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Low Voltage Operation for Energy Efficiency

Power x Energy efficiency = Performance
« f(requency) X #cores

® \/dd scaling increases energy-efficiency
® Near-Threshold Voltage -- NTV Operation
® \/dd reduces to slightly above Vth: ~0.5V
® vs. 1V for conventional or Super-threshold voltage -- STV
® Drawbacks
® Lower f: Need more parallelism 9 large chips

® Higher impact of variation
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Contribution

® Conventional techniques to tolerate variation are not cost-effective at NTV
® Support for multiple on-chip Vdd domains hurts energy-efficiency

® Propose EnergySmart organization to maximize energy-efficiency at NTV
® Single Vdd domain, multiple f domains
® Simple hardware
® Smart, variation-aware core assignment

® Energy-efficiency within 81% of perfect organization
(as opposed to 69% for conventional)
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NTV Drawback: Parametric Variation

Transistor Delay

0.25 0.30 0.35
Same AVth causes higher f variation at NTV than at STV
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Multiple Vdd Domains: Cost-effective?

(1) On chip regulators’ high power loss

® 10% power loss or more

Let us keep one Vdd domain per chip. How to survive?

® Fine: Effective tuning but expensive due to large #cores

® Coarse: More practical, yet suffers from variation inside

(I1l) Vdd noise
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EnergySmart: Eschewing Multiple Vdd Domains

e Simple, clustered hardware to exploit within-die variation

e Each cluster supports a different max f at chip-wide, single Vdd

Core + Local Memory

® Cluster selection mimics mu

® Assignment in units of mu

ti-Vdd adaptation

tiples of clusters called Ensembles

® Each ensemble constitutes a f domain

e Each ensemble cycles at the f of slowest component cluster
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Cluster Assignment

® Goal: Maximize MIPS/Watt subject to
® Power budget and maximum temperature

® Distance between allocated clusters

Per Cluster Variation Profile * Instanteneous Load

(Psta, fmax)

Cluster
Assignment
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A task demands N = |E| clusters
® Foreach available clusterii

Enumerate all ensembles E where the clusteri is slowest
Ensemble frequency fg = f;

Consider only clusters of higher fmax

Pick the ensemble maxg MIPS/Watt

p Linear-complexity operation if clusters are sorted offline
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EnergySmart: Pros and Cons

Vv’ Simple clustered hardware architecture

Vv Tolerates variation with a single physical Vdd domain
® (lusterselection replaces multi-Vdd adaptation

Vv’ Simple cluster assignment

- Needs cluster profiling
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Evaluation Setup

® Simulated 288 core chip at 22nm:

® 36 clusters, 8 cores per cluster

® Core: Single issue in-order
® VARIUS-NTV model to find the per-cluster minVdd and max f
® Multi-programmed workload based on PARSEC
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Effectiveness of Single Vdd Domain per Chip
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Effectiveness of Single Vdd Domain per Chip

15

L]
L1

EnergySmart

Ssuiewo
* | P PPA

/ uielb asieo?) +

\ l01e|nbay
ﬁ 10319 M
amn;

sso| Jamod

10%

< 0 O < ~
- o o o o

138 /\\/SdIIN PaZI[eWION



Effectiveness of Single Vdd Domain per Chip
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Effectiveness of Single Vdd Domain per Chip
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Effectiveness of Single Vdd Domain per Chip

15

HEE NN NN EEEE NN EEN

[Ty rrrprrryrrryrrd

EEE NN NN AN N e
[ [ 1 imsinnionyoionimmmpnin=] § | | [ i

LTyl id
I [ EEEC e M

I [ I 11

1 T I e M [
WSS [ ) [T T ] 101§ (e

1.0

)
C
0
=
()]
Q
e
@)
&
L
)
©
=
n
>
(@)
s
()
c
LLl

pewsAbiaugy €

5

A= >
7 uibaepy =
M ppAJSbIe] + D

SUIEWIOP PPA
uielb asieo?) +

sso| Jamod
l01e|nbay

109}49d M
L =
amna

% —3ie—

@) @) @)

138 /\\/SdIIN PaZI[eWION

0.2



Cluster Assignment
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Cluster Assignment B coergysmart

u Multi-Vdd: 5% loss
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Cluster Assignment B coergysmart
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Conclusion

Energy Smart:
Eschewing multi-Vdd domains to tolerate variation at NTV

e Multiple f domains rather thanVdd domains

® (lusterselection replaces multi-Vdd adaptation
e Simple clustered hardware architecture
e Simple, variation-aware cluster assignment
e Energy-efficiency within 81% of perfect organization

e Realistic multi-Vdd organization achieves only 69%
(at 90% reqgulator efficiency)
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