CAMeleon: Reconfigurable B(T)CAM in Computational RAM

Zamshed I. Chowdhury, Salonik Resch, Hüsrev Cılasun, Zhengyang Zhao, Masoud Zabihi, Sachin S. Sapatnekar, Jian-Ping Wang and Ulya R. Karpuzcu

chowh005@umn.edu

Content Addressable Memory (CAM)

Uses SRAM, STT-MRAM, ReRAM etc.

Conventional Memory Structure, e.g., RAM Content Addressable Memory or CAM

Processing-In-Memory (PIM)

CAMeleon

PIM-based architectures:

- + consumes low power
- + reconfigurable between logic and memory functions

- Utilizes PIM logic to implement CAM search function
- Reconfigurable between CAM and PIM
 - Area and power efficient
 - Comparable latency as other designs
- Scalable

e.g., Computational RAM (CRAM)

Overview

- Background on CAM and CRAM
- CAM Search in CRAM
- CAM and PIM modes in CRAM
- CAMeleon High-level Architecture
- Evaluation Setup and Results
- Conclusion

CAM Basics

- Len(Query word) = Len(Key Word)
- Key and Query Words are typically 32-128 bits
- Given unique key words:
 - B(inary) CAM: At most 1 match possible
 - T(ernary) CAM: >1 matches possible

Computational RAM (CRAM)

STT-MTJ R_Low R_High

Truth Table for 2-input NOR gate

CRAM

Input ₁	$Input_2$	Output	$I_{OUT} = I_1 + I_2$	
$0 (R_{low})$	$0 (R_{low})$	1	I_00	$> I_{crit}$
0 (R_{low})	$1 (R_{high})$	0	I I01	< I _{crit}
1 (R_{high})	$0 (R_{low})$	0	$I_{10} = I_{01}$	< I _{crit}
$1 (R_{high})$	$1 (R_{high})$	0	I I11	< I _{crit}

Innut

CRAM

EBSL = Even Bit Select Line OBSL = Odd Bit Select Line

BCAM in CRAM

(PRESET = 0)

TCAM in CRAM

Row Selection Logic (RSL) and CAM Mode

RSL for BCAM

RSL for B(T)CAM

CAM Mode	Query Reg. Bit	Bit-Mask Reg. Bit	WL Signal
0	NA	NA	Tile Controller
1	1	Х	RSL
O •			

Switching between CAM and PIM modes

Handling Long Key and Query Words

CAMeleon Architecture

Organization of Tiles (transposed)

Evaluation Setup

Parameter	CLP	СНР	CHPA	FLP	FHP	
MTJ Type	Interfacial PMTJ					
MTJ Diameter (<i>nm</i>)	45			10		
TMR (%)	133		500			
RA Product ($\Omega \mu m^2$)	5		1			
$I_{crit} (\mu A)$	40	90	180	0.79	10	
Switch. Latency (<i>ns</i>)	3	1	0.3	1	0.3	
$R_P, R_P, R_{Trans.}$ (K Ω)	3.15, 7.34, 1		12.7, 76.39, 1			

Technology Parameters

Key and Query Word Length (bits)	128	
#Key Words	1024	
#Query Words	102400	
#Wildcard bits	64	
#Segments	8	

CAMeleon Configuration

- *CLP Current, Low Power MTJ
- *CHP Current, High Performance MTJ
- *CHPA Current, High Performance (Aggressive) MTJ
- *FLP Future, Low Power MTJ
- *FHP Future, High Performance MTJ

Sensitivity to %Wildcard bits in TCAM Query Word

Sensitivity to Query word length

Conclusion

- Low overhead reconfigurability in edge and IoT systems is required
- CAMeleon: Reconfigurable between PIM and (B/T)CAM functionality
- CAMeleon outperforms a wide-range of CAM baselines, in terms of area or energy consumption (or both), while maintaining comparable search latency

Questions?