
ACR:

Amnesic Checkpoint and Recovery

Ismail Akturk
University of Missouri, Columbia

akturki@missouri.edu

Ulya R. Karpuzcu
University of Minnesota, Twin Cities

ukarpuzc@umn.edu

Motivation

ACR: Amnesic Checkpointing and Recovery 2

P. Kogge, et al., “Exascale computing study: Technology challenges in achieving exascale systems,” 2008.

Amnesic Checkpointing and Recovery

• Challenge:
• Checkpoint &rollback/recovery overheads quickly dominates as the failure rate

increases

• Need to find ways to mitigate Checkpoint &rollback/recovery overheads

• Idea: reduce the volume of data to be checkpointed by relying on cost-
effective recomputation

• Eliminate values from checkpoint set if they are recomputable (cost effectively)

• Recomputation of eliminated values is necessary only on recovery (which is less
frequent than checkpointing)

3ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing and Recovery

4

ochk = #chk x owr,chk

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing and Recovery

5

ochk = #chk x owr,chk

ACR: Amnesic Checkpointing and Recovery

ochk,ACR = #chk x owr,ACR

Amnesic Checkpointing and Recovery

6ACR: Amnesic Checkpointing and Recovery

orecovery = #recovery x (owaste + orollback)

ochk = #chk x owr,chk

ochk,ACR = #chk x owr,ACR

Amnesic Checkpointing and Recovery

7ACR: Amnesic Checkpointing and Recovery

orecovery,ACR = #recovery x (owaste,ACR + orollback,ACR + orecomp,ACR)

orecovery = #recovery x (owaste + orollback)

ochk = #chk x owr,chk

ochk,ACR = #chk x owr,ACR

Amnesic Checkpointing and Recovery

8

orecovery,ACR ≤ orecovery iff (orollback,ACR + orecomp,ACR) ≤ orollback

ACR: Amnesic Checkpointing and Recovery

orecovery,ACR = #recovery x (owaste,ACR + orollback,ACR + orecomp,ACR)

orecovery = #recovery x (owaste + orollback)

ochk = #chk x owr,chk

ochk,ACR = #chk x owr,ACR

Baseline Checkpointing

• Global checkpointing

• In-memory

• Log-based

9ACR: Amnesic Checkpointing and Recovery

Baseline Checkpointing

10

Ckpt 1Ckpt 0

values to be checkpointed

ACR: Amnesic Checkpointing and Recovery

Baseline Checkpointing

11

Ckpt 1Ckpt 0

values to be checkpointed

checkpoint

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing

12

Ckpt 1Ckpt 0

values to be checkpointed

values can be recomputed

checkpointx x

ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpointing

13

Ckpt 1Ckpt 0

values to be checkpointed

values can be recomputed

checkpointx x

ACR: Amnesic Checkpointing and Recovery

Baseline Recovery

14

Ckpt 1Ckpt 0

x
fault

values to be checkpointed

ACR: Amnesic Checkpointing and Recovery

Baseline Recovery

15

Ckpt 1Ckpt 0

x
fault

values to be checkpointed

restore and rollback

ACR: Amnesic Checkpointing and Recovery

Amnesic Recovery

16

Ckpt 1Ckpt 0

x
fault values can be recomputed

values to be checkpointed

x x

ACR: Amnesic Checkpointing and Recovery

Amnesic Recovery

17

Ckpt 1Ckpt 0

x
fault values can be recomputed

values to be checkpointed

x x

recompute

ACR: Amnesic Checkpointing and Recovery

Amnesic Recovery

18

Ckpt 1Ckpt 0

x
fault values can be recomputed

values to be checkpointed

restore and rollback

x x

recompute +

ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

19ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

20ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

21ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

22ACR: Amnesic Checkpointing and Recovery

How to Recompute a Value?

23ACR: Amnesic Checkpointing and Recovery

i j

How to Recompute a Value?

24ACR: Amnesic Checkpointing and Recovery

i j i j

j = i* j

incr i

sumArr[i] = i + j

How to Recompute a Value?

25ACR: Amnesic Checkpointing and Recovery

i j i j

j = i* j

incr i

sumArr[i] = i + j

slice

How to form Slices?

26ACR: Amnesic Checkpointing and Recovery

i j

j = i* j

incr i

sumArr[i] = i + j

slice

• Compiler identifies them
• Select cost-effective ones (i.e., short ones)

(orollback,ACR + orecomp,ACR) ≤ orollback

How to use Slices?

27ACR: Amnesic Checkpointing and Recovery

• Need to know start address of the slice

• Need to communicate it to runtime
• ASSOC-ADDR: <memory address, slice address>

• automatically executed with the corresponding store

• <memory address, slice address> is recorded in buffer: AddrMap

• If recovery needed
• Look into AddrMap for active Slices

• Recompute values whose Slices are recorded in AddrMap

Amnesic Checkpoint and Recovery

28ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpoint and Recovery

29ACR: Amnesic Checkpointing and Recovery

Amnesic Checkpoint and Recovery

30ACR: Amnesic Checkpointing and Recovery

checkpoint
needed

A value can be
recomputed?
(i.e., has slice)

omit from checkpoint
& update AddrMap

add to checkpoint

yes no

recovery needed

AddrMap has a
match?

recompute values
that are missing

restore the values
from checkpoint

yes no

restore the rest from
checkpoint

31

Evaluation

ACR: Amnesic Checkpointing and Recovery

Recomputation Enabled Checkpointing – Setup

32

• NAS benchmarks

• Amnesic compiler pass mimicked by binary instrumenting Pintool

• Microarchitecture and scheduler implemented in Snipersim

• 1.09 GHz, 4-issue, inorder core: 8/16/32 cores and 8/16/32 threads

• L1: 32KB, 4-way

• L2: 512KB, 8-way

• Ideal Baseline (no checkpoint, no recovery)

• Global coordinated

• Local coordinated

ACR: Amnesic Checkpointing and Recovery

Performance Overhead – Checkpoint and Recovery

33ACR: Amnesic Checkpointing and Recovery

Performance Overhead – Checkpoint and Recovery

34

up to 26.68% (12.39% on average) reduction on checkpoint and recovery
overhead

ACR: Amnesic Checkpointing and Recovery

EDP Reduction – Recovery

35ACR: Amnesic Checkpointing and Recovery

36

up to 48.07% (23.41% on average) EDP gain

ACR: Amnesic Checkpointing and Recovery

EDP Reduction – Recovery

Footprint Size Reduction

37ACR: Amnesic Checkpointing and Recovery

Footprint Size Reduction

38

up to 58.3% (23.91% on average) memory footprint size reduction

ACR: Amnesic Checkpointing and Recovery

Thread Count

39ACR: Amnesic Checkpointing and Recovery

Thread Count

40

up to 28%, 17% (is), and 19% (mg) reduction for 8-, 16-, 32-threads,respectively

ACR: Amnesic Checkpointing and Recovery

Global vs Coordinated Local Checkpointing

41ACR: Amnesic Checkpointing and Recovery

Global vs Coordinated Local Checkpointing

42

up to 42% (ft) reduction w.r.t. Ckpt_NF of global checkpointing

ACR: Amnesic Checkpointing and Recovery

Global vs Coordinated Local Checkpointing

43

up to 33% (ft) reduction w.r.t. Rec_Ckpt_NF of global checkpointing

ACR: Amnesic Checkpointing and Recovery

up to 42% (ft) reduction w.r.t. Ckpt_NF of global checkpointing

Global vs Coordinated Local Checkpointing

44ACR: Amnesic Checkpointing and Recovery

Global vs Coordinated Local Checkpointing

45

up to 31% (is) reduction w.r.t. Ckpt_F of global checkpointing

ACR: Amnesic Checkpointing and Recovery

Global vs Coordinated Local Checkpointing

46

up to 26% (mg) reduction w.r.t. Rec_Ckpt_F of global checkpointing

ACR: Amnesic Checkpointing and Recovery

up to 31% (is) reduction w.r.t. Ckpt_F of global checkpointing

Summary

• Effective in reducing checkpoint overhead

• Power and performance

• Reduces checkpoint footprint size (i.e., storage reduction)

• Low-cost recovery

47ACR: Amnesic Checkpointing and Recovery

Questions and Comments

???

48ACR: Amnesic Checkpointing and Recovery

