EnergySmart: Toward Energy-Efficient Many-Cores for Near-Threshold Computing

Ulya R. Karpuzcu, Abhishek Sinkar*, Nam Sung Kim*, Josep Torrellas* University of Minnesota *University of Illinois *University of Wisconsin

University of Minnesota

Power x Energy efficiency = Performance

Vdd scaling increases energy-efficiency

- Vdd scaling increases energy-efficiency
- Near-Threshold Voltage -- NTV Operation

- Vdd scaling increases energy-efficiency
- Near-Threshold Voltage -- NTV Operation
 - Vdd reduces to slightly above Vth: ~0.5V

Power x Energy efficiency = Performance

- Vdd scaling increases energy-efficiency
- Near-Threshold Voltage -- NTV Operation
 - Vdd reduces to slightly above Vth: ~0.5V
 - vs. 1V for conventional or Super-threshold voltage -- STV

- Vdd scaling increases energy-efficiency
- Near-Threshold Voltage -- NTV Operation
 - Vdd reduces to slightly above Vth: ~0.5V
 - vs. 1V for conventional or Super-threshold voltage -- STV
 - Drawbacks

- Vdd scaling increases energy-efficiency
- Near-Threshold Voltage -- NTV Operation
 - Vdd reduces to slightly above Vth: ~0.5V
 - vs. 1V for conventional or Super-threshold voltage -- STV
 - Drawbacks
 - Lower f: Need more parallelism > large chips

- Vdd scaling increases energy-efficiency
- Near-Threshold Voltage -- NTV Operation
 - Vdd reduces to slightly above Vth: ~0.5V
 - vs. 1V for conventional or Super-threshold voltage -- STV
 - Drawbacks
 - Lower f: Need more parallelism > large chips
 - Higher impact of variation

Conventional techniques to tolerate variation are not cost-effective at NTV

- Conventional techniques to tolerate variation are not cost-effective at NTV
 - Support for multiple on-chip Vdd domains hurts energy-efficiency

- Conventional techniques to tolerate variation are not cost-effective at NTV
 - Support for multiple on-chip Vdd domains hurts energy-efficiency
- Propose EnergySmart organization to maximize energy-efficiency at NTV

- Conventional techniques to tolerate variation are not cost-effective at NTV
 - Support for multiple on-chip Vdd domains hurts energy-efficiency
- Propose EnergySmart organization to maximize energy-efficiency at NTV
 - Single Vdd domain, multiple f domains

- Conventional techniques to tolerate variation are not cost-effective at NTV
 - Support for multiple on-chip Vdd domains hurts energy-efficiency
- Propose EnergySmart organization to maximize energy-efficiency at NTV
 - Single Vdd domain, multiple f domains
 - Simple hardware

- Conventional techniques to tolerate variation are not cost-effective at NTV
 - Support for multiple on-chip Vdd domains hurts energy-efficiency
- Propose EnergySmart organization to maximize energy-efficiency at NTV
 - Single Vdd domain, multiple f domains
 - Simple hardware
 - Smart, variation-aware core assignment

- Conventional techniques to tolerate variation are not cost-effective at NTV
 - Support for multiple on-chip Vdd domains hurts energy-efficiency
- Propose EnergySmart organization to maximize energy-efficiency at NTV
 - Single Vdd domain, multiple f domains
 - Simple hardware
 - Smart, variation-aware core assignment
 - Energy-efficiency within 81% of perfect organization (as opposed to 69% for conventional)

At NTV, more cores can be active than at STV

Same \(\Delta V\) th causes higher f variation at NTV than at STV

Attack source of variation
 adapt Vth

- Attack source of variation
 adapt Vth
 - Adaptive Body Biasing

- Attack source of variation
 adapt Vth
 - Adaptive Body Biasing
 - Questionable for new device architectures

- Attack source of variation
 adapt Vth
 - Adaptive Body Biasing
 - Questionable for new device architectures
- Attack effect of variation adapt Vdd

- Attack source of variation
 adapt Vth
 - Adaptive Body Biasing
 - Questionable for new device architectures
- Attack effect of variation
 adapt Vdd
 - Adaptive Supply Voltage, Dynamic Voltage Scaling

- Attack source of variation
 adapt Vth
 - Adaptive Body Biasing
 - Questionable for new device architectures
- Attack effect of variation
 adapt Vdd
 - Adaptive Supply Voltage, Dynamic Voltage Scaling
 - Effectiveness increases with multiple voltage domains

- Attack source of variation
 adapt Vth
 - Adaptive Body Biasing
 - Questionable for new device architectures
- Attack effect of variation
 adapt Vdd
 - Adaptive Supply Voltage, Dynamic Voltage Scaling
 - Effectiveness increases with multiple voltage domains
 - Cost-effective?

(I) On chip regulators' high power loss

- (I) On chip regulators' high power loss
 - 10% power loss or more

(I) On chip regulators' high power loss

- 10% power loss or more
- Barely any loss is acceptable at energy-conscious NTV

- (I) On chip regulators' high power loss
 - 10% power loss or more
 - Barely any loss is acceptable at energy-conscious NTV
- (II) Vdd domain granularity (# of cores per domain)

- (I) On chip regulators' high power loss
 - 10% power loss or more
 - Barely any loss is acceptable at energy-conscious NTV
- (II) Vdd domain granularity (# of cores per domain)
 - Fine: Effective tuning but expensive due to large #cores

(I) On chip regulators' high power loss

- 10% power loss or more
- Barely any loss is acceptable at energy-conscious NTV
- (II) Vdd domain granularity (# of cores per domain)
 - Fine: Effective tuning but expensive due to large #cores
 - Coarse: More practical, yet suffers from variation inside

(I) On chip regulators' high power loss

- 10% power loss or more
- Barely any loss is acceptable at energy-conscious NTV
- (II) Vdd domain granularity (# of cores per domain)
 - Fine: Effective tuning but expensive due to large #cores
 - Coarse: More practical, yet suffers from variation inside

(III) Vdd noise

(I) On chip regulators' high power loss

- 10% power loss or more
- Barely any loss is acceptable at energy-conscious NTV
- (II) Vdd domain granularity (# of cores per domain)
 - Fine: Effective tuning but expensive due to large #cores
 - Coarse: More practical, yet suffers from variation inside

(III) Vdd noise

Large domain

Averaging effects in the current drawn

(I) On chip regulators' high power loss

- 10% power loss or more
- Barely any loss is acceptable at energy-conscious NTV
- (II) Vdd domain granularity (# of cores per domain)
 - Fine: Effective tuning but expensive due to large #cores
 - Coarse: More practical, yet suffers from variation inside

(III) Vdd noise

Large domain

Averaging effects in the current drawn

Small domain

- Less averaging ⇒ Higher Vdd droops
- Need to increase Vdd margin

(I) On chip regulators' high power loss

10% power loss or more

Let us keep one Vdd domain per chip. How to survive?

- Fine: Effective tuning but expensive due to large #cores
- Coarse: More practical, yet suffers from variation inside

(III) Vdd noise

Large domain

Averaging effects in the current drawn

Small domain

- Less averaging ⇒ Higher Vdd droops
- Need to increase Vdd margin

Simple, clustered hardware to exploit within-die variation

- Simple, clustered hardware to exploit within-die variation
 - Each cluster supports a different max f at chip-wide, single Vdd

- Simple, clustered hardware to exploit within-die variation
 - Each cluster supports a different max f at chip-wide, single Vdd

Core + Local Memory

Cluster selection mimics multi-Vdd adaptation

- Simple, clustered hardware to exploit within-die variation
 - Each cluster supports a different max f at chip-wide, single Vdd

- Cluster selection mimics multi-Vdd adaptation
 - Assignment in units of multiples of clusters called Ensembles

- Simple, clustered hardware to exploit within-die variation
 - Each cluster supports a different max f at chip-wide, single Vdd

- Cluster selection mimics multi-Vdd adaptation
 - Assignment in units of multiples of clusters called Ensembles
 - Each ensemble constitutes a f domain

- Simple, clustered hardware to exploit within-die variation
 - Each cluster supports a different max f at chip-wide, single Vdd

- Cluster selection mimics multi-Vdd adaptation
 - Assignment in units of multiples of clusters called Ensembles
 - Each ensemble constitutes a f domain
 - Each ensemble cycles at the f of slowest component cluster

Goal: Maximize MIPS/Watt subject to

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature
 - Distance between allocated clusters

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature
 - Distance between allocated clusters

Per Cluster Variation Profile (P_{STA}, f_{MAX})

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature
 - Distance between allocated clusters

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature
 - Distance between allocated clusters

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature
 - Distance between allocated clusters

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature
 - Distance between allocated clusters

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature
 - Distance between allocated clusters

Cluster Assignment

- Goal: Maximize MIPS/Watt subject to
 - Power budget and maximum temperature
 - Distance between allocated clusters

Simple

Single Vdd value
Assignment at cluster granularity
Single f per ensemble

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

	\Box		1		
1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
			+++		
19	20	21	22	23	24
	+++				
25	26	27	28	29	30
┠┼┼┼					
31	32	33	34	35	36

 $f_A = min(f_8, f_9, f_{14}, f_{15})$

1	2	3	4	5	6
7 	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25 	26	27	28	29	30
31	32	33	34	35	36

$$f_A = min(f_8, f_9, f_{14}, f_{15})$$

$$f_B = min(f_{5}, f_{6}, f_{11}, f_{12}, f_{17}, f_{18}, f_{23}, f_{24})$$

				-	
1	2	3	4	5	6
_ -			<u> </u>		
7	8	9	10	11	12
			+++		
13	14	15	16	17	18
12	T 4	13	10	Τ/	TO
19	20	21	22	23	24
	26	27			20
25	26	27	28	29	30
31	32	33	34	35	36
	32	33			

$$f_A = \min(f_{8}, f_{9}, f_{14}, f_{15})$$

$$f_B = min(f_5, f_6, f_{11}, f_{12}, f_{17}, f_{18}, f_{23}, f_{24})$$

$$f_C = min(f_{20}, f_{26}, f_{27}, f_{28}, f_{29}, f_{30}, f_{32}, f_{33})$$

A task demands N = |E| clusters

For each available cluster i

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{array}{c} \text{MIPS} \\ \text{Watt} \\ \text{max}_{\text{E}} & \text{IPC}(f_{\text{E}}) \times |\text{E}| \times f_{\text{E}} \\ \text{Watt} \\ \end{array}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{aligned} & \underset{\text{maxe}}{\text{maxe}} \frac{\text{MIPS}}{\text{Watt}} \\ & \underset{\text{maxe}}{\text{IPC(f_E)}} \times |\text{E}| \times \text{f_E} \\ & \\ & \sum_{E} \text{P_{STA}} + \sum_{E} \text{P_{DYN}} \end{aligned}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{aligned} & \underset{\text{maxe}}{\text{maxe}} \frac{\text{MIPS}}{\text{Watt}} \\ & \underset{\text{maxe}}{\text{IPC(f_E)}} \times |E| \times f_E \\ & \frac{\sum_{E} P_{STA} + C \times Vdd^2 \times |E| \times f_E}{\end{aligned}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{aligned} & \underset{\text{maxe}}{\text{maxe}} \frac{\text{MIPS}}{\text{Watt}} \\ & \underset{\text{maxe}}{\text{IPC(f_E)}} \times \frac{|\textbf{E}|}{\text{x f_E}} \times \text{f_E} \\ & \underset{\text{E}|}{\sum_{E} P_{STA}} + C \times \text{Vdd}^2 \times \frac{|\textbf{E}|}{\text{x f_E}} \end{aligned}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{aligned} & \underset{\text{maxe}}{\text{maxe}} \frac{\text{MIPS}}{\text{Watt}} \\ & \underset{\text{maxe}}{\text{IPC(f_E)}} \times \frac{|\textbf{E}|}{\text{x f_E}} \times \text{f_E} \end{aligned}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{aligned} & \underset{\text{maxe}}{\text{maxe}} \frac{\text{MIPS}}{\text{Watt}} \\ & \underset{\text{maxe}}{\text{IPC(f_E)}} \times \frac{|\textbf{E}|}{\text{x f_E}} \times \text{f_E} \\ & \sum_{E} P_{STA} + \textbf{C} \times \text{Vdd}^2 \times \frac{|\textbf{E}|}{\text{x f_E}} \times \text{f_E} \end{aligned}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{aligned} & \underset{\text{maxe}}{\text{maxe}} \frac{\text{MIPS}}{\text{Watt}} \\ & \underset{\text{maxe}}{\text{IPC(f_E)}} \times \frac{|\textbf{E}|}{\text{x}} \times \frac{|\textbf{f_E}|}{\text{f_E}} \\ & \sum_{E} P_{STA} + \textbf{C} \times \text{Vdd}^2 \times \frac{|\textbf{E}|}{\text{x}} \times \frac{|\textbf{f_E}|}{\text{f_E}} \end{aligned}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{aligned} & \underset{\text{maxe}}{\text{maxe}} \frac{\text{MIPS}}{\text{Watt}} \\ & \underset{\text{maxe}}{\text{IPC(fe)}} \times |\textbf{E}| \times \textbf{fe} \\ & \sum_{E} P_{STA} + \textbf{C} \times \textbf{Vdd}^2 \times |\textbf{E}| \times \textbf{fe} \end{aligned}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt

$$\begin{aligned} \text{max}_{E} & \xrightarrow{\text{MIPS}} \\ & \text{Watt} \\ & \text{max}_{E} & \xrightarrow{\text{IPC(f_E)} \times |E| \times f_{E}} \\ & \sum_{E} P_{STA} + C \times Vdd^{2} \times |E| \times f_{E} \\ & \equiv \min_{E} \sum_{E} P_{STA} \end{aligned}$$

- For each available cluster i
 - Enumerate all ensembles E where the cluster i is slowest
 - Ensemble frequency $f_E = f_i$
 - Consider only clusters of higher f_{MAX}
 - Pick the ensemble max_E MIPS/Watt
- ▶ Linear-complexity operation if clusters are sorted offline

$$\frac{|PC(f_E) \times |E| \times f_E}{\sum_{E} P_{STA} + C \times Vdd^2 \times |E| \times f_E}$$

$$\equiv min_E \, \sum_E P_{STA}$$

✓ Simple clustered hardware architecture

- √ Simple clustered hardware architecture
- √ Tolerates variation with a single physical Vdd domain

- √ Simple clustered hardware architecture
- √ Tolerates variation with a single physical Vdd domain
 - Cluster selection replaces multi-Vdd adaptation

- √ Simple clustered hardware architecture
- √ Tolerates variation with a single physical Vdd domain
 - Cluster selection replaces multi-Vdd adaptation
- √ Simple cluster assignment

- √ Simple clustered hardware architecture
- √ Tolerates variation with a single physical Vdd domain
 - Cluster selection replaces multi-Vdd adaptation
- √ Simple cluster assignment
- Needs cluster profiling

Evaluation Setup

Evaluation Setup

• Simulated 288 core chip at 11nm:

- Simulated 288 core chip at 11nm:
 - 36 clusters, 8 cores per cluster

- Simulated 288 core chip at 11nm:
 - 36 clusters, 8 cores per cluster
 - Core: Single issue in-order

Core + Local Memory

- Simulated 288 core chip at 11nm:
 - 36 clusters, 8 cores per cluster
 - Core: Single issue in-order
- VARIUS-NTV model to find the per-cluster min Vdd and max f

Core + Local Memory

- Simulated 288 core chip at 11nm:
 - 36 clusters, 8 cores per cluster
 - Core: Single issue in-order
- VARIUS-NTV model to find the per-cluster min Vdd and max f
- Multi-programmed workload based on PARSEC

Core + Local Memory

EnergySmart is more efficient

Normalized MIPS/Watt

0% 25% 50%

Normalized MIPS/Watt

25%

% Unavailable Clusters
EnergySmart

50%

Normalized MIPS/Watt

% Unavailable Clusters

Normalized MIPS/Watt

Multi-Vdd: 10% loss

% Unavailable Clusters

Normalized MIPS/Watt

EnergySmart

Multi-Vdd: 5% loss

Multi-Vdd: 10% loss

Multi-Vdd: 15% loss

% Unavailable Clusters

% Unavailable Clusters

Energy Smart:

Energy Smart:

Energy Smart:

Eschewing multi-Vdd domains to tolerate variation at NTV

Multiple f domains rather than Vdd domains

Energy Smart:

- Multiple f domains rather than Vdd domains
 - Cluster selection replaces multi-Vdd adaptation

Energy Smart:

- Multiple f domains rather than Vdd domains
 - Cluster selection replaces multi-Vdd adaptation
- Simple clustered hardware architecture

Energy Smart:

- Multiple f domains rather than Vdd domains
 - Cluster selection replaces multi-Vdd adaptation
- Simple clustered hardware architecture
- Simple, variation-aware cluster assignment

Energy Smart:

- Multiple f domains rather than Vdd domains
 - Cluster selection replaces multi-Vdd adaptation
- Simple clustered hardware architecture
- Simple, variation-aware cluster assignment
- Energy-efficiency within 81% of perfect organization

Energy Smart:

- Multiple f domains rather than Vdd domains
 - Cluster selection replaces multi-Vdd adaptation
- Simple clustered hardware architecture
- Simple, variation-aware cluster assignment
- Energy-efficiency within 81% of perfect organization
 - Realistic multi-Vdd organization achieves only 69% (at 90% regulator efficiency)

EnergySmart: Toward Energy Efficient Many Co

Toward Energy-Efficient Many-Cores for Near-Threshold Voltage Computing

Ulya R. Karpuzcu*, Abhishek Sinkar*, Nam Sung Kim*, Josep Torrellas*

*University of Minnesota *University of Illinois *University of Wisconsin

University of Minnesota