllll

llllllllllllll

ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

int sumArr[10]

..... Y

|ncr|

A 4

SumATrr[i] =i+]j

lllllllllllllllllllllllllllllll

llllllllllllll

llllllllllllll

llllllllllllll

ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

int sumArr[10]

P

loadt{(j
load (k)
k=i N
iwhile (i <=10): ~ \ \ -
SamAnlL = 4. sumli;]{
=T
:WHEFT":
];{Q;fl)
incr k

llllllllllllll

ACR: Amnesic Checkpointing and Recovery 25

How to form Slices?

e Compiler identifies them
e Select cost-effective ones (i.e., short ones)

(Orollback,ACR + Orecomp,ACR) < Orollback

ACR: Amnesic Checkpointing and Recovery

_— gm

A 4

SumATrr[i] =i+]j

26

How to use Slices?

e Need to know start address of the slice

e Need to communicate it to runtime

e ASSOC-ADDR: <memory address, slice address>

e automatically executed with the corresponding store
e <memory address, slice address> is recorded in buffer: AddrMap

e |f recovery needed
e Look into AddrMap for active Slices
e Recompute values whose Slices are recorded in AddrMap

ACR: Amnesic Checkpointing and Recovery

27

Amnesic Checkpoint and Recovery

|
i I-Cache .| Fetch/Decode
ASSOC-ADDR Logic v
recompute - = |
|) " Recompute g
Recovery ||Checkpoint Logic “ c ’
xecution
H.':mcller‘t Handler;n Input | rename [Units
check |record |B Operands &issue -
¥ s ¥ i
2 Register f
AddrMap = | D-Cache < » €Yl
3 File
N N
ﬁ L2 Cache store recomputed value
=
S vl
= 5 Memory Y
restore the rest " Ccl’”t{””er
- Memory
Checkpoint
[

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpoint and Recovery

|
! I-Cach .| Fetch/Decode
! ASSOC-ADDR ;| --ache — Logic v
: recompute I U B — ' = |
! | ' \ Recompute g !
1 | Recovery |[|Checkpoint i | Logic “ e i
! 1 ! xecution
| Handler Handler |. i o rename [Units
! A o |
x . Operands &issue 4
| check |(record 0 : I 14
i ¥ % | —r = - Fi_""—t._._. “
! - | egister
. AddrMap 3 - | D-Cache [« > 9!
! = File
1 A ¥
! 2
: ﬁ I L2 Cache store recomputed value
I e
. S vt .
I = Memory
I restore the rest ir Ccl’”t{””er
_ : : Memory
L e e e e - — - _ Checkpmnt
[

ACR: Amnesic Checkpointing and Recovery

29

Amnesic Checkpoint and Recovery

checkpoint
needed

yes

A value can be
recomputed?
(i.e., has slice)

A 4

omi"c'from checkpoint
& update AddrMap

add to checkpoint

recovery needed

AddrMap has a
match?

A 4

A 4
recompute values restore the values

that are missing from checkpoint

restore the rest from
checkpoint

ACR: Amnesic Checkpointing and Recovery

30

Evaluation

ACR: Amnesic Checkpointing and Recovery

31

Recomputation Enabled Checkpointing — Setup

NAS benchmarks
* Amnesic compiler pass mimicked by binary instrumenting Pintool

* Microarchitecture and scheduler implemented in Snipersim

1.09 GHz, 4-issue, inorder core: 8/16/32 cores and 8/16/32 threads
L1: 32KB, 4-way
L2: 512KB, 8-way

|deal Baseline (no checkpoint, no recovery)

Global coordinated

Local coordinated

ACR: Amnesic Checkpointing and Recovery

32

Performance Overhead — Checkpoint and Recovery

2 B no ckpt ckpt & recovery recomp. ckpt & recovery

=
(6

2
&

Normalized Execution Time
[EY

o

bt cg dc ft is lu mg sp

ACR: Amnesic Checkpointing and Recovery

33

Performance Overhead — Checkpoint and Recovery

2 B no ckpt ckpt & recovery recomp. ckpt & recovery

Normalized Execution Time

up to 26.68% (12.39% on average) reduction on checkpoint and recovery

overhead

ACR: Amnesic Checkpointing and Recovery 34

EDP Reduction — Recovery

g 40
[=
S 30 —
Q 5%
=) B
2 20 = =
o % - = [
o [- ==
w10 = = =

B = i =

o
—t
0O

aq
Q
(@]
=
n
c

mg Sp

ACR: Amnesic Checkpointing and Recovery

35

EDP Reduction — Recovery

N w & (9
o o o o
|

EDP Reduction (%)

[EY
o

o H H

up to 48.07% (23.41% on average) EDP gain

ACR: Amnesic Checkpointing and Recovery 36

Footprint Size Reduction

(S N o)
o O

N
o

N
o

[
o

Footprint Size Reduction (%)
w
o

o

bt

cg

ACR: Amnesic Checkpointing and Recovery

37

Footprint Size Reduction

(@)
o O o

o

o

Footprint Size Reduction (%)
=) 8 B (Oa]

s H m E _

up to 58.3% (23.91% on average) memory footprint size reduction

ACR: Amnesic Checkpointing and Recovery 38

Thread Count

Performance Overhead

Reduction(%)

NN
o U

w
U

3 8-thread B 16-thread 32-thread

w
(@)

NN |

=
192}

10

SR

bt cg dc ft is lu mg sp

ACR: Amnesic Checkpointing and Recovery 39

Thread Count

w
U

(3 8-thread BB 16-thread 32-thread

~—

N N W
o U1 O

=
192}

Performance Overhead
Reduction(%)

ACR: Amnesic Checkpointing and Recovery 40

Global vs Coordinated Local Checkpointing

=
N

=

0.8

0.4

o
N

Normalized Execution Time
o
(@)}

o

Rec_Ckpt_NF

ACR: Amnesic Checkpointing and Recovery

41

Global vs Coordinated Local Checkpointing

=
N

=

0.8

0.4

o
N

Normalized Execution Time
o
(@)}

o

up to 42% (ft) reduction w.r.t. Ckpt_NF of global checkpointing

ACR: Amnesic Checkpointing and Recovery 42

Global vs Coordinated Local Checkpointing

=
N

Normalized Execution Time

(ft) reduction w.r.t. Ckpt_NF of global checkpointing

up to 33% (ft) reduction w.r.t. Rec_Ckpt_NF of global checkpointing

ACR: Amnesic Checkpointing and Recovery 43

Global vs Coordinated Local Checkpointing

=
N

[

=
~

=
N

Normalized Execution Time
©
(@)

o

ACR: Amnesic Checkpointing and Recovery

44

Global vs Coordinated Local Checkpointing

1.2

Normalized Execution Time

up to 31% (is) reduction w.r.t. Ckpt_F of global checkpointing

ACR: Amnesic Checkpointing and Recovery 45

Global vs Coordinated Local Checkpointing

1.2

Normalized Execution Time

up to 31% (is) reduction w.r.t. Ckpt_F of global checkpointing

up to 26% (mg) reduction w.r.t. Rec_Ckpt_F of global checkpointing

ACR: Amnesic Checkpointing and Recovery 46

Summary

e Effective in reducing checkpoint overhead
e Power and performance

e Reduces checkpoint footprint size (i.e., storage reduction)

e Low-cost recove ry

ACR: Amnesic Checkpointing and Recovery

47

Questions and Comments

27?7

ACR: Amnesic Checkpointing and Recovery

48

