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Abstract—Growing use of cloud raises privacy concerns for
search in sensitive databases such as bioinformatics, where homo-
morphic encryption can help through direct computation –hence
search/pattern matching– on the encrypted data. The recently pro-
posed homomorphic secure content-addressable memory (SCAM)
exploits this principle. Data dependencies in SCAM, however, lead
to a memory bottleneck which has been addressed by various
near-memory computing solutions. In this paper we demonstrate a
more efficient alternative based on the true in-memory computing
substrate spintronic Computational RAM (CRAM). The resulting
SCAM accelerator, H-CRAM, achieves significant speedup and
energy reduction.

I. INTRODUCTION

Homomorphic encryption allows direct computation on the
encrypted data (i.e., the cypertext) alleviating the need for
decryption before the computation takes place. The obvious
benefit is privacy preservation. The cyphertext can be processed
without knowing the actual content, which translates into more
secure computation. At the same time, there is practically no
need +for decryption and (re)encryption, before and after com-
putation takes place, respectively. Decrypted data outside of its
source always represents a vulnerability because an attack may
expose not only the sensitive data but also the decryption key.
Under homomorphic computing, even if data is compromised
during computation (where data stays encrypted), no damage
would be the case. This is of crucial importance in a cloud
environment. Data privacy is important for emerging modern
applications such as face recognition, and crucial for others
such as genomic pattern search in bioinformatics databases.

The encryption cryptosystem can be either Somewhat Ho-
momorphic (SHE), supporting only a limited number of op-
erations that can be performed homomorphically (where data
corruption is inevitable if this limit is exceeded); or Fully
Homomorphic (FHE), which allows unlimited homomorphic
operations (where any type of computation can be performed
homomorphically). Homomorphic operations can be performed
on cyphertexts of Boolean variables, enabling seamless trans-
formation for any arbitrary application.

Homomorphic encryption dates back to 1978 [1]. Most of
the subsequent work relies on existing encryption schemes,
which, unfortunately, have not resulted in practically satisfying
implementations until recently. A key performance bottleneck
is the bootstrapping operation, which, interleaved with actual
homomorphic computing steps, performs noise reduction on
encrypted data to avoid potential data corruption via noise
accumulation, as each homomorphic operation (in other words,
each step of homomorphic computation) introduces a bounded
amount of noise on the encrypted data. This type of noise tends
to accumulate over multiple steps of computation, hence, if left
untreated, can prevent correct decryption after sufficient number
of homomorphic operations are executed. This also directly sets
a limit on the number of homomorphic operations that can
be performed on the encrypted data. Luckily, the noise bound

is strictly deterministic and can be tuned to allow a desired
number of homomorphic operations. Bootstrapping essentially
“refreshes” the encrypted data to its post-encryption minimum
noise state, preferably after each homomorphic operation, so
that arbitrary-length computation can be made homomorphic
[2].

FHEW homomorphic encryption scheme [3] introduced in
2015 proposed very fast bootstrapping of less than a sec-
ond, followed by TFHE [4] in 2016 featuring less than a
hundred milliseconds bootstrapping for the first time. TFHE
is accelerated by several algorithmic improvements, enabling
bootstrapping to be completed in ten milliseconds [5]–[7]. An
overview of the current status of homomorphic encyrption is
provided in [8]. Any computer program, in theory, can be made
homomorphic. Libraries to automatize such transformations
exist [8]. TFHE based homomorphic encryption is used as
a privacy-preserving secure method for genome storage and
query [9], for homomorphic deep neural networks [10], and
for convolutional neural networks [11], respectively.

Although universal homomorphic computing is favorable for
many applications, bootstrapping remains to be too costly at
scale. Luckily, bitwise comparison (which dominates search
applications) can be implemented homomorphically without
requiring bootstrapping. This is enabled by non-bootstrapped
homomorphism in [12], where a secure content-addressable
memory, SCAM, is introduced as an extension to the FHEW
cryptosystem. SCAM has sufficient computational margin such
that any two consecutive gate operations can be performed
without bootstrapping. The original SCAM is implemented
as an ASIC, which is not feasible for large scale search
considering prohibitive data transfer overheads. Homomorphic
encryption essentially comes with a large memory footprint
due to the blowup in encrypted data size1. More scalable SCAM
implementations include a hybrid memory cube (HMC) based
near-memory solution [14] and a FeFET based processing-in-
memory design [15]. Due to the large memory overhead, less
distance – both logically and physically – between the memory
and the compute logic is desirable. While HMC combines
the memory and the logic in the same system-on-chip, [15]
further reduces the data transfer overhead by implementing the
SCAM logic within customized sense amplifiers at the memory
periphery. However, neither of these approaches are optimal as
tighter coupling between logic and memory is still possible by
using a compute substrate fusing logic and memory operations
within the same array in a seamless fashion. This is the
case for spintronic Computational RAM (CRAM) [16], which,

1To put this into perspective, a traditional (non-homomorphic) encryption
scheme such as AES [13] can have 1:2 (AES IV) unencrypted-to-encrypted
memory ratio, where one bit unencrypted data requires 6.9KB [12] memory
for the same 128-bit security level under homomorphic encryption.
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on top of regular memory operations, can perform universal
Boolean logic operations between its memory cells within the
memory array in parallel without any need to offload them to
customized peripheral circuitry. In this paper, we introduce H-
CRAM, a CRAM-based, highly scalable SCAM accelerator for
homomorphic search.

On the other end of the spectrum, universal processing-in-
memory solutions such as CryptoPIM [17] can significantly
accelerate the Number Theoretical Transform (NTT) at the
core of bootstrapping, however, bootstrapping would still be
disproportionately costly for search applications at scale which
feature relatively less complex computational operations. This
renders resistive-memory based CryptoPIM infeasible for ho-
momorphic search, although (similar to H-CRAM) CryptoPIM
also features a seamless fusion of logic and memory. We
should also note that, compared to the resistive and ferroelectric
variants, spintronic (magnetic) RAM is superior in terms of
endurance, which is important for practical implementations
[18]2. Large magnetic memory arrays, such as Everspin’s
256MB STT-MRAM design [21] have already been commer-
cialized. Moreover, CRAM using Spin-Hall Effect (SHE) (or
Spin-Orbit Torque, SOT) cells is demonstrated to be 3× faster
while consuming 4× less energy than Spin-Transfer-Torque
(STT) based variants in benchmark applications such as 2D
convolution and digit recognition [22]. Therefore H-CRAM
deploys SOT cells [23]. Putting it all together:

• We introduce H-CRAM, an efficient CRAM-based homo-
morphic search accelerator, which operates ≈ 2× faster
than fastest known alternative.

• H-CRAM accelerates computation using an optimized
long adder tree tailored to homomorphic search.

• H-CRAM deploys De Bruijn topology to minimize data
transfers and to maximize memory reuse, in order to
optimize the overall memory and energy consumption.

• H-CRAM features specialized control arrays for tighter
coupling and further homogeneity.

The paper is organized as follows: Section II covers basics
of CRAM and SCAM. Section III introduces our homomorphic
search accelerator H-CRAM. Section IV provides quantitative
characterization and Section V concludes the paper.

II. BACKGROUND

A. Computational RAM (CRAM)
CRAM dates back to [16], where standard Spin-Torque-

Transfer (STT) Magnetic RAM (MRAM) is slightly modified
to enable logic operations within the memory array. By sepa-
rating read and write paths, and thereby enabling independent
optimization thereof (which would otherwise induce conflicting
optimization targets), Spin-Hall Effect (SHE) or Spin-Orbit
Torque (SOT) based CRAM significantly improves the energy
and the operation speed of the basic STT based design [23].

Each SHE-CRAM cell comprises a magnetic tunneling junc-
tion (MTJ) and two access transistors. The MTJ consists of
a fixed (polarity) magnetic layer, an insulating layer, a free
(variable polarity) magnetic layer, and a SHE channel. In P
(AP) state where the polarity of the free layer matches (does
not match) the polarity of fixed layer, the MTJ has low (high)
resistance, which encodes logic 0 (1).

Fig.1 shows the CRAM cell structure. Each cell is controlled
using several driver lines –Wordlines for Read/Write (WLR/W)

2Endurance is typically captured by the switching activity. Although SOT-
MRAM is considered to have a practically infinite endurance [19], earlier MTJ
implementations report more than 10e+20 cycles [18], [20].

LL
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OSL

WLR0 WLW0 WLR1 WLW1 WLR2 WLW2LW

L

in0 in1out

Fig. 1. Logic gate formation in SHE-CRAM. Currents passing through input
cells in0 and in1 (highlighted in green) get combined (highlighted in red) and
pass through the output cell (out). out is preset to a known value, which is
fixed for each gate type. Input currents can be adjusted using a gate-specific bias
voltage, such that out only switches for specific input combinations according
to the respective truth table. For a given bias voltage, input currents evolve as
a function of the resistance (state) of the input cells.

and Even/Odd Bit Select Lines (E/OSL)– and two access
transistors. CRAM can be used in memory mode or logic
mode. Fig.1 illustrates logic gate formation. Logic lines (LL)
are used to connect cells (along a column) to act as inputs and
outputs to logic gates. If inputs reside in even columns, the
output should be in an odd column and vice versa. By driving
WLR high (low) and WLW low (high) in the inputs (output
cell), and enforcing a logic gate specific voltage difference
on bit select lines, the combined current from the input MTJs
passes through the output MTJ. The output MTJ is preset to
a logic gate specific, known value –which would be AP/High-
resistance/logic 1 for a NAND gate, e.g. In this case, the logic
gate specific voltage difference along with this preset value
guarantee that the output MTJ switches according to the truth
table of the respective logic gate. In the example of the NAND
gate, the output MTJ switches state (to P/Low-Resistance/ logic
0) only if the combined current through the output MTJ is high
enough (i.e., both input MTJs are in low resistance P state). For
all other input MTJ state combinations (AP-P,P-AP,AP-AP) the
output MTJ does not switch (remains in the AP state). Since
NAND gate is universal, CRAM can perform any computation.
NAND, however, is not the only type of gate that CRAM
supports: a large variety of elementary gates such as AND, OR,
NOR, and 3/5-input majority (MAJ3/5) can be implemented
using the same principle. It is also important to note that CRAM
features two types of parallelism: finer-grain column level and
coarser-grain array level. Column level parallelism enables the
same Boolean gate operation to be performed in all columns of
a single CRAM array in parallel, while array level parallelism
allows multiple arrays to perform the very same computation
simultaneously.

B. SCAM
Although general purpose homomorphic encryption to ac-

commodate arbitrary types of computation can be more desir-
able for flexibility, it requires bootstrapping, which consists of
many polynomial multiplications and therefore is too costly
for even the simplest Boolean logic gate operations [14].
Bootstrapping is inevitable when the computational depth is
high or the computation is not homogenous, i.e., when different
operations are performed in different parts of the data. This
is because both conditions increase the chances of distruptive
noise accumulation, where some noise is introduced at each
computational step while processing encrypted data homomor-
phically. Recently, it has been shown that by modifying the
unencrypted data (i.e., the plaintext) space by a constant, it
is possible to perform homomorphic comparison without boot-
strapping [12]. The basic comparison of two w-bit unencrypted
words (strings) x and y (in the plaintext domain) using
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f(x, y) =

w∏

i=1

xi ⊕ yi (1)

in this case translates into the bit-level homomorphic

Hom̂XOR-OR operation implemented in the encrypted data
(cyphertext) domain by

Hom̂XOR-OR(x, y) =

w∑

i=0

cxi − cyi (2)

where cx and cy represent cyphertexts for input words x and
y. This forms the basis of the SCAM scheme. It is important
to note that the cyphertext size is a function of encryption
parameters n (lattice dimension) and q (ring modulo). Each
unencrypted bit expands to (n+ 1) log2 q-bits. Hence, a w-bit
word expands to w(n + 1) log2 q-bits, which sets the operand
length in Equation 2: for medium level security parameters
n = 1052 and log2 q = 42, each bit is encrypted as 44226
bits and a single 32-bit word requires 173KB memory [12],
[14], [15].

Although homomorphic search is effectively reduced to the
simple addition captured by Equation 2 with SCAM, such an
unconventionally long addition cannot be handled in traditional
hardware efficiently. In a nutshell, SCAM operation relies on
a single word comparison in hardware. Since the words to
compare are in encrypted domain, the comparison operation
reduces to a long addition for each bit in the unencrypted word.
We will next cover how H-CRAM is architected to handle the
complex memory requirement of this operation.

III. H-CRAM ARCHITECTURE

A. Adder Architecture
Per Equation 2, SCAM reduces to a basic addition, yet

on unconventionally long operands. Accordingly, along with
memory accesses at scale, addition represents a critical ac-
celeration target where adders optimized for much shorter
and more typical operand widths fall short of meeting the
performance requirement. This (n+1) log2 q-bit-long addition
results in significant latency, that would grow with O(N) for
N = (n + 1) log2 q bit operands using a standard Ripple-
Carry Adder (RCA)3. H-CRAM by construction, addresses the
memory access problem at scale, and adapts a Carry-Lookahead
Adder (CLA) [24] of O(N logN) complexity as a more
scalable solution. Note that an order of O(N) parallelism in
CLA reduces gate depth to O(logN), which allows significant
speedup over RCA.

Previous work on hardware acceleration of SCAM [15] to
handle this challenge uses Carry-Select Adder instead, which
has O(

√
N) worst-case latency for N bit operands. Although

this brings a significant reduction in latency, O(logN) scala-
bility is possible using logarithmic tree adders. Several adders
such as Sklansky [25], Kogge-Stone [26], Han-Carlson [27]
or Knowles [28] have logN or log(N + 1) gate depth, but
they are not suitable for homomorphic search acceleration on
CRAM fabric either because they require non-homogeneous
logic in each stage and/or excessive fanout, which would
easily wipe out any scalability benefit . Therefore, we use the
standard Carry-Lookahead Adder (CLA) [24]. Fig.2 illustrates
the dataflow, considering (n + 1) log2 q–bit addition of two
operands, representing the query and the reference for search.
CLA involves generate/propagate pairs (G/P) for each bit,
which are calculated by A-blocks. Next comes a forward pass

3As a hardware optimization, SCAM guarantees that q will be a power of
2 and therefore eliminating modulo operations [12].

(B-blocks) followed by a backward pass (C-blocks) of the tree
logic to calculate and propagate the carry values. Then, a stage
of two XOR gates per bit (D-blocks) computes partial sums.
Finally, partial sums are combined (reduced) in a tree structure
to (n + 1) log2 q-bits to check if they are all zero (E-blocks),
and are reduced one more time (F-blocks) to obtain the end
result.
B. Topology

Although the adder architecture from Fig.2 can be imple-
mented as is, in an unrolled fashion, in CRAM, hardware
(hence, interconnect) reuse at the block-level can reduce the
overall area significantly, where each block being a computa-
tional block described in Sec.III-A. By using a De Bruijn graph
[29] to implement the dataflow between, we can survive by
mapping only a single stage (each corresponding to a column
in Fig.2) of blocks to CRAM at a time. De Bruijn graph has a
diameter of log2 N for N vertices (nodes), hence, represents a
natural choice to implement tree structures from Fig.2. Such a
tree structure is each part of the entire graph with a binary tree
connectivity, where the graph nodes are computational blocks
and the edges are the electrical links. In other words, any two
arbitrary nodes in an N -node De Bruijn graph are connected
to each other with at most log2 N edges. This means any N -
node De-Bruijn graph can span N -node trees temporally, over
log2 N time steps. Recall from Fig. 2 that in each stage, the
number of logic blocks that needs to be executed may change.
E.g., there are 4, 2, and 1 B blocks in consecutive columns.
Disabling half of the nodes in the De Bruijn graph suffices to
implement the tree corresponding to each stage in this case. An
example 4-node De-Bruijn graph is shown in Fig.3(a). Fig.3(b)
illustrates a tree starting from node 0, without loss of generality.
Note that in Step 2 all nodes are active while only half of them
is active in Step 1. Starting from any other node would result
in a similar tree that can reach all other nodes in log2 N steps
for N nodes. Here active node entails a performing a logic
operation at that node, while inactive nodes do not partake in
the computation. Note that nodes establish data communication
by simple links. De Bruijn topology enables a binary tree that
can be constructed starting from any node, which causes only
a subset of the links to be used in each tree. As such, the link
3-to-1 is not used, while it could be used if the binary tree
started from node 3.

When it comes to physical design, it is possible to implement
the De Bruijn graph by using only two routing layers [30].
Routing algorithms for De Bruijn graphs are discussed in
detail in [31]. De Bruijn graph is also demonstrated to be an
efficient Network-on-Chip (NoC) topology to reduce latency,
area, dynamic and leakage power, respectively [30], [32]. One-
dimensional (1-D) De Bruijn graph can be extended to 2-D by
applying the same connectivity scheme in one dimension along
the second dimension in a straightforward manner. Overall
footprint is similar to the standard 2-D mesh routing. Therefore
we use the De Bruijn topology in H-CRAM to implement the
tree structures between the computational blocks from Fig. 2,
which we will cover next in detail.

C. Homomorphic Search in CRAM
H-CRAM consists of a standard non-volatile memory con-

troller, which orchestrates 32 processing units. Each processing
unit computes a single-bit match. Single-bit matches then get
combined to obtain the overall match result at the word level.
Processing units are connected to each other over single wire
unidirectional connections to this end. Each processing unit
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0 in log2 4 = 2 steps.

comprises 4 512× 512 control arrays (CtrlA) and 692 64× 64
processing arrays (PA). The processing array granularity is
similar to [15]. Each CtrlA provides control signals –to drive
word/bit select lines, to distribute gate bias voltages and to
manage presets. This is established by a buffered design of
wordlines, therefore, no extra compute logic is needed. An
initialization pulse which goes through a series of buffers
activates wordlines one by one. This essentially corresponds
to consecutive reads from the control array in each switching
interval, producing a sequence of voltages to be broadcasted
to the processing arrays (PAs). PAs are connected to each
other in a De Bruijn graph topology with 64-bit buses. PAs
perform logic operations as well as reads/writes as instructed
by the control signals broadcasted from CtrlAs. The overall
architecture is shown in Fig.4; memory layouts for CtrlA and
PA, in Fig.5. The buffer space (Buff.) is used for capturing
intermediate gate outputs during multi-gate operations.

As an offline step, CtrlAs are pre-programmed with LL,
E/OSL, WLR/W, as well as an array enable bit with for each
processing array PA. This allows selecting the active columns
as well as PAs which will be involved in the computation on
a per stage basis. PAs generate and process the G/P values.
The hardwired De Bruijn connectivity enables each stage of
the computation from Fig.2 to be directly mapped to PAs. If
required input bits are not present in the PA (i.e., are coming
from another PA), they are first written to the respective PA.
Otherwise, computation can fire immediately within the PA.

Processing
Unit
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Processing
Unit

Processing
Unit

NV
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Processing
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Processing
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Processing
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Fig. 4. H-CRAM Architecture (PA: Processing Array).

A B GLs PLs/CLs GHs PHs/CHs S Buff.

A B GLs PLs/CLs GHs PHs/CHs S Buff.

…

A B GLs PLs/CLs GHs PHs/CHs S Buff.

64
bits 64 bits 64 bits 64 bits 64 bits 173 

bits

LL SLE SLO WLW WLR AEN -…

LL SLE SLO WLW WLR AEN -…

LL SLE SLO WLW WLR AEN -…

LL SLE SLO WLW WLR AEN -…

LL SLE SLO WLW WLR AEN -…

-

512 bits

(a) (b)

64 bits

64 bits

Fig. 5. Memory layouts for: (a) Control Array CtrlA. Control line fields are
64 bits each, reflecting the PA data layout. There are 4 CtrlAs and 692 PAs in
each Processing Unit. The length of each Array Enable (AEN) field is equal
to the number of PAs per CtrlA. For (b) Processing Array PA. The fields A,
B, GL, GH , PH , PL, CH , and CL correspond to the respective blocks and
data from Figure 2.

H-CRAM can support multi-word search by simply activating
more processing units to operate simultaneously, as there is no
inter-word data dependency.

The search operation in H-CRAM spans the following stages:

1) Initialization: Input strings are written to all arrays. A
single startup pulse is provided to fire computations.
Initial gate operations which are captured by A-blocks in
Fig.2 are performed on the input strings, and G/P pairs are
produced. G/P pairs are then forwarded to the respective
PAs to perform the next stage.

2) Forward pass: Respective PAs perform forward pass
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computations using intermediate G/P pairs (B-blocks
from Fig.2). The new G/P pairs produced this way are
then forwarded to the respective output arrays for the
next step. This operation repeats for log2 ((n+ 1) log2 q)
steps.

3) Backward pass: Respective PAs perform backward pass
computations (C-blocks from Fig.2). Recall that C-blocks
use as inputs G/P pairs generated by A-blocks. The new
carry bits produced in this manner are then forwarded
to respective PAs for the next step. This operation also
repeats for log2 ((n+ 1) log2 q) steps.

4) XOR: Respective PAs perform two XOR gates per bit
to obtain the partial sum (D-blocks in Fig.2). D-blocks
inputs are a and b. The produced sum gets forwarded to
respective PAs for the next stage.

5) Comparisons: The final stage involves a
log2 ((n+ 1) log2 q) step bit-level comparison
(implementing E-blocks in Fig.2) followed by a
log2 w step word-level comparison (implementing
F-blocks in Fig.2).

IV. EVALUATION

We evaluate H-CRAM using a hierarchical CRAM simulator
similar to [33], [34] which covers circuit models based on state
resistances from Table I. In this context, we first decompose
high-level constructs to arithmetic operations which we then
express in terms of CRAM library logic gates. This makes
direct extraction of the overall energy and latency from lower
level device and circuit parameters possible. In order to estimate
peripheral time and energy overhead resulting from sense
amplifiers and row decoders, we deploy NVSim [35]. We use
NVSim output only to derive pessimistic estimates for the pe-
ripheral circuitry overhead for a desired array size. All dynamic
computation cost comes from the CRAM simulator. The rest of
our configuration parameters, including the cryptographic ones,
are given in Table I. The total memory footprint of the proof-
of-concept accelerator is 9.5MB for single word comparison,
which spans both processing and control arrays.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value
P state resistance 7.34 kΩ

AP state resistance 76.39 kΩ
Switching Time 1 ns

Switching Current 3 μA
Ring Modulo log2 q 42
Lattice Dimension n 1052 (λ = 80), 1318 (λ = 128)

Word size w 32
Memory size 5.5 MB (Processing), 4 MB (Control)

Our performance (latency), energy, and energy efficiency (in
terms of energy delay product, EDP) results are provided in
Table II. We use three representative baselines for comparison:
SCAM is the original ASIC design from [12]; HEGA, the HMC-
based system-on-chip design; and 2T+1 FeFET [15], the near-
memory implementation where computation is performed at
the memory periphery. Further, we consider two design points
for our accelerator: H-CRAM RCA is the slow variant which
uses the standard Ripple-Carry Adder; and H-CRAM CLA is
the optimized variant using Carry-Lookahead Adder. Note that
H-CRAM RCA is an unoptimized and highly inefficient design
and presented here just as a reference to better understand the
complex trade-offs in the design space.

Our results show that, when compared to HEGA, H-CRAM
RCA is 1.92× faster, while consuming significantly lower
energy. Compared to the 2T+1 FeFET, on the other hand,
H-CRAM RCA is 11.23× faster but consumes 11.6× more

TABLE II
PERFORMANCE AND ENERGY COMPARISONS

Implementation Latency (μs) Energy (nJ) EDP (fJs)

Intel Xeon [12] 57.7 75010† 432810†

SCAM [12] 9.47 11.41 108.05
HEGA [14] 0.61 1401† 854.67†

2T+1 FeFET [15] 3.56 0.71 2.52
H-CRAM RCA 221.13 1.37 302.95
H-CRAM CLA 0.317 8.24 2.61

† Since the actual numbers are not reported, we conservatively estimate
energy using the lowest idle power state (C6) for the baseline 8-core
Intel Xeon Processor [36].

energy, and as a result, has a similar energy efficiency. As noted
previously, we consider H-CRAM RCA only as a comparison
point, and it does not deliver a feasible performance vs.
energy trade-off. 2T+1 FeFET design features a relatively more
efficient adder architecture, but H-CRAM CLA still manages to
outperform 2T+1 FeFET by a large margin in terms execution
time, which points to H-CRAM’s efficiency as an effective
compute substrate.
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comparison
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controller

Fig. 6. Energy breakdown for H-CRAM CLA.

The energy breakdown of operations for H-CRAM CLA
is provided in Fig.6. Only a fraction of the total energy
is consumed indirectly, by preset and controller operations,
respectively. On the other hand, a significant energy is spent
during initialization, i.e., while writing the inputs to the Pro-
cessing Arrays as well as while computing the G/P pairs. Final
XOR pass dominates the overall energy consumption mainly
because XOR gates are implemented using multiple basic gates.
We consider communication overhead, i.e., array read/write
energy as part of the energy overhead for each type of operation
in Figure 6.
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Fig. 7. Execution time and energy sensitivity to different security parameters
and plaintext word lengths. λ = 80 corresponds to medium; λ = 128, to high
security, respectively, as defined in [12].

In order to show the impact of security parameters and
plaintext width, we sweep lattice dimension n and word length
w and report the execution time and energy in Figure 7.
Security parameter λ comes from the asymptotic complexity
of O(2λ) operations to decrypt an encrypted bit, and is defined
as a function of encryption parameters: λ = 80 is characterized
by n = 1052 and λ = 128 is characterized by n = 1318, as
described in [12].

H-CRAM supports arbitrary parallelism, and as processing of
each word can proceed independently, can easily be extended
to support multi-word search as is the case for HEGA [15].
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HEGA relies on a full-fledged multicore processor, 8 GB
memory, and extra logic on top in vault processing units.
To put this into prespective, an H-CRAM CLA design with
8 GB would enable 862 parallel SCAM operations, without
any need for extra logic or processing element outside of the
arrays. However, it is important to note that HEGA uses this
much memory to store the database; and H-CRAM, both for
storage and computation while achieving similar scalability.
Thanks to strictly adhering to standard memory semantics
and restricting the processing/control array connectivity to a
minimal topology, scalability can be abstracted from the device
level performance parameters such as pulse period. At the same
time, H-CRAM CLA is optimized for area using the De Bruijn
topology. For higher throughput, we could directly hardwire
the data dependency graph from Fig.2 to enable seamless
pipelining. Although the original SCAM [12] is proposed as a
biomarker search application, the underlying search architecture
is completely independent of the application domain. Finally,
system integration for H-CRAM is straightforward since it
only entails a standard memory interface for data transfer and
control.

V. CONCLUSION

In this paper, we introduce H-CRAM, a novel, spintronic
in-memory accelerator for homomorphic search. We provide
an area-efficient latency-optimized proof-of-concept design and
pinpoint challenges and opportunities for further optimization.
This design outperforms the fastest baseline for comparison
by 1.92×, while consuming significantly lower energy. When
compared to another representative alternative optimized for
low power, on the other hand, our design is 11.23× faster
while maintaining similar energy efficiency. The improvements
do not only stem from the low-energy computing medium and
the tight coupling thereof with a data-hungry application do-
main, but a network topology that enables energy-efficient data
communication. Unlike alternatives, H-CRAM’s scalability is
only limited by memory availability since it does not incur any
extra logic for computation, neither in array periphery nor in
control lines. In summary, our implementation demonstrates
an area-efficient solution with execution time optimization,
yet it can be tailored for high-parallelism or high-throughput
needs easily –by exploiting the inherent multi-grain parallelism
of CRAM– to reveal further feasible design options in the
complex execution time vs. energy vs. area trade-off space.
We will explore opportunities for more generic homomorphic
computation in our future work.
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