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ABSTRACT Recent years have witnessed an increasing interest in the processing-in-memory (PIM)
paradigm in computing due to its promise to improve the performance through the reduction of energy-
hungry and long-latency memory accesses. Joined with the explosion of data to be processed, produced
in genomics—particularly genome sequencing—PIM has become a potential promising candidate for
accelerating genomics applications since they do not scale up well in conventional von Neumann systems.
In this article, we present an in-memory accelerator architecture for DNA read alignment. This architecture
outperforms corresponding software implementation by >49X and >18 000X, in terms of throughput and
energy efficiency, respectively, even under conservative assumptions.

INDEX TERMS Accelerator, BWA, computational RAM (CRAM), DNA, genome sequence, processing in
memory (PIM), spin Hall effect magnetic tunnel junction (SHE-MTJ).

I. INTRODUCTION

THE evolution in different domains of science and tech-
nology, from social networking to astronomical observa-

tion, has brought us into the age of large-scale data where an
abundance of data is available for analysis to aid in the inves-
tigation of a wide range of problems. This presents itself with
a new kind of challenge for conventional computing since the
applications that use large-scale data do not scale up well
with such a model of computing. Such applications suffer
from increased energy consumption and latency due to high
overhead from data movement between physically separate
compute logic and memory. Processing in memory (PIM),
also known as compute-in-memory or CiM, is an exciting
solution to this issue that fuses the capability to perform
logic operations with the standard memory functionalities—
effectively reducing the separation between the compute logic
and memory. Moreover, a high degree of parallelism, in the
form of a column or row parallelism in a 2-D array of memory
cells, can boost the throughput of in-array or in situ logic
operations. PIM presents an opportunity to achieve better
performance, in terms of latency and energy consumption,
in comparison with conventional computing substrates, such
as CPU or GPU.

The technology of genome sequencing has improved
rapidly over the last decade, generating an abundance of data

for analysis in different domains of research and precision
medicine, e.g., finding causes for diseases, such as cancer and
Alzheimer’s. However, applications that utilize these large-
scale data suffer from low scalability associated with the clas-
sical von Neumann systems due to excessive data movement
overhead. The presence of a high number of memory accesses
and a high degree of parallelism available in these applica-
tionsmake them good candidates for PIM-based acceleration.

In this article, we propose an end-to-end PIM acceler-
ator for genomics, BWA-CRAM, which is based on the
spintronic computational RAM (CRAM) [1] as the PIM
substrate. CRAM uses spin Hall effect magnetic tunnel
junction (SHE-MTJ)-based memory cells. As computa-
tion directly takes place in the memory array, CRAM
can perform many bitwise operations in parallel, at very
low energy. BWA-CRAM represents a PIM accelerator for
the Burrows–Wheeler transform (BWT)-based DNA short
read alignment (BWA). The BWT-based DNA sequence
alignment has become a standard critical tool for sifting
through the abundance of sequence data, e.g., DNA, avail-
able from the next-generation genome sequencing platforms.
We provide the architectural details of BWA-CRAM and
characterize the performance in terms of throughput and
energy efficiency of alignment. We also compare the perfor-
mance against a state-of-the-art software implementation of
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BWA and a PIM-based DNA sequence alignment accelerator
that uses similar memory technology as BWA-CRAM. In a
nutshell, our contributions in this article are as follows.

1) We present an accelerator architecture for an emerging
and critical genomic application, which, by itself, rep-
resents a key first computational step for many different
types of genomic analysis.

2) In doing so, we significantly reduce the total required
memory footprint utilizing PIM features.

3) We showcase that even without altering an algorithm
designed for a conventional system to better exploit
the underlying PIM substrate, significant performance
benefits can be achieved.

The rest of this article is organized as follows. Section II
discusses the basics of the BWA sequence alignment algo-
rithm and CRAM,with the architectural details of mapping of
BWA in CRAM explained in Section III. Sections IV and V
report the evaluation setup and the outcome of the perfor-
mance characterization of the accelerator. Finally, Section VI
qualitatively compares other similar approaches available in
the literature, and Section VII concludes this article.

FIGURE 1. DNA sequence alignment.

II. BASICS
A. DNA SEQUENCE ALIGNMENT
A DNA sequence is a collection of four nucleotide base pairs
(bp)–(A)denine, (C)ytosine, (G)uanine, and (T)hymine. The
sequences of bases are recognized by a sequencing machine
that encodes the sequences using a string of characters from
the alphabet {A, C, G, T}. DNA sequence alignment is the
problem of finding out the location of the highest degree of
similarity between a very long sequence—a reference—and
an order of magnitude shorter sequence–a read. A typical
length of a short read is 100 bp, while a reference sequence
can be in the order of billions of bp. Fig. 1 shows two reads
aligned with an example reference sequence at two locations.
The first read aligned at the ith location of the reference is an
exact alignment since all bps in the reference and the read are
the same. This is not the case for the second read since there
are mismatches between the read and the reference (when
aligned at the jth location of the reference), known as inexact
alignment. Finding inexact alignment is similar, in the context
of the algorithm, to finding exact alignment, however more
expensive in terms of required computation.

B. BWT-BASED ALIGNMENT (BWA)1

BWT is a data compression technique [2], later adopted
for fast alignment of short DNA reads [3]. The first step
in BWA is to generate a BWT of the reference, which we
will refer to as BWT throughout the rest of this article.
Fig. 2 shows the generation of the BWT of an example string.
The string, i.e., a reference sequence, in this case, is assumed
to be terminated with the character ‘‘$’’ where no character
in the reference is lexicographically smaller than ‘‘$.’’ As
shown in Fig. 2, all possible cyclic rotations of the reference
sequence are created and then lexicographically sorted based
on the first character—residing in the column labeled by
F(irst) in the figure. The L(ast) column is the BWT of the
reference sequence, and stored as the reference—residing in

FIGURE 2. BWT of a reference DNA sequence (the length is not
up-to-scale to ease illustration).

the column labeled by L(ast) in the figure. Only BWT is
stored in memory.

To perform alignment of short reads, i.e., read sequences,
some additional data structures are required. These include
the Occurrence Table (Occ) that records, at each index in
BWT, the number of occurrences of each character in the
alphabet of the reference until that index. Fig. 2 illustrates
how Occ keeps track of all occurrences of each character in
the alphabet. The second data structure is relatively much
smaller than Occ: Count that stores the number of lexi-
cographically smaller characters in the F(irst) column, for
each character in the alphabet. Finally, the suffix array (SA)
stores the occurrence (index) of suffixes of all characters
in the order they appear in the F(irst) column. Typically,
an SA is constructed by generating all suffixes of a sequence,
i.e., DNA reference, before sorting it lexicographically and
storing the sorted suffix indices. As a result, an index in F
refers to the same index in SA. The suffixes of the reference
in Fig. 2 are [0] ‘‘ATCGAT,’’ [1] ‘‘TCGAT,’’ [2] ‘‘CGAT,’’
[3] ‘‘GAT,’’ [4] ‘‘AT,’’ [5] ‘‘T,’’ and [6]‘‘$.’’ Sorting the suf-
fixes in lexicographical order of the first characters also sorts
the corresponding indexes: {6, 4, 0, 2, 3, 5, 1} that is the SA
of the reference sequence.

Fig. 3 shows an example of how BWA works. BWA
searches whether a DNA read is present in the original ref-
erence, by considering one character of the read at a time in
reverse order. In the example, we start with the last character,
A, of the readCGA, and try to find it in BWT that contains two
A’s. The next step is finding the indices of these two A’s in F.
To this end, we consult the corresponding entries of Occ and
Count tables. From the definition of these tables and BWT,
it follows that the index inF simply is the sum of the entry (for
each A in BWT, as readout) from Occ and the corresponding
entry (for A) from Count. This renders 1+ 1 = 2 for the first
A and 2 + 1 = 3 for the second A, respectively. As we start
indices of F from 0, we then subtract a 1 from these values,
arriving at 1 for the first A and 2 for the second A. Then,
we repeat this procedure for the next character in sequence,
i.e., G, but this time we limit our search to the BWT entries
that reside at F indices 1 and 2. Recall that as F and BWT
form the first and last columns of the same square matrix, F
indices demarcate row indices in BWT, where we perform the
character matching at each step. BWT entries at row indices
1 and 2 are G and $. Hence, this time there is only one match
in BWT, G—with Occ entry 1 and Count entry 4, which
renders anF index of 1+4−1 = 4 for the next search. Finally,
search for the character, C , is confined to BWT row index 4,

1Here, we sketch the basic mechanics of this commonly used algorithm
and refer the interested reader to numerous BWA references from the litera-
ture for more detailed algorithmic discussion.
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FIGURE 3. BWA alignment of DNA read.

where a C resides. This C indicates a match and resides at
index (row) 1+3−1 = 3 of F, following the same procedure
as earlier. From the definition of F, BWT, and SA, it follows
that the row of SA demarcated by this index ofF , i.e., 3, holds
the starting location (index) of the read within the original
reference, i.e., 2, which, as depicted in Fig. 3, was indeed
the case.

To summarize, the alignment of a character is dependent
on L(ast), i.e., BWT, to F(irst) mapping. A character being
aligned is first searched in BWT, which identifies a range for
that character in BWT. This range (bound by low and high
indices) corresponds to ranks, i.e., order, of that character
that is the same in both BWT and F(irst). Once the ranks
are known, the corresponding indices in F(irst) are computed.
Each such range in F(irst) refers to a range of indices in BWT
for the alignment of the next character (in reverse order) in
the read.

C. MEMORY REQUIREMENT
Among the data structures required to be stored, in addition
to the BWT, the Occ table is the largest with the number
of entries equal to the length of BWT and each entry stor-
ing four multibit numbers. To reduce the required memory
size, instead of the entire data structure, we can keep a
reduced table where every ith entry is stored—reducing the
required size by a factor of i. This does not compromise the
correctness. Since not all Occ entries are stored, the rank
computation during the search process can be performed
with the help of additional character matching operations,
trading storage for computation. Fig. 4 shows an example
for i = 5, where the rank of a character A is needed, but
the corresponding Occ entry is not stored (marked in red).
In this case, we can sum the number ofA’s, between that index
and the index corresponding to the nearest stored Occ entry
(i.e., 2) together with the respective stored Occ entry
(i.e., 253) to derive the rank of that particular A. To reduce
computational complexity, the values of Count table entries
are added to sampled Occ table entries, which just needs to
be performed one time for the whole reference.

Algorithm 1 Read Alignment
1: idx_l = 0, idx_h = len(BWT )− 1
2: for all characters Ch in the read do
3: idx_l = interval(Occ[idx_l/i],Ch, idx_l)
4: idx_h = interval(Occ[idx_h/i],Ch, idx_h)
5: if idx_l > idx_h then
6: No alignment found
7: end if
8: end for

FIGURE 4. Rank calculation with sampled Occ.

D. BWA ALGORITHM: Putting It All Together
BWA is comprised of two stages: 1) alignment of a read and
2) accessing SA when the alignment is done. In the follow-
ing, we provide the pseudocode that formally summarizes
the procedure and suits well to the column-parallel CRAM
implementation (as detailed in Section III). Algorithm 1 cap-
tures the steps involved in the first stage. For all characters in
a read, in reverse order, the characters are aligned, and a set of
high (idx_h) and low (idx_l) indices is computed (by interval
function) for each character. This procedure continues until
all characters are aligned. No alignment is found if low index
becomes greater than the high index.

Algorithm 2 covers the interval function that has three
inputs: nearest sampled Occ table entry, character to be
aligned, and the BWT index (low/high), over which the char-
acter is to be aligned. The rank of input character is computed,
as explained in Section II-C, by counting the number of times
the input character is found between the input BWT index
and the BWT index corresponding to the input Occ entry.
The COMPARISON operation (line 3) performs character
comparison and outputs 1 upon a match. interval() returns
the computed index (through addition of number of character
matches with the corresponding Occ table entry), which is
used as the (low/high) index for alignment of the next charac-
ter in the respective read. Recall that, Occ is augmented with
Count entries—no further addition is needed. Here, i is the
sampling factor for the reduced Occ table. COMPARISON is
essentially a bitwise operation (as each character is encoded
in multiple bits), which makes the ADD (line 7) a bitwise
operation, as well.

In the second stage of the algorithm, after all char-
acters from a read are aligned through interval function
(idxl = idxh), the location of alignment for the respective read
is found by accessing idxl entry in SA.

FIGURE 5. CRAM cell architecture.

E. CRAM BASICS
CRAM, being a PIM architecture, supports logic operations
on top of standard memory operations (read and write).
Fig. 5 illustrates a CRAM cell. At the heart of a CRAM cell
lies an MTJ, placed on top of heavy metal (SHE) channel,
hence SHE-MTJ. Each MTJ has two layers of ferromagnets;
orientation—either Parallel (P) or Antiparallel (AP)—of the
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magnetization of the layer adjacent to the fixed resistance
SHE channel, i.e., the free layer, can be controlled by
conducting a current through the SHE channel—greater
than a threshold value (switching current). The other layer
has fixed magnetization, and the relative orientation of
the magnetization in the fixed and free layers brings a
SHE-MTJ to high (P, AP) and low (P, P) resistance states,
which is used to encode logics 1 and 0, respectively. Each
SHE-MTJ in a CRAM cell is connected to an additional
wire called the logic line or LL, through two transistors
(TL and TM )—controlled by read and write word lines (RWL
and WWL), respectively.

Algorithm 2 interval Function
1: num_match = 0
2: for all characters char in BWT [idx, idx/i] do
3: if COMPARISON (char,Ch) == 1 then
4: num_match+ = 1
5: end if
6: end for
7: return ADD(num_match + Occ[idx/i])

TABLE 1. Two-input NAND truth table.

1) MEMORY MODE
In the memory mode, the LL is connected to a voltage
source. During the read operation, TL is ON that connects the
MTJ and part of the SHE channel to the LL. The voltage
applied between LL and bit select line (BSL) conducts a
current through MTJ, and the resistance level of SHE-MTJ,
i.e., stored data, is sensed. For write, TM is ON, and a current,
result of the voltage between LL and BSL, is conducted
through the SHE channel to change the orientation of the
magnetization of the free layer. The direction of the current
determines P to AP or AP to P switching. When both transis-
tors are OFF, the data in SHE-MTJ is retained.

2) LOGIC MODE
Through LL, CRAM cells are connected as inputs and out-
puts of logic gates. While there is no restriction on which
cells can be input or output, it is required that input and
output cells connect to opposite types of BSL available:
Even (EBSL) or Odd (OBSL). MTJ(SHE channel) in each
CRAM cell participating as input(output) to a logic gate is
connected to LL when RWL(WWL) is logic 1. Fig. 6 shows
an example logic gate formation where input cells 1 and 2 are
connected to the output cell through LL. A voltage applied,
between EBSL and OBSL, conducts a current through the
MTJs in the input cell and SHE channels in the output cell.
The magnitude of the current depends on the resistance levels
of the input cells, i.e., stored data, which might change the
resistance state of the output cell if greater than the switching
current—effectively achieving a logic operation. Fig. 6(b)
shows the equivalent circuit of this configuration. The value
and polarity of Vgate, along with the data in the output cell
prior to the logic operation, i.e., PRESET, determine the type
of logic operation.

Table 1 illustrates the truth table of a NAND gate with
corresponding current values through input cells: I1 and I2.

TABLE 2. Logic gates to implement XOR in CRAM.

The output cell is PRESET to logic 0, i.e., low resistance.
The current through output cell, IOut, changes the resistance
level of output cell in all input cases as IOut is greater than the
critical (switching) current (Icrit), except for the case when
both input cells store logic 1, i.e., high resistance.

3) COMPLEX LOGIC OPERATIONS
CRAM is Boolean complete and can implement complex
logic operations, such as Exclusive-OR (XOR) as well. XOR
is particularly important in character matching operations.
This is achieved by using NOR, COPY, and TH (reshold) gates.
NOR and COPY gates are implemented in a similar approach
explained above. The TH gate is a four-input gate that outputs
a logic 1 when >2 inputs are logic 0 (shown in Table 2).

Arithmetic operations, such as 1-bit addition, can be imple-
mented using multiple gates, one after another. For example,
a full adder with two 1-bit inputs, A and B, and a 1-bit carry
input,Cin, are fed through the following steps to generate sum
output So and carry output Cout.
Step 1: Cout = MAJ (A, B, Cin).
Step 2: S1 = INV (Cout).
Step 3: S2 = INV (Cout).
Step 4: So = MAJ (A, B, Cin, S1, S2).
Here, INV and MAJ correspond to inverter and majority

gates. For multibit additions, Cout from 1-bit addition at the
previous bit position is used as Cin.

4) PARALLELISM
BSL spans across all rows, while RWL and WWL span
across all columns of CRAM, making it possible to perform
same logic operations simultaneously on all (or a subset of)
columns in CRAM.

III. HIGH-LEVEL ARCHITECTURE
From a high-level of abstraction, BWA-CRAM is comprised
of a number of functional blocks. Fig. 7(a) illustrates the
overview of the architecture. The core task of aligning
reads through BWT is performed by processing elements
(PEs), whereas SA vectors and sampled SA are used to find
the location of alignment once the alignment is complete.
A global controller schedules and orchestrates all operations
in BWA-CRAM.All data necessary for alignment, e.g., BWT,
Occ, and SSA, are generated one time for a given reference
database on a conventional von Neumann system and stored
in the BWA-CRAM. The cost of such is amortized over the
alignment of millions of reads against that reference database.

A. PROCESSING ELEMENT
Each PE stores part of the BWT and corresponding entries in
the sampled Occ, in column-major order. PEs are designed
from a collection of CRAM tiles, i.e., collection of CRAM
cells arranged in 2-D with local controller and peripheral
to perform memory and logic operations. The majority of
the tiles store BWT, while others store the sampled Occ
entries. Adjacent tiles are columnwise connected through
transistors to perform computation across tiles. Each PE has
its own controller that controls the tiles. Fig. 7(b) shows the
organization of tiles in a PE. The layout of the BWT in a PE
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FIGURE 6. Bitwise logic in CRAM (transposed view). (a) Cells connected to perform logic operation. (b) Equivalent circuit.

FIGURE 7. High-level architecture of BWA-CRAM. (a) Functional blocks. (b) Architecture of PE. (c) Data layout and BWT search in PE.
(d) Index computation in PE.

is captured in Fig. 7(c). Characters in BWT are represented
using 2 bits each. Each tile stores part of the BWT stored
by the entire PE with a few rows dedicated to storing of the
alphabet {A, C, G, T}. There are a number of rows allocated,
in each tile, for use in computation: Score (to store the number
of character matches) and scratch (for intermediate steps
of computation). The purpose of dividing the stored BWT,
in a PE, over a number of tiles is to utilize the tile-level
parallelism as these tiles can perform computation in parallel.
Fig. 7(c) illustrates how a BWT is segmented and stored in
such a tile where (over)underline indicates segments stored
in different columns.

FIGURE 8. Bitwise character comparison.

PE executes the interval function in Algorithm 2, which
is dependent on character comparison and addition, both
bitwise operations. During the first stage of alignment, char-
acter comparison is performed between a character from the
stored alphabet (which corresponds to the queried character
from the read) and all BWT characters (by bitwise XOR) in
column(s). The result of the comparison is stored in Score
designated rows in respective column(s). Fig. 8 illustrates
the bitwise matching of the characters. The similarity string,
in a column, captures the bits in Score designated rows that
indicate how many character matches are there in that par-
ticular column for a specific character being aligned. Next,
bitwise additions over the similarity string bits are performed
in respective column(s) to compute the binary representation
of the number of matches, i.e., population count. In this

example illustration, a characterC is being aligned; therefore,
C from the alphabet is compared against all BWT characters
in column(s). The output of the comparison is stored and
bitwise added to produce the number of matches in respective
columns. The output of this addition is the rank for the
character being aligned.

The tiles storing the sampled Occ in a PE corresponds
to the BWT stored in that particular PE. Specifically, all
four numbers in a column (in Fig. 7(d), for four characters
in the alphabet, each 32-bit) correspond to an entry of the
sampled Occ associated with the index of the first BWT
character stored in that particular column. Fig. 7(d) shows
such a tile storing the entries of a sampled Occ where the
full Occ is sampled at every third BWT character, in this
example. Now, to compute the index for the character being
aligned—C, the number stored in Score, i.e., rank, and the
Occ number corresponding to character C are bitwise added,
which outputs the index for that character.

When a character is scheduled for alignment to a PE,
the input (high or low) index value to interval function is
converted to a column index for all tiles in that PE. That
is, only one column performs the logic operation in each PE
during alignment. However, the columns in all tiles are capa-
ble of performing logic operations in parallel as well; hence,
the optimization opportunity is there to schedule multiple
index computations to a single PE simultaneously.

B. ACCESSING SA
Storing the entire SA requires memory that is proportional to
the size of the reference. For a large reference, it becomes a
problem in the context of practical system design. Memory
requirement of storing the SA can be reduced by sampling
the SA—sampled SA or SSA, at regular intervals along the
original reference. Although SA sampling is not a new idea,
the contribution lies in accessing the SSA since not all entries
in the SA are stored. Let us take a look at the example
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FIGURE 9. (a) Accessing suffix for an index in SSA. (b) Search
for an F index in SSA.

illustrated in Fig. 9(a). It shows an example BWT and the
corresponding F column along with the original reference.
The suffixes are sampled at every even location {0, 2, . . .}
of the original reference. Now, the lengths of the SSA and
F are different, i.e., a suffix corresponding to an index on F
might not be stored in SSA. To be able to access such suffixes,
a suffix vector (SV) is stored, equal in length to the BWT
(or F), where each bit indicates whether the suffix value at
a particular location along SA is sampled in SSA. In case of
an SSA access for a suffix that is not stored (corresponding
to the second G on BWT, which is the same as the second
G in F), as shown in Fig. 9(a), the suffix can be computed
by executing the interval function in iterations. Each iter-
ation returns the F index of the character that precedes it
in the original reference. Since the SA is sampled at every
kth location of the original reference, eventually, the interval
function will return an F index whose corresponding suf-
fix value is stored in SSA, with at most k − 1 iterations.
In this example, after executing interval function 1 time, SV
indicates that the corresponding suffix is stored in SSA. The
suffix value is computed by bitwise addition between the
number of times interval function is executed (=1) and
the stored suffix value (=2).
The SV is stored in a collection of tiles. Each such tile

stores a part of the entire SV, with two rows allocated for
performing the check, i.e., bitwise AND operation, whether
the suffix corresponding to an F index is stored in the SSA.
The first allocated row is for storing index, and the second
one stores the result of the bitwise comparison between the
first row and another row in SV. Fig. 9(b) demonstrates that
a query F index is written as logic 1 in the SSA Query
row. After AND operation, the result is stored in the sec-
ond allocated row, which is read out through standard read
mechanism of CRAM. Similar to the tiles in PE, tiles storing
SV are also capable of performing column-parallel logic
operations, which is utilized to performmultiple index checks
at the same time. This optimization, as well, directly follows
from the basic definitions and mathematical characteristics
of the algorithm.

C. GLOBAL CONTROLLER
The global controller is responsible for scheduling the char-
acters to PE for alignment and performing the index check in
SV and access SA—once the alignment is complete.

1) RUNTIME SCHEDULING
There are two invocations of interval computation for each
character during alignment, which are scheduled to at most
two PEs at the same time—leaving a high number of PEs
idle even though each PE can run in parallel. This hints at the

TABLE 3. Technology Parameters.

opportunity to schedule multiple characters to PEs, i.e., mul-
tiple interval computations at the same time. For this purpose,
the global controller hosts a runtime scheduler that schedules
multiple characters to PEs simultaneously. Since the align-
ment of each read is sequential, i.e., one character after
another, this translates into scheduling multiple characters
frommultiple reads. This involves storing multiple reads con-
currently and dynamically evaluating which characters can be
scheduled together. A straightforward implementation would
be to store a large number of reads so that the probability of
finding and scheduling a minimum number of characters at
the same time is high enough. This comes with a memory
overhead since some additional information, for each read,
is required to be stored, e.g., next character to schedule, and
high and low indices from the last interval computation.

2) INDEX COMPARISON IN SV
Although intermediate interval computations during index
comparison in SV are scheduled to PEs, this phase of BWA
does not overlap with the alignment stage, for simplicity of
design. A more optimized controller can interleave interval
computations from both stages. For each SSA access, a count
value is required to be updated each time an interval com-
putation is scheduled for a PE. This count operation is also
executed using a CRAM tile that supports multiple count
operations at the same time through the addition of a 32-bit
value with logic 1.

D. SYSTEM INTERFACE
The interface between BWA-CRAM and host is modeled
after SpinPM [4]. The programming interface provides
abstraction between host and BWA-CRAM. Being an accel-
erator, BWA-CRAMdoes not have access to the virtual mem-
ory space. The interface is similar to the loosely coupled
CPU–GPU interface of modern platforms.

IV. EVALUATION SETUP
A. SIMULATION
We evaluate the design by an in-house CRAM simulator that
incorporates all low-level details of the system, e.g., energy
and latency values of the logic operations in BWA-CRAM,
spatiotemporal scheduling. This tool simulates the design at
logic operation granularity—in order to capture the through-
put performance and energy consumption of BWA-CRAM
with the technology parameters listed in Table 3. Icrit refers to
the threshold current, through the SHE channel, for the MTJ
to the switch resistance state. The peripheral overheads are
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modeled with NVSIM [5] to extract the row decoder, mux,
precharge, and sense amplifier-induced energy and latency
overheads considering parasitics. All peripheral overheads
and the access transistors in each memory cell are modeled
at 22-nm (HP) PTM [6].

B. DATA SET
Real human genome [7] is used as the reference, and a
set of 10 million reads [8] is used as the DNA reads
for BWA-CRAM. The reference genome is 3 × 109 bp in
length, while each read is 100 bp long.

C. PE MODELING
The tiles in a PE are assumed to be 128 × 128 in dimen-
sions. An array of transistors between adjacent tiles con-
nects the corresponding columns during computation, when
required. The overhead for these transistors is considered
in the simulation. Each PE stores 512 × 128 characters of
BWT reference in 16 tiles. There are two additional tiles in
each PE for storing the sampled Occ that is sampled at every
512 BWT characters.

D. SA STORAGE
The entire SA is sampled at every 32nd location from the
beginning of the reference (SSA) and stored in the memory.
The resultant memory size is ∼358 MB. To store the bit
vector that represents the presence of a particular suffix in
the SSA, a collection of 128 × 128 tiles are used. Each tile
stores 126 vectors, each 128-bit long. The remaining rows in
each tile are used for bitwise AND operation to check whether
a particular suffix is stored.

E. RUNTIME SCHEDULER
The scheduler assumes a default dispatch rate of 1000 char-
acters, i.e., 1000 read sequences, simultaneously. This is a
conservative assumption in that it represents∼4.37% utiliza-
tion of the available PEs.

F. DESIGN SIZING
The entire design, with the selected data set, requires
45 777 PE. Considering all memory overheads, i.e., all tiles
in all PEs and storage for SSA, the total memory footprint
reaches ∼2.3 GB.

G. BASELINES FOR COMPARISON
For the purpose of performance comparison, a BWA-
based DNA sequence alignment software, soap3-dp [9], is
considered. The soap3-dp represents the state-of-the-art
highly optimized GPU implementation. A Tesla K40 GPU
is used for running the soap3-dp without, for a fair compar-
ison, allowing any mismatch during alignment with seeding.
The seeding algorithm helps pruning the alignment space
and favors the GPU baseline. To demonstrate the perfor-
mance improvement achieved by BWA-CRAM, we also con-
sider AlignS [10]—a PIM BWA DNA sequence alignment
accelerator that uses spin-orbit torque (SOT)-MRAM as the
memory cell technology.

V. EVALUATION
The characterization is in terms of twometrics: 1) throughput,
in K(ilo)Reads/s that represents the rate at which the DNA
reads are aligned and 2) energy efficiency, in KReads/s/W,
which represents how many DNA reads are aligned by
BWA-CRAM per unit of energy. The baselines for compari-
son are also evaluated in terms of these metrics.

FIGURE 10. Throughput comparison of BWA-CRAM (log scale).

A. PERFORMANCE
The throughput performance of BWA-CRAM is shown
in Fig. 10. Although GPU, running soap3-dp, has a fairly high
alignment throughput, it suffers from large data movement
overhead between GPU cores and the global DRAM, which
is evident in the throughput value that is much lower than the
PIM architectures—AlignS and BWA-CRAM. Being a true
PIM that eliminates intermediate data movements during in-
memory computation, BWA-CRAM outperforms both GPU
and AlignS baselines by 49.17X and 1.68X, respectively. The
relatively modest improvement in comparison to AlignS is
due to the fact that BWA-CRAM performs more in-memory
computations than AlignS. For instance, AlignS uses CMOS
peripheral circuitry for some operations, e.g., counting the
number of character match, which is performed in-memory
by BWA-CRAM. Also, there is a computational overhead
to search through the SSA for an index, which contributes
toward this relatively smaller throughput improvement.

FIGURE 11. Energy efficiency of BWA-CRAM (log scale).
The energy efficiency of the baselines and BWA-CRAM is

illustrated in Fig. 11. It is no surprise that BWA-CRAM out-
weighs the GPU baseline by 18025.2X due to the elimination
of a significant number of energy-hungry and long-latency
memory accesses. Interestingly, compared with AlignS,
BWA-CRAM is ∼327X more energy efficient although both
AlignS and BWA-CRAM use similar spintronic memory
cell technology. This improvement in energy efficiency is
the result of not using the peripheral circuitry to perform
in-memory computing, unlike AlignS.

FIGURE 12. Breakdown of (a) latency and (b) energy.

Fig. 12 shows the latency and energy breakdowns of the
design. On the latency front, character comparison operations
consume themost latency, while addition operations consume
around half of that. The controller consumes the least amount
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of latency. SSA access latency, including all intermediate
computations, takes ∼25% of the total latency of the design.
Due to the serialized access to SSA memory, it can become
a bottleneck with a very large number of reads scheduled
to BWA-CRAM simultaneously. Reducing this bottleneck
is possible by careful spatiotemporal scheduling of interval
computations during SA access so that it overlaps with the
alignment of the next batch of reads, which is left as a future
work. On the energy side as well, a similar pattern holds. The
majority of the energy is consumed by the character compar-
ison operations. The next highest energy-consuming compo-
nent is the controller—taking up ∼20% of the energy due
to CMOS-based implementation. Both latency and energy
components corresponding to reading out of index from PE,
after interval computation is complete, are less than 2%.

FIGURE 13. Impact of simultaneous scheduling of characters.

B. IMPACT OF RUNTIME SCHEDULER
The throughput performance reported here corresponds to
a specific number of reads, conservatively assumed, sched-
uled to BWA-CRAM by the runtime scheduler. A more
optimized scheduler would increase the throughput perfor-
mance manyfold. Fig. 13 captures the impact on performance
as more characters (reads) are scheduled simultaneously to
BWA-CRAM (X -axis captures the increasing number of
characters scheduled to BWA-CRAM). As the intuition sug-
gests, the throughput performance increases almost linearly
as more characters are scheduled simultaneously. As for
energy efficiency, it tends to drop a little due to the sequential
SA access by BWA-CRAM posing as a serial bottleneck.

FIGURE 14. Required context storage in BWA-CRAM.

However, more reads handled by the scheduler trans-
late into higher memory requirements for context storage.
Context is the additional information related to a stored
read, e.g., the last character from the read to be sched-
uled to BWA-CRAM, the current low, and high index
values for a character. Fig. 14 shows how the context
memory requirement scales as more characters are sched-
uled to BWA-CRAM. Here, we conservatively assume that
during runtime, only 10% of the stored reads will have
one character, each of which can be scheduled to BWA-
CRAM simultaneously. Even with 10K characters scheduled
simultaneously, i.e., 100K read contexts stored, the storage
requirement is <1 MB.

FIGURE 15. Memory footprint breakdown of BWA-CRAM.
C. DESIGN SIZE
The memory footprint used by BWA-CRAM is roughly 25%
of that by AlignS [10]. Fig. 15 illustrates the distribution of
the memory requirements for BWA-CRAM. Unsurprisingly,
the majority of the memory is used to store the BWT and
the corresponding overhead for in-memory computation,
i.e., PE. The rest of the memory stores the SSA and the SA
vector. In comparison to SA, this represents a reduction of
∼93%, at the expense of additional computation in BWA-
CRAM.The size of the SSA can be reduced further, withmore
computation during the SA access stage of the alignment.

D. INEXACT ALIGNMENT
Although the current design of BWA-CRAM supports only
exact alignment, it can be extended to include inexact align-
ment as well—at the expense of more computations. Specif-
ically, it involves executing interval function recursively to
generate SA intervals that match a given read with no more
than allowed number of mismatches or gaps. The changes
required in the design are, mainly, on the scheduling side.

As an example, we implemented such a BWA-CRAM
design that allows up to two mismatches during alignment.
This design exhibits >7X improvement in alignment
throughput over SOAP3-dp while maintaining 1820.5X
better energy efficiency. Recall that BWA-CRAM does not
feature seeding, as opposed to the GPU baseline. If we
augmented BWA-CRAM with a seeding algorithm to prune
the alignment space, throughput improvement would be
even higher.

VI. RELATED WORKS
BWT/A is the current state-of-the-art for DNA sequence
alignment, withmany software [11], [12], [13], [14] and hard-
ware implementations such as MEDAL [15], a near-DRAM
accelerator only for the seeding portion; FPGA design [16],
[17] which consume orders of magnitude higher power than
BWA-CRAM, including cloud-scale (FPGA) platforms of
very high throughout [18]. Other exotic solutions [19], [20]
target Smith–Waterman algorithm. Another PIM accelera-
tion for BWA, significantly slower than BWA-CRAM, uses
ReRAM [22]. Finally, [4] covers a basic CRAM design for
large-scale string matching.

VII. CONCLUSION
PIM has emerged as an efficient computing paradigm for
analyzing large scale data such as DNA sequence. In this
article, we map BWT-based DNA sequence alignment
(BWA) to SHE-MTJ-based CRAM substrate to accelerate
DNA read alignment with low energy consumption. We show
that CRAM-based architecture, BWA-CRAM, outperforms
the GPU and PIM baselines, in terms of alignment throughput
and energy efficiency, even under conservative assumptions.
Furthermore, we show that the reduction of BWA data struc-
tures is also possible using in-memory computing features of
CRAM.
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