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Abstract—Computing-in-memory (CIM) architectures that per-
form logic gate operations directly within memory arrays, in-situ,
are particularly effective in addressing memory-induced perfor-
mance bottlenecks. When paired with nonvolatile memory, energy
efficiency in performing bulk bitwise logic operations can reach
unprecedented levels. However, unlocking this potential is not
possible if functional correctness is compromised. In this paper we
present a CIM-specific class of functional errors termed gate flips,
where parametric variations make a logic gate behave as another.
Through detailed functional and electrical characterization we
demonstrate that gate flips stem from a significant subclass of
write errors. Accordingly, we introduce an abstract model to
enable efficient functional reliability assessment and to guide
design decisions in forming universal CIM gate libraries. We also
evaluate the impact on the end accuracy of computation using
representative benchmarks.

Index Terms—computing in memory, error model, gate flips,
NVM

I. INTRODUCTION

Conventional von Neumann machines make a distinction be-

tween compute (logic) and memory elements. Considering

performance requirements of emerging data-intensive applica-

tions, the data communication overhead between compute and

memory elements has long become forbidding. Blurring the

physical distinction between compute and memory, Computing-

in-memory (CIM) has proven itself as an attractive solution

to this drawback. CIM substrates come in different flavors.

Some perform computations near the memory array at the array

periphery [1], [15], [24], others, directly within the arrays [6],

[10], [12], [29], [31]. Further, both types of designs can use dif-

ferent memory technologies. Especially promising are the CIM

substrates which directly use memory elements for computation

by obviating any need for data to leave the memory array.

Paired with nonvolatile memory (NVM) technologies, these

architectures can reach unprecedented energy efficiency for bit-

wise logic operations. As a result, bulk bitwise operations can

run in parallel across all columns or rows of the memory array,

and boost the performance of numerous critical applications

from machine learning [5], [16], [26], [33], genomics [3], [4],

cryptography [20] or graph processing [37] domains. Without

loss of generality, in this paper we focus on this promising

class of CIM substrates, which can perform universal Boolean

logic gates directly in NVM [10], [12], [21], where individual

memory cells can act as inputs or outputs.

Regardless of the specific architecture or the underlying

memory technology, CIM functionality heavily relies on the
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memory devices for both data storage and computation. There-

fore, any non-ideality of memory devices such as paramet-

ric variation directly affects the reliability of CIM functions.

Moreover, targeted CIM designs are compatible with tradi-

tional (CMOS) logic and incorporate conventional circuitry for

control at memory cell and array granularity. Hence, they are

subject to traditional sources of parameteric variation, as well.

As we will demonstrate in this paper, parametric variations can

trigger a CIM-specific, problematic class of functional errors

where the logic function of a gate incorrectly mimics the

logic function of another. We will refer to these errors as gate

flips. By construction, if left undetected, gate flips can easily

lead to silent data corruption. Unfortunately, no standard error

model (typically covering memory or computation in isolation)

can capture gate flips accurately, as the underlying physics

depends on how the CIM substrate uses memory devices for

computation. Accordingly, in this paper we

1) Introduce gate flips, an important class of errors affecting

functional reliability of a broad class of nonvolatile CIM

systems, and the gate flip matrix, an abstract model for

efficient functional reliability assessment.

2) Investigate the underlying physical phenomena including

device-level parametric variations.

3) Analyze the propagation of gate flip induced errors to the

end results of computation and quantify the degradation in

computational accuracy using representative benchmarks.

II. BACKGROUND

A. Nonvolatile CIM Basics

Targeted CIM systems can use different NVM technologies

such as MRAM [8], [17], [34] and ReRAM [12]. Due to

better endurance and energy efficiency, we base our analysis

on the MRAM variants [8], [17], [34]. When not used for

computation, the CIM system essentially becomes an NVM

array. We will refer to each such array as a tile, which supports
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Fig. 1: (a) CIM cell architecture, (b) logic gate formation and (c)
electrical equivalent circuit.



TABLE I: 2-input AND truth table (Output preset = 1).

Input1 Input2 Output IOUT = I1 + I2
0 (RL) 0 (RL) 0 I00 > Icrit
0 (RL) 1 (RH ) 0 I01 > Icrit
1 (RH ) 0 (RL) 0 I10 = I01 > Icrit
1 (RH ) 1 (RH ) 1 I11 < Icrit

computation directly within the array, by configuring individual

memory cells to act as inputs or outputs of Boolean logic gates.

Each cell (Fig.1a) consists of an NVM device (spin transfer

torque magnetic tunnel junction, STT-MTJ) and an access

transistor that connects the cell to the control lines. Each STT-

MTJ incorporates two stacked layers of ferromagnets, called

fixed and free layers, separated by a thin insulating (tunneling)

layer. The spin orientation of the free (fixed) layer can (not)

be changed by conducting a current pulse of a particular

width through the MTJ. The amplitude of the current pulse

determines whether the free layer spin orientation changes, and

the direction of the current pulse dictates the polarity of the

spin orientation in the free layer. The relative orientation of the

free and fixed layers gives rise to two distinct resistance states,

low (RL, parallel) and high (RH , anti-parallel), which encode

binary values 0 and 1, respectively.

As Fig.1a shows, one terminal of the MTJ connects to a bit

select line (BSL), which spans an entire column. The other

terminal connects to the logic line (LL), via a CMOS access

transistor controlled by the word line (WL) spanning each row.

The BSL is chunked into two groups, even and odd BSL (EBSL

and OBSL), respectively. There is no difference between these

groups for memory operations. For logic operations, on the

other hand, inputs are expected to have a different parity (even

or odd) than the output(s). A tile controller drives all signals.

Memory operations (read and write) require WL to be set,

thereby selecting all cells in the corresponding row, and a

(read/write-specific) voltage to be applied between LL and

BSL in each column. For reads, this voltage induces a current

through the selected MTJs, sensed to determine the stored logic

value. This current remains lower than the critical current,

Icrit(ical), not to destroy the stored content. Write voltage, on

the other hand, enforces a large enough current > Icrit that

switches the free layer orientation.

Logic gate formation along a column is demonstrated in

Fig.1b: In1 and In2 represent the inputs; Out, the output.

Before computation starts, the output is preset to a known

(and gate specific) logic value. The inputs and the output

are connected to BSLs of different parity (O/E BSL). A

gate-specific voltage, Vgate, when applied between EBSL and

OBSL, induces currents through the inputs, which depend on

the state (resistance) of the inputs. The resulting combined cur-

rent flows through the output and, depending on its magnitude,

if > Icrit, may switch the output. Each Boolean gate is uniquely

characterized by a preset and Vgate such that switching only

happens according to the corresponding truth table. These CIM

systems typically support various universal gates. Within a tile,

while each column can perform one logic gate at a time, all (or

a select subset of) columns can perform the very same logic

gate (on different data, by construction) in parallel. Moreover,

CIM tiles can also operate in parallel. As a representative

example, Table I shows the augmented truth table of an AND

gate. The equivalent circuit in Fig.1c illustrates how Vgate

(=VAND) induces a current through input cells (R1 and R2).

IOUT = I1 + I2, the combined current, flows through ROUT ,

the output cell. Only for the input pattern 11, the combined

current remains < Icrit and ROUT keeps its preset value of

logic 1 (RH ). Otherwise, ROUT becomes logic 0 (RL). In

a nutshell, logic operations are, essentially, write operations

where the input data pattern determines whether a write at the

output cell should take place or not, according to the underlying

truth table.

Application mapping spans 3 steps: (i) Application specifi-

cation as a function on bitstreams; (ii) Synthesis of Boolean

gates to implement this function and to allocate input, output,

and scratch spaces; (iii) Binary translation to encode different

Vgate values to implement the gate mix from (ii).

B. Errors and Parametric Variations in Nonvolatile CIM

Retention failure, failure to meet data retention requirement

between successive write operations, can result in loss of data

between memory/logic operations. Typically, a longer retention

period corresponds to a higher write current through MTJ [28].

Read disturbance refers to inadvertently altering the data

stored in MTJ during read operations, due to asymmetric

scaling of MTJ write current and sense amplifier circuitry [25].

Write errors form a broader class. MTJ write operation is a

stochastic process and depends on the duration of the write

pulse, the thermal stability factor1 and the write current [30].

The probability of write errors, write error rate (WER), corre-

sponds to the share of failed memory (re)set operations among

all attempted writes. A WER of ≤ 10−4 is achievable with

a write latency of as low as 3ns [2], [22], [23], and a WER

of ≤ 10−6 has been demonstrated experimentally [32]. With a

write current sufficiently higher than Icrit and a long enough

write pulse, WER can reduce to < 10−8 [25] and become as

low as 10−11 [9].

Stuck-at-faults emerge when the MTJ fails to change the

stored value to the write value during a write operation, and

can manifest in two ways: (i) the MTJ is stuck at one particular

resistance level; (ii) the MTJ fails to write a particular value. (i)

can be due to oxide layer breakdown or parametric variations.

Variations in MTJ Icrit and write latency, due to lower

level parametric variations, can have grave repercussions for

functional reliability, hence computational accuracy. Typically,

Icrit follows a normal; write latency, a skewed normal distri-

bution [19], [27].

Tunnel magneto-resistance ratio (TMR) variations stem

from the variability of oxide barrier thickness in STT-MTJ [36]

as well as temperature and aging [38], which in turn cause

variation in the MTJ resistance. TMR is defined as = (RH −
RL)/RL.

Vgate variations primarily come from process variations in

CMOS transistors in the drive circuitry, and directly affect

the write current during logic operations. Vgate variations can

be captured by a skewed normal distribution [35]. Variations

1Thermal stability factor is a physical quantity related to the period over
which data can be retained.
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Fig. 2: Gate flip between logic AND and OR.

in transistors dominate MTJ variations for small transistors,

whereas the opposite applies for larger transistors.

III. GATE FLIPS IN COMPUTING-IN-MEMORY

A. Overview

Gate flip refers to functional flipping of one logic gate to

another2. Gate flips may cover the corresponding truth table

entries fully or partially. Fig.2 illustrates an example gate flip

between a 2-input AND and a 2-input OR gate. The table shows

the 4 input patterns (00, 01, 10, and 11) along with the Preset

and expected (correct, Final) output value. The preset value 1

applies to both OR and AND. After Vgate = VAND is applied,

the output of AND should switch (1 → 0) for all input patterns

except for the input pattern 11. On the other hand, for OR, after

application of Vgate = VOR, the output should switch (1 → 0)

for input pattern 00 only. Hence, under correct operation, the

(output) switching patterns of these gates are the same for input

patterns 00 and 11. The differences in the switching patterns

come from input patterns 01 and 10. Consequently, if these

switching patterns mimic those of the other gate, a gate flip

would be the case. We will refer to these input patterns as

flip patterns. Only the switching patterns corresponding to flip

patterns can cause a gate flip between a pair of logic gates of

different functionality. Therefore, we can identify flip patterns

specific to pairs of logic gates.

If any of the flip patterns in AND results in a non-switching

event instead of a switching one, i.e., a write error, the output

corresponds to that of OR. Similarly, if the output of OR

switches incorrectly for any of these flip patterns, the output

becomes the same as that of AND. Although in this example

we excluded corrupted presets, presets (essentially being write

operations) are also susceptible to erroneous write events and

can give rise to gate flips by themselves. For example, if the

preset (=1) operation of AND fails, and the output cell’s last

stored value was 0, subsequent switching attempts (according

to the truth table of AND) will fail, simply because the direction

of the current through the output MTJ for a 1 → 0 transition

cannot induce 0 → 1 switching due to MTJ physics. On the

other hand, if the last stored value was 1, the preset error would

be masked.

Gate pairs with higher number of inputs are equally suscep-

tible to gate flips. Table II shows potential gate flips between

MAJ(ority)3 and 3-input AND and OR gates. The input patterns

that have the same expected output switching pattern between

{MAJ3,AND} and {MAJ3,OR} are marked by X. The rest of

the input patterns can cause a gate flip: For AND (OR), a gate

2Gate flips are fundamentally different than other gate-specific models from
the literature such as “gate failures” in [14], which merely refer to incorrect
gate outputs without providing any functional context.

TABLE II: Flip patterns for MAJ3 (preset=1) to AND and OR.
I0 I1 I2 MAJ3 AND OR

0 0 0 0 X X

0 0 1 0 X 1 → 1

0 1 0 0 X 1 → 1

0 1 1 1 1 → 0 X

1 0 0 0 X 1 → 1

1 0 1 1 1 → 0 X

1 1 0 1 1 → 0 X

1 1 1 1 X X

flip would be the case if 1 → 0 (1 → 1) transitions fail. Gate

flips also apply to gate pairs with different number of inputs:

For example, 3-input MAJ3 and 2-input AND, if one of the

inputs of MAJ3 experiences a stuck-at fault.

For the sake of completeness, we cover a wide range of

CIM gates, which are inherently symmetric (all inputs have

an identical effect at the output) and monotonic (increasing or

decreasing the number of ones or zeros at the inputs changes

output behavior only once throughout the truth table rows).

Gates with preset=1 include COPY, AND, OR, MAJ3 (output

is 1 if at least 2 inputs are 1), and MAJ5 (output is 1 if at least

3 inputs are 1). The preset=0 duals are NOT, NAND, NOR,

MAJ3B (output is 0 if at least 2 inputs are 1), and MAJ5B

(output is 0 if at least 3 inputs are 1).

B. Gate Flips and Low-Level Errors

Gate flip is a high-level error model that captures non-ideal

switching events at the output of CIM logic gates. Various low-

level STT-MTJ errors can trigger the No Write in Fig.2, and

thereby a gate flip, which causes AND to mimic the switching

patterns of OR. For example, probabilistic write errors (as

quantified by WER) can introduce a No Write event and result

in an AND → OR gate flip. Also, if the write current becomes

less than Icrit, due to a variation in either Icrit (triggered by

parametric variations in MTJ) and/or the write current itself

(triggered by fluctuations in Vgate), a No Write event can occur.

Similarly, unintended writes (1 → 0) for the flip patterns in

Fig.2 can trigger OR → AND gate flips. Such unintended writes

can be the result of variations in TMR ratio (where the actual

resistance of the output cell becomes lower than expected)

and/or the write current.

A stuck-at-1 fault at AND output can also cause an AND →
OR gate flip, by keeping the output state constant at 1 during

logic operations. Symmetrically, a stuck-at-0 fault at OR output

can cause an OR → AND gate flip. However, permanent stuck-

at-faults can be detected and avoided during the mapping of

an application to the CIM substrate [11]. Therefore we exclude

them as a potential source of gate flips. Temporary stuck-at-

faults, on the other hand, manifest themselves as write errors

and are hence captured by write errors in our analysis.
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AND

OR

COPY

MAJ3

MAJ5

NAND

NOR

NOT

MAJ3B

MAJ5B

Same Gate Fan-in Protected Preset Protected Gate flip

Fig. 3: Gate flip matrix. Flip direction: row → column.



C. Putting It All Together: The Gate Flip Matrix

If S represents the set of logic gates, then a gate in S can flip

to any other gate in S, except to itself, provided that the gate

pair has the following properties:

1) Both gates have the same preset: Gates that do not have the

same preset, e.g., AND (preset = 1) and NAND (preset = 0),

have a Vgate of opposite polarity, i.e., direction of current

flow through the output cell is different. This difference

makes a gate flip harder, if not impossible.

2) Flipping gate has an equal or higher number of inputs: For

example, a 2-input AND can potentially flip to a 2-input OR,

and the reverse is also true given that both logic gates have

the same number of inputs. On the other hand, for a 3-input

MAJ(ority) gate and a 2-input AND, the gate flip becomes

uni-directional (i.e., MAJ3 → AND).

Combining these rules, we introduce an abstract model, the

gate flip matrix, for efficient functional reliability assessment

and to guide design decisions in forming universal CIM gate

libraries. The example gate flip matrix from Fig.3 reveals

possible gate flips between each pair of gates in a representative

and universal set of commonly used CIM gates, considering

logic gates of different preset values such as MAJ3 (preset =

1) and MAJ3B (preset = 0). We note that the majority of the

gate pairs are protected from gate flips either by preset (i.e.,

require different preset values) or fan-in (i.e., difference in the

number of inputs).

D. Impact on Functional Reliability

Functional reliability assessment should be a key step in

mapping applications to CIM substrates, where abstractions like

gate flip matrix can help with formal analysis and quantita-

tive characterization. While, depending on error propagation

specifics and algorithmic noise tolerance, gate-flip induced

corruptions can be masked, errors induced by gate flips can

also degrade the accuracy of computation.

IV. EVALUATION SETUP

A. Simulation Configuration

Irrespective of the underlying physical phenomena, either failed

or unintended write events can cause gate flips. We capture

these events with two distinct error rates, PNo Write and

PErr. Write, respectively, which we can think of as abstrac-

tions for any lower level error and/or non-ideal behavior that

can induce gate flips. Accordingly, we sweep PNo Write and

PErr. Write over representative ranges. Following the gate flip

matrix from Fig. 3, we only consider gate flips between equal

fan-in gates. We inject write errors at a random point every
⌈

1
P

⌉

gate operations in a periodic fashion in the benchmark

applications, where P corresponds to PNo Write or PErr. Write.

We determine the size and number of CIM tiles depending

on the problem sizes of the benchmark applications, using

the following STT-MTJ parameters [21]: RL = 3.15 kΩ,

RH = 7.34 kΩ, switching time = 3 ns, Icrit = 40 µA.

B. Benchmark Applications

We consider three representative CIM benchmarks from emerg-

ing application domains: Machine learning (Support Vector

Machine or SVM), graph analytics (Graph Degree Centrality

or GDC), and genomics (DNA String Matching). Table III lists

the benchmarks, which cover a wide range of gate flips, con-

sidering gates with different preset values. Fig.4 provides the

gate mix (composition) per benchmark, excluding single-input

gates. Gmix (Gnand) here denotes the mixed-gate (NAND-

only) variant of the GDC benchmark. SVM, GDC, and DNA

require 1024×1024 (32), 4096×1024 (96), and 128×128 (32)

tiles (scratch bits), respectively. Scratch bits represent the space

exclusively used for intermediate computation.

Support Vector Machine (SVM): We only cover inference

with MNIST [13], grey scale 28×28 image/digit recognition

dataset. The dataset has 10 classes for digits 0 through 9.

Without loss of generality, we use a binarized version of the

dataset. After training on the host machine, we map support

vectors to separate columns of CIM tiles. The main compu-

tational kernel in SVM inference is the vector dot product

operation, which boils down to a series of multiplications and

additions implemented as a cascade of CIM full adders using

MAJ3 and MAJ5 gates. More specifically, the full adder is based

on a MAJ3 of all inputs, whose output is inverted twice. The

inverted outputs and original inputs are then fed to a MAJ5

gate, to generate the sum, while the MAJ3 output corresponds

to the carry output. Logic gates susceptible to gate flips in SVM

inference are AND, MAJ5, and MAJ3. We use the percentage

of misclassified test set images as the accuracy metric. The

ground accuracy (excluding any errors) is 99.2% in this case,

where accuracy loss corresponds to 1− relative accuracy with

respect to the ground accuracy.

Graph Degree Centrality (GDC): Degree centrality in large-

scale graphs captures the number of valid edges connected to

a vertex. We store an adjacency matrix (covering all vertices

in the input graph) in a CIM tile. Each column corresponds to

a vertex and performs bit-wise addition to derive the number

of valid edges connected. Hence, computation boils down to

a series of CIM full adders using MAJ3 and MAJ5 gates. We

use similar ripple-carry adders used for SVM. Therefore, in

the mixed-gate variant Gmix, MAJ3 and MAJ5 are vulnerable

to gate flips; as opposed to mere NAND gates in the NAND-

only implementation Gnand. We define the accuracy loss as

the average ratio of the computed degrees (under potential gate

flips), to the actual node degrees.
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Fig. 4: Gate mix per benchmark.
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(NAND-only) variant of GDC.

Application Dataset Input

SVM: MNIST Support
Support vectors:
Vector 51

Machine

GDC: Facebook Vertices:
Graph [18] 4039,
Degree Edges:

Centrality 88234

DNA String Random 16-char
Matching references

TABLE III:Benchmarks

DNA String Matching: String matching is at the core of many

critical applications, including DNA sequence alignment or

database search. We map a randomly generated 16-character

reference DNA database (using 2-bit encoding) to separate

columns in a CIM tile of 128×128. We generate 10K 16-
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Fig. 5: Accuracy loss under gate flips.

character long random query strings to be matched against

each reference, character by character. At the core of the

computation, we have two XOR operations (implemented by

NOR and MAJ5B) followed by a NOR to compare two DNA

characters, whose outputs are added together (using MAJ3 and

MAJ5 based full adders) to generate a similarity score. The

full-adder implementation follows the SVM benchmark. The

goal is to find the reference with maximum similarity to any

given query string. Logic gates susceptible to gate flips in this

benchmark are NOR, MAJ5B, MAJ5 and MAJ3. We quantify

the accuracy loss under potential gate flips by the average ratio

of computed similarity score to the actual similarity score for

each database entry.

V. EVALUATION

A. Impact on the Accuracy of Computation

Fig.5a captures the accuracy of SVM under potential gate flips.

Following intuition, accuracy degrades with higher values of

PNo Write and PErr. Write. Under the pessimistic assumption

of PNo Write = PErr. Write = 10−3, the accuracy loss

exceeds 60% (we should note that actual write error rates

are much lower, as explained in Section II). The maximum

accuracy exceeds 85% for PNo Write < 10−3, and reaches

∼ 97% for PNo Write = 10−6. This all is to be attributed to

SVM’s algorithmic noise tolerance. Fig.5b and Fig.5c capture

the accuracy of GDC under potential gate flips for mixed-

gate (Gmix) and NAND-only (Gnand) implementations. Both

implementations exhibit significant accuracy loss when either

of PNo Write or PErr. Write exceeds 10−5. Finally, Fig. 5d

shows the accuracy of DNA under potential gate flips. This

benchmark exhibits much higher resilience to noise than the

others, as demonstrated by the mere 19% accuracy loss even

when PNo Write=PErr. Write=10−3. This is mostly due to

the more heterogeneous gate mix featuring MAJ5 and MAJ5B

gates, as larger fan-in gates tend to mask more errors.

B. Gate Flip Breakdown

We will next take a closer look at write errors. PNo Write or

PErr. Write just capture the probability of write errors, but

there is no guarantee that an injected write error leads to a

gate flip. Fig.6a depicts gate flip statistics for SVM. Y-axis

shows % of total errors observed, with each stack corresponding

to a specific type of error (which in general may not always

represent a gate flip). The bars are grouped by PNo Write.

We observe that, under a fixed PNo Write, % of no flip cases

increases with lower PErr. Write. At the same time, gate flips

to AND (particularly from MAJ5) decrease with decreasing

PErr. Write across the board. Since SVM inference involves

a high number of additions (used in dot-product computation

and multiplications), the accuracy loss peaks at PNo Write

and PErr. Write values, where MAJ5 → AND/OR flips are

dominant (Fig.5a).

As Fig.6b reveals, a similar trend applies for the mixed gate

GDC implementation Gmix. At higher PNo Write the gate flip

distribution becomes more homogeneous. The homogeneous

distribution is a direct result of the uniform gate mix, which

features an almost equal number of MAJ3 and MAJ5 gates. At

lower PNo Write, MAJ5→AND flips dominate. This is when the

circuit topology of the CIM full-adder implementation comes

into play. As expected, the NAND-only implementation Gnand

is not as sensitive to error rates (Fig.6c).

Fig.6d captures gate flip statistics for DNA. Here, unlike

SVM and GDC, the gate flip distribution remains more bal-

anced. NOR→NAND, MAJ5B→NOR and MAJ5B→NAND flips

induce errors in the first step of character comparison (XORs

followed by NORs). At PNo Write and PErr. Write values

where the share of these flips is significant, the end accuracy

of computation tends to degrade.

VI. CONCLUSION & DISCUSSION

Computing-in-memory (CIM) is a highly effective paradigm to

eliminate memory-induced performance bottlenecks. Obviating

the need for data transfers, especially promising are CIM

designs supporting universal Boolean logic directly in (non-

volatile) memory arrays. However, they also give rise to CIM-

specific errors for which no standard model exists. In this paper,

we reveal one such class of errors termed gate flips, and provide

a proof-of-concept characterization. We demonstrate how non-

ideal effects such as parametric variations can trigger gate flips,

to transform a logic gate (in memory) to a different one. We find

that gate flips represent a functional abstraction for a subclass of

CIM-specific write errors. We introduce a high-level model, the

gate flip matrix, to enable functional reliability assessment and

to guide design decisions in forming universal gate libraries for

specific CIM substrates. Finally, we evaluate their impact on the

end accuracy of computation using representative benchmarks

from emerging application domains.

We should also note that the utility is not limited to

nonvolatile CIM. Gate flips broadly apply to digital CIM

architectures performing Boolean gate operations in or near

the memory arrays, regardless of the underlying technology

or computing mechanism at play. For example, gate flips in a

CIM architecture that uses sense amplifiers (SA) at the array
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Fig. 6: Gate flip breakdown grouped by PNo Write (indicated on top of each bar).

periphery to perform bit-line computing can be attributed to

variations in SA threshold (which determines the output of a

logic gate) [7].
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