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Introduction

• Secure data retrieval
• Sensitive databases, bioinformatics, biomarker search
• Encryption/decryption is a vulnerability

• Homomorphic Encryption
• Computation in encrypted domain
• General-purpose computation is prohibitively costly

• Encrypted computation accumulates noise on cyphertext
• Bootstrapping: noise reduction without decryption

• SCAM: Secure Content Addressable Memory
• Encrypted matching can avoid bootstrapping
• Reduces to parallelized long addition
• Data size blowup

• Spintronic CRAM: Fuses compute and memory
• True in-memory processing semantics
• Enables massive parallelism

• H-CRAM: SCAM in CRAM to accelerate homomorphic
search
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SCAM Fundamentals

• Plaintext comparison of w-bit x and y :

f (x , y) =
w∏

i=1

xi ⊕ yi (1)

• Homomorphic equivalent is cyphertext subtraction:

HomX̂OR-OR(x , y) =
w∑

i=0

cxi − cyi (2)

• Cyphertext expansion: 6.8KB per bit! (128-bit security)
• Costly in CPU −→ ASIC acceleration
• Suffers from memory access overhead
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CRAM Basics

2Transistor-1Magnet CRAM cells
• Logic Line (LL)
• Even/Odd Select

Lines (E/OSL)
• Wordline

Read/Write
(WLR/W)

LL

ESL
OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2

in0 in1out

• Cell states Parallel/Antiparallel↔low/high resistance (∼0/1)
• Memory mode: Standard read/write operations
• Compute mode: Logic gate formation between cells

• A resistive network is established using control lines
• in0&in1 currents get combined ,

pass through out (preset to 1)
• out remains unchanged if in0in1 = 00, 01, 10
• out reset to 0 if in0in1 = 11

• Practically universal NAND gate!
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H-CRAM: SCAM in CRAM

• RCA: O(n), CLA and others: O(n log n) (O(log n) depth)
• CLA adder based SCAM logic flow
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• Mapped to Processing and Control arrays
• De Bruijn graph topology for inter-array connectivity
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Results

Intel Xeon (CPU) SCAM (ASIC) HEGA (HMC) 2T+1 FeFET (Near-memory) H-CRAM RCA H-CRAM CLA
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H-CRAM CLA is 2× faster vs. HEGA, ∼EDP vs. 2T+1 FeFET
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Vision

• H-CRAM enables
• Multi-grain parallelism
• Memory access overhead elimination
• True processing in-memory semantics, tight coupling of

memory&compute

• Efficient acceleration of long addition in SCAM
• Future work: general purpose homomorphic computing

• How to extend H-CRAM to more complex homomorphic
computation without bootstrapping?



7/8

Vision

• H-CRAM enables
• Multi-grain parallelism
• Memory access overhead elimination
• True processing in-memory semantics, tight coupling of

memory&compute
• Efficient acceleration of long addition in SCAM

• Future work: general purpose homomorphic computing
• How to extend H-CRAM to more complex homomorphic

computation without bootstrapping?



7/8

Vision

• H-CRAM enables
• Multi-grain parallelism
• Memory access overhead elimination
• True processing in-memory semantics, tight coupling of

memory&compute
• Efficient acceleration of long addition in SCAM
• Future work: general purpose homomorphic computing

• How to extend H-CRAM to more complex homomorphic
computation without bootstrapping?



8/8

Thank you!
Questions?


