
1/8

Seeds of SEED: H-CRAM: In-memory
Homomorphic Search Accelerator using

Spintronic Computational RAM

Hüsrev Cılasun, Salonik Resch, Zamshed I. Chowdhury,
Masoud Zabihi, Zhengyang Zhao, Thomas Peterson,

Jian-Ping Wang, Sachin S. Sapatnekar, Ulya R. Karpuzcu

University of Minnesota

This work was supported in part by NSF grant no. SPX-1725420.

2/8

Introduction

• Secure data retrieval
• Sensitive databases, bioinformatics, biomarker search
• Encryption/decryption is a vulnerability

• Homomorphic Encryption
• Computation in encrypted domain
• General-purpose computation is prohibitively costly

• Encrypted computation accumulates noise on cyphertext
• Bootstrapping: noise reduction without decryption

• SCAM: Secure Content Addressable Memory
• Encrypted matching can avoid bootstrapping
• Reduces to parallelized long addition
• Data size blowup

• Spintronic CRAM: Fuses compute and memory
• True in-memory processing semantics
• Enables massive parallelism

• H-CRAM: SCAM in CRAM to accelerate homomorphic
search

2/8

Introduction

• Secure data retrieval
• Sensitive databases, bioinformatics, biomarker search
• Encryption/decryption is a vulnerability

• Homomorphic Encryption
• Computation in encrypted domain
• General-purpose computation is prohibitively costly

• Encrypted computation accumulates noise on cyphertext
• Bootstrapping: noise reduction without decryption

• SCAM: Secure Content Addressable Memory
• Encrypted matching can avoid bootstrapping
• Reduces to parallelized long addition
• Data size blowup

• Spintronic CRAM: Fuses compute and memory
• True in-memory processing semantics
• Enables massive parallelism

• H-CRAM: SCAM in CRAM to accelerate homomorphic
search

2/8

Introduction

• Secure data retrieval
• Sensitive databases, bioinformatics, biomarker search
• Encryption/decryption is a vulnerability

• Homomorphic Encryption
• Computation in encrypted domain
• General-purpose computation is prohibitively costly

• Encrypted computation accumulates noise on cyphertext
• Bootstrapping: noise reduction without decryption

• SCAM: Secure Content Addressable Memory
• Encrypted matching can avoid bootstrapping
• Reduces to parallelized long addition
• Data size blowup

• Spintronic CRAM: Fuses compute and memory
• True in-memory processing semantics
• Enables massive parallelism

• H-CRAM: SCAM in CRAM to accelerate homomorphic
search

2/8

Introduction

• Secure data retrieval
• Sensitive databases, bioinformatics, biomarker search
• Encryption/decryption is a vulnerability

• Homomorphic Encryption
• Computation in encrypted domain
• General-purpose computation is prohibitively costly

• Encrypted computation accumulates noise on cyphertext
• Bootstrapping: noise reduction without decryption

• SCAM: Secure Content Addressable Memory
• Encrypted matching can avoid bootstrapping
• Reduces to parallelized long addition
• Data size blowup

• Spintronic CRAM: Fuses compute and memory
• True in-memory processing semantics
• Enables massive parallelism

• H-CRAM: SCAM in CRAM to accelerate homomorphic
search

2/8

Introduction

• Secure data retrieval
• Sensitive databases, bioinformatics, biomarker search
• Encryption/decryption is a vulnerability

• Homomorphic Encryption
• Computation in encrypted domain
• General-purpose computation is prohibitively costly

• Encrypted computation accumulates noise on cyphertext
• Bootstrapping: noise reduction without decryption

• SCAM: Secure Content Addressable Memory
• Encrypted matching can avoid bootstrapping
• Reduces to parallelized long addition
• Data size blowup

• Spintronic CRAM: Fuses compute and memory
• True in-memory processing semantics
• Enables massive parallelism

• H-CRAM: SCAM in CRAM to accelerate homomorphic
search

3/8

SCAM Fundamentals

• Plaintext comparison of w-bit x and y :

f (x , y) =
w∏

i=1

xi ⊕ yi (1)

• Homomorphic equivalent is cyphertext subtraction:

HomX̂OR-OR(x , y) =
w∑

i=0

cxi − cyi (2)

• Cyphertext expansion: 6.8KB per bit! (128-bit security)
• Costly in CPU −→ ASIC acceleration
• Suffers from memory access overhead

3/8

SCAM Fundamentals

• Plaintext comparison of w-bit x and y :

f (x , y) =
w∏

i=1

xi ⊕ yi (1)

• Homomorphic equivalent is cyphertext subtraction:

HomX̂OR-OR(x , y) =
w∑

i=0

cxi − cyi (2)

• Cyphertext expansion: 6.8KB per bit! (128-bit security)
• Costly in CPU −→ ASIC acceleration
• Suffers from memory access overhead

3/8

SCAM Fundamentals

• Plaintext comparison of w-bit x and y :

f (x , y) =
w∏

i=1

xi ⊕ yi (1)

• Homomorphic equivalent is cyphertext subtraction:

HomX̂OR-OR(x , y) =
w∑

i=0

cxi − cyi (2)

• Cyphertext expansion: 6.8KB per bit! (128-bit security)

• Costly in CPU −→ ASIC acceleration
• Suffers from memory access overhead

3/8

SCAM Fundamentals

• Plaintext comparison of w-bit x and y :

f (x , y) =
w∏

i=1

xi ⊕ yi (1)

• Homomorphic equivalent is cyphertext subtraction:

HomX̂OR-OR(x , y) =
w∑

i=0

cxi − cyi (2)

• Cyphertext expansion: 6.8KB per bit! (128-bit security)
• Costly in CPU −→ ASIC acceleration

• Suffers from memory access overhead

3/8

SCAM Fundamentals

• Plaintext comparison of w-bit x and y :

f (x , y) =
w∏

i=1

xi ⊕ yi (1)

• Homomorphic equivalent is cyphertext subtraction:

HomX̂OR-OR(x , y) =
w∑

i=0

cxi − cyi (2)

• Cyphertext expansion: 6.8KB per bit! (128-bit security)
• Costly in CPU −→ ASIC acceleration
• Suffers from memory access overhead

4/8

CRAM Basics

2Transistor-1Magnet CRAM cells
• Logic Line (LL)
• Even/Odd Select

Lines (E/OSL)
• Wordline

Read/Write
(WLR/W)

LL

ESL
OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2

in0 in1out

• Cell states Parallel/Antiparallel↔low/high resistance (∼0/1)
• Memory mode: Standard read/write operations
• Compute mode: Logic gate formation between cells

• A resistive network is established using control lines
• in0&in1 currents get combined ,

pass through out (preset to 1)
• out remains unchanged if in0in1 = 00, 01, 10
• out reset to 0 if in0in1 = 11

• Practically universal NAND gate!

4/8

CRAM Basics

2Transistor-1Magnet CRAM cells
• Logic Line (LL)
• Even/Odd Select

Lines (E/OSL)
• Wordline

Read/Write
(WLR/W)

LL

ESL
OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2

in0 in1out

• Cell states Parallel/Antiparallel↔low/high resistance (∼0/1)
• Memory mode: Standard read/write operations

• Compute mode: Logic gate formation between cells
• A resistive network is established using control lines
• in0&in1 currents get combined ,

pass through out (preset to 1)
• out remains unchanged if in0in1 = 00, 01, 10
• out reset to 0 if in0in1 = 11

• Practically universal NAND gate!

4/8

CRAM Basics

2Transistor-1Magnet CRAM cells
• Logic Line (LL)
• Even/Odd Select

Lines (E/OSL)
• Wordline

Read/Write
(WLR/W)

LL

ESL
OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2

in0 in1out

• Cell states Parallel/Antiparallel↔low/high resistance (∼0/1)
• Memory mode: Standard read/write operations
• Compute mode: Logic gate formation between cells

• A resistive network is established using control lines
• in0&in1 currents get combined ,

pass through out (preset to 1)
• out remains unchanged if in0in1 = 00, 01, 10
• out reset to 0 if in0in1 = 11

• Practically universal NAND gate!

4/8

CRAM Basics

2Transistor-1Magnet CRAM cells
• Logic Line (LL)
• Even/Odd Select

Lines (E/OSL)
• Wordline

Read/Write
(WLR/W)

LL

ESL
OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2

in0 in1out

• Cell states Parallel/Antiparallel↔low/high resistance (∼0/1)
• Memory mode: Standard read/write operations
• Compute mode: Logic gate formation between cells

• A resistive network is established using control lines

• in0&in1 currents get combined ,
pass through out (preset to 1)

• out remains unchanged if in0in1 = 00, 01, 10
• out reset to 0 if in0in1 = 11

• Practically universal NAND gate!

4/8

CRAM Basics

2Transistor-1Magnet CRAM cells
• Logic Line (LL)
• Even/Odd Select

Lines (E/OSL)
• Wordline

Read/Write
(WLR/W)

LL

ESL
OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2

in0 in1out

• Cell states Parallel/Antiparallel↔low/high resistance (∼0/1)
• Memory mode: Standard read/write operations
• Compute mode: Logic gate formation between cells

• A resistive network is established using control lines
• in0&in1 currents get combined ,

pass through out (preset to 1)

• out remains unchanged if in0in1 = 00, 01, 10
• out reset to 0 if in0in1 = 11

• Practically universal NAND gate!

4/8

CRAM Basics

2Transistor-1Magnet CRAM cells
• Logic Line (LL)
• Even/Odd Select

Lines (E/OSL)
• Wordline

Read/Write
(WLR/W)

LL

ESL
OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2

in0 in1out

• Cell states Parallel/Antiparallel↔low/high resistance (∼0/1)
• Memory mode: Standard read/write operations
• Compute mode: Logic gate formation between cells

• A resistive network is established using control lines
• in0&in1 currents get combined ,

pass through out (preset to 1)
• out remains unchanged if in0in1 = 00, 01, 10
• out reset to 0 if in0in1 = 11

• Practically universal NAND gate!

4/8

CRAM Basics

2Transistor-1Magnet CRAM cells
• Logic Line (LL)
• Even/Odd Select

Lines (E/OSL)
• Wordline

Read/Write
(WLR/W)

LL

ESL
OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2

in0 in1out

• Cell states Parallel/Antiparallel↔low/high resistance (∼0/1)
• Memory mode: Standard read/write operations
• Compute mode: Logic gate formation between cells

• A resistive network is established using control lines
• in0&in1 currents get combined ,

pass through out (preset to 1)
• out remains unchanged if in0in1 = 00, 01, 10
• out reset to 0 if in0in1 = 11

• Practically universal NAND gate!

5/8

H-CRAM: SCAM in CRAM

• RCA: O(n), CLA and others: O(n log n) (O(log n) depth)
• CLA adder based SCAM logic flow

B

B

B

B

B

B

A B

A

A

A

A

A

A

A

C

C

C

C

D

D

D

D

C D

D

D

D

C

C

E

E

E

E

E

E

E F

F

F

…
…

F

F

F

G/P
Generation

Forward pass
(log𝟐𝑵-steps)

Backward pass
(log𝟐𝑵-steps)

XOR stage Bit-level
comparison

Word-level
comparison

A

a
b

g

p
B

GL

PL

G

P

GH

PH

C
G
P
CL

CH

CL D
c
b
a

S

SL
SH E,F

S

1-bit final comparison output

a/
b

 in
p

u
t

p
ai

rs
 (
𝑤

𝑛
+
1
lo
g
𝑞

-b
it

s
lo

n
g)

• Mapped to Processing and Control arrays
• De Bruijn graph topology for inter-array connectivity

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

NV
Memory

Controller

PA

CA

PA

PA

PA

PA

PA

PA

PA

PA

PA

PA

PA

PA

PA

Control Array

PA

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

PA

A B GLs PLs/CLs GHs PHs/CHs S Buff.

A B GLs PLs/CLs GHs PHs/CHs S Buff.

…

A B GLs PLs/CLs GHs PHs/CHs S Buff.

64
bits

64 bits 64 bits 64 bits 64 bits
173
bits

LL SLE SLO WLW WLR AEN -…

LL SLE SLO WLW WLR AEN -

…

LL SLE SLO WLW WLR AEN -

…

LL SLE SLO WLW WLR AEN -

…

LL SLE SLO WLW WLR AEN -

…

-

512 b
its

(a) (b)

64 b
its

64 bits

5/8

H-CRAM: SCAM in CRAM

• RCA: O(n), CLA and others: O(n log n) (O(log n) depth)
• CLA adder based SCAM logic flow

B

B

B

B

B

B

A B

A

A

A

A

A

A

A

C

C

C

C

D

D

D

D

C D

D

D

D

C

C

E

E

E

E

E

E

E F

F

F

…
…

F

F

F

G/P
Generation

Forward pass
(log𝟐𝑵-steps)

Backward pass
(log𝟐𝑵-steps)

XOR stage Bit-level
comparison

Word-level
comparison

A

a
b

g

p
B

GL

PL

G

P

GH

PH

C
G
P
CL

CH

CL D
c
b
a

S

SL
SH E,F

S

1-bit final comparison output

a/
b

 in
p

u
t

p
ai

rs
 (
𝑤

𝑛
+
1
lo
g
𝑞

-b
it

s
lo

n
g)

• Mapped to Processing and Control arrays
• De Bruijn graph topology for inter-array connectivity

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

NV
Memory

Controller

PA

CA

PA

PA

PA

PA

PA

PA

PA

PA

PA

PA

PA

PA

PA

Control Array

PA

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

PA

A B GLs PLs/CLs GHs PHs/CHs S Buff.

A B GLs PLs/CLs GHs PHs/CHs S Buff.

…

A B GLs PLs/CLs GHs PHs/CHs S Buff.

64
bits

64 bits 64 bits 64 bits 64 bits
173
bits

LL SLE SLO WLW WLR AEN -…

LL SLE SLO WLW WLR AEN -

…

LL SLE SLO WLW WLR AEN -

…

LL SLE SLO WLW WLR AEN -

…

LL SLE SLO WLW WLR AEN -

…

-

512 b
its

(a) (b)

64 b
its

64 bits

6/8

Results

Intel Xeon (CPU) SCAM (ASIC) HEGA (HMC) 2T+1 FeFET (Near-memory) H-CRAM RCA H-CRAM CLA

Implementation

10-2

100

102

104

106

P
e
rf

o
rm

a
n
c
e
 M

e
tr

ic
s

Latency (s)

Energy (nJ)

EDP (fJs)

H-CRAM CLA is 2× faster vs. HEGA, ∼EDP vs. 2T+1 FeFET

600 800 1000 1200 1400

Lattice Dimension n

2.9

2.95

3

3.05

3.1

3.15

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

10
-7

=80 =128

w=16

w=32

w=64

600 800 1000 1200 1400

Lattice Dimension n

0.5

1

1.5

2

E
n
e
rg

y
 (

J
)

10
-8

=80 =128

w=16

w=32

w=64

H-CRAM scales efficiently with word size!

6/8

Results

Intel Xeon (CPU) SCAM (ASIC) HEGA (HMC) 2T+1 FeFET (Near-memory) H-CRAM RCA H-CRAM CLA

Implementation

10-2

100

102

104

106

P
e
rf

o
rm

a
n
c
e
 M

e
tr

ic
s

Latency (s)

Energy (nJ)

EDP (fJs)

H-CRAM CLA is 2× faster vs. HEGA, ∼EDP vs. 2T+1 FeFET

600 800 1000 1200 1400

Lattice Dimension n

2.9

2.95

3

3.05

3.1

3.15

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

10
-7

=80 =128

w=16

w=32

w=64

600 800 1000 1200 1400

Lattice Dimension n

0.5

1

1.5

2

E
n
e
rg

y
 (

J
)

10
-8

=80 =128

w=16

w=32

w=64

H-CRAM scales efficiently with word size!

7/8

Vision

• H-CRAM enables
• Multi-grain parallelism
• Memory access overhead elimination
• True processing in-memory semantics, tight coupling of

memory&compute

• Efficient acceleration of long addition in SCAM
• Future work: general purpose homomorphic computing

• How to extend H-CRAM to more complex homomorphic
computation without bootstrapping?

7/8

Vision

• H-CRAM enables
• Multi-grain parallelism
• Memory access overhead elimination
• True processing in-memory semantics, tight coupling of

memory&compute
• Efficient acceleration of long addition in SCAM

• Future work: general purpose homomorphic computing
• How to extend H-CRAM to more complex homomorphic

computation without bootstrapping?

7/8

Vision

• H-CRAM enables
• Multi-grain parallelism
• Memory access overhead elimination
• True processing in-memory semantics, tight coupling of

memory&compute
• Efficient acceleration of long addition in SCAM
• Future work: general purpose homomorphic computing

• How to extend H-CRAM to more complex homomorphic
computation without bootstrapping?

8/8

Thank you!
Questions?

