## **POWERT Channels:** A Novel Class of Covert Communication Exploiting Power Management Vulnerabilities

S. Karen Khatamifard, Longfei Wang, Amitabh Das, Selcuk Kose, Ulya R. Karpuzcu







## **POWer**



# **POWer + covERT**





#### Generic







































System-Level Control













[P. Bose et. al., DATE, 2012.]





[P. Bose et. al., DATE, 2012.]

























2 active cores







2 active cores



4 active cores























Sink Computeintensive











## **Single-bit Encoding**

Bits to send










# **Single-bit Encoding**



time



# **Single-bit Encoding**





**Bits to send** 











time















**Bits to send** 







time





time







**Input Data** 





Input Data

















011010100010101 011010100010101

**p**, q

bit-flip

error rates





101010100010101

**p**, **q** 

bit-flip

error rates

Shannon

Theorem











## **Evaluation Setup**

|                         | Intel Xeon E3-1505M v5 | Samsung Exynos-5422 |                   |
|-------------------------|------------------------|---------------------|-------------------|
| $\mu$ architecture      | Skylake family         | Cortex-A15 (big)    | Cortex-A7(little) |
| # of cores<br>(threads) | 4 (8)                  | 4 (4)               | 4 (4)             |
| technology<br>node      | 14 nm                  | 28 nm               |                   |
| frequency               | (0.8-2.80) GHz         | (0.2-2.0) GHz       | (0.2-1.4) GHz     |
| L1 Inst.                | 32KB 8-way             | 32KB 2-way          | 32KB 2-way        |
| L1 Data                 | 32KB 8-way             | 32KB 2-way          | 32KB 2-way        |
| L2                      | 256KB 4-way            | 2MB 16-way          | 512KB 8-way       |
| L3                      | 8MB 16-way             | NA                  |                   |



## **Evaluation Setup**

|                         | Intel Xeon E3-1505M v5 | Samsung Exynos-5422 |                   |
|-------------------------|------------------------|---------------------|-------------------|
| $\mu$ architecture      | Skylake family         | Cortex-A15 (big)    | Cortex-A7(little) |
| # of cores<br>(threads) | 4 (8)                  | 4 (4)               | 4 (4)             |
| technology<br>node      | 14 nm                  | 28 nm               |                   |
| frequency               | (0.8-2.80) GHz         | (0.2-2.0) GHz       | (0.2-1.4) GHz     |
| L1 Inst.                | 32KB 8-way             | 32KB 2-way          | 32KB 2-way        |
| L1 Data                 | 32KB 8-way             | 32KB 2-way          | 32KB 2-way        |
| L2                      | 256KB 4-way            | 2MB 16-way          | 512KB 8-way       |
| L3                      | 8MB 16-way             | NA                  |                   |





























## **Channel Capacity: 2-bit Encoding**





## **Channel Capacity: 2-bit Encoding**





### **Channel Capacity: 2-bit Encoding**




## **Channel Capacity: 2-bit Encoding**























POWERT channels enable **user data theft** at high rates, without needing any **privilege**.



### **Countermeasures?**

- Avoiding power budget sharing
- Operating frequency *Randomization*
- *Slowing down* communication



### **Countermeasures?**

- Avoiding power budget sharing
- Operating frequency *Randomization*
- *Slowing down* communication

















### **Countermeasures?**

- Avoiding power budget sharing
- Operating frequency *Randomization*
- *Slowing down* communication



# **Operating Frequency Randomization?**









### **Countermeasures**?

- Avoiding power budget sharing
- Operating frequency *Randomization*
- *Slowing down* communication



# **Slowing Down Communication?**









• Enabled by power budget sharing



- Enabled by power budget sharing
- Generic, no privilege needed



- Enabled by power budget sharing
- Generic, no privilege needed
- Characterized on two representative platforms from industry
  - Observed a maximum channel capacity of **121.6 bps**



- Enabled by power budget sharing
- Generic, no privilege needed
- Characterized on two representative platforms from industry
  - Observed a maximum channel capacity of **121.6 bps**
  - Detailed **design space exploration**, **Sensitivity** study, and **platform-specific** analysis in the paper



- Enabled by power budget sharing
- Generic, no privilege needed
- Characterized on two representative platforms from industry
  - Observed a maximum channel capacity of **121.6 bps**
  - Detailed **design space exploration**, **Sensitivity** study, and **platform-specific** analysis in the paper
- Countermeasures?
  - Significant overheads on **performance** and/or **energy-efficiency**



- Enabled by power budget sharing
- Generic, no privilege needed
- Characterized on two representative platforms from industry
  - Observed a maximum channel capacity of **121.6 bps**
  - Detailed **design space exploration**, **Sensitivity** study, and **platform-specific** analysis in the paper
- Countermeasures?
  - Significant overheads on **performance** and/or **energy-efficiency**
  - More than 30% on evaluated platforms



# **POWERT Channels:** A Novel Class of Covert Communication Exploiting Power Management Vulnerabilities

S. Karen Khatamifard, Longfei Wang, Amitabh Das, Selcuk Kose, Ulya R. Karpuzcu





