
0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

1

In-Memory Processing on the Spintronic CRAM:
From Hardware Design to Application Mapping

Masoud Zabihi, Zamshed Chowdhury, Zhengyang Zhao,
Ulya R. Karpuzu, Jian-Ping Wang, and Sachin S. Sapatnekar

Abstract—The Computational Random Access Memory (CRAM) is a platform that makes a small modification to a standard
spintronics-based memory array to organically enable logic operations within the array. CRAM provides a true in-memory computational
platform that can perform computations within the memory array, as against other methods that send computational tasks to a separate
processor module or a near-memory module at the periphery of the memory array. This paper describes how the CRAM structure can
be built and utilized, accounting for considerations at the device, gate, and functional levels. Techniques for constructing fundamental
gates are first overviewed, accounting for electrical and noise margin considerations. Next, these logic operations are composed to
schedule operations in the array that implement basic arithmetic operations such as addition and multiplication. These methods are
then demonstrated on 2D convolution with multibit data, and a binary neural inference engine. The performance of the CRAM is
analyzed on near-term and longer-term spintronic device technologies. Significant improvements in energy and execution time for the
CRAM-based implementation over a near-memory processing system are demonstrated, and can be attributed to the ability of CRAM
to overcome the memory access bottleneck, and to provide high levels of parallelism to the computation.

Index Terms—Spintronics, In-memory computing, Memory bottleneck, STT-MRAM, Neuromorphic Computing, Nonvolatile memory

F

1 INTRODUCTION

Today’s computational engines are inadequately equipped
to handle the demands of future big-data applications. With
the size of data sets growing exponentially with time [1], the
computational demands for data analytics applications are
becoming even more forbidding, and the mismatch between
application requirements and evolutionary improvements
in hardware is projected to become more extreme. Current
hardware paradigms have moved towards greater special-
ization to handle this challenge, and specialized units that
enable memory-centric computing are a vital ingredient of
any future solution.

Technology Node 40nm 10nm HP 10nm LP

Energy of 64-bit
data communication 1.55× 5.75× 5.77×
versus computation

Table 1: Communication vs. computation energy, adapted
from [2].

However, key bottlenecks for large-scale data analytics
applications, even in state-of-the-art technology solutions,
are the memory capacity, communication bandwidth, and
performance requirements within a tight power budget.
Technology scaling to date has improved the efficiency of
logic more than communication, and communication energy
dominates computation energy [3], [4]. Table 1 compares
the cost of computation (a double-precision fused multiply
add) with communication (a 64-bit read from an on-chip
SRAM). The ratio of communication energy to computation
energy increases from 1.55× at 40nm to approximately 6× at
10nm, for both the high performance (HP) and low power
(LP) variants. Even worse, transferring the same quantity

The authors are with the Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, USA. This work was supported
in part by NSF SPX Award CCF-1725420, and by C-SPIN, one of the six
SRC STARnet Centers, sponsored by MARCO and DARPA.

of data off-chip, to main memory, requires more than 50×
computation energy even at 40nm [2]. Such off-chip accesses
become increasingly necessary as data sets grow larger, and
even the cleverest latency-hiding techniques cannot conceal
their overhead. At the same time, the inevitable trend of
higher degrees of parallel processing hurts data locality and
results in increased execution time, power, and energy for
data communication [3].

Moreover, general-purpose processors are often ineffi-
cient in computing for emerging applications: this has moti-
vated a trend towards specialized accelerator units, tailored
to specific classes of applications that they can efficiently
execute. The trend of increasing data set sizes, coupled
with the large cost (in terms of both energy and latency) of
transporting data to the processor, have prompted the need
for a significant departure from the traditional model of
CPU-centric computing. An effective way to overcome the
memory bottleneck and maintain the locality of computing
operations is to embed compute capability into the main
memory. In recent years, two classes of approaches have
been proposed:
• near-memory computing places computational units at

the periphery of memory for fast data access.
• true in-memory computing uses the memory array to per-

form computations through simple reconfigurations.
In this paper, we present an approach based on the

spintronics-based computational random access memory
(CRAM) paradigm. The CRAM concept [5] uses a small
modification to the MTJ-based memory cell that enhances
its versatility and enables logic operations through reconfig-
uration that enables the use of current-steered logic. Unlike
many other approaches, this method fits the description
of true in-memory computing, where computations are per-
formed natively within the memory array and massive
parallelism is possible, e.g., with each row of the mem-
ory performing an independent computation. The CRAM-
based approach is digital, unlike prior analog-like in-
memory/near-memory solutions [6], [7], which provides

more robustness to variations due to process drifts, partic-
ularly in immature technologies than analog schemes. This
sensitivity implies that digital implementations can achieve
superior recognition accuracy over analog solutions when
the full impact of errors and variations are factored in.

Our solution is based on spintronics technology, which is
attractive because of its robustness, high endurance, and its
trajectory towards fast improvement [8], [9]. The outline of
the CRAM approach was first proposed in [5], operating
primarily at the technology level with some expositions
at the circuit level. The work was developed further to
show system-level applications and performance estima-
tions in [10]. In this work, we bridge the two to provide an
explicit link between CRAM technology, circuit implemen-
tations, and operation scheduling. We present technology
alternatives and methods for building gates and arithmetic
units, study scheduling and data placement issues, and
show how this approach can be used to implement a sample
application, which is chosen to be a neuromorphic inference
engine for digit recognition.

The rest of the paper is organized as follows. Section 2
discusses CRAM architecture. In Section 3, we present an
approach for designing arithmetic function at the device,
gate, and functional levels. Given this design, a more de-
tailed elaboration on scheduling CRAM operations is dis-
cussed in Section 4. We elaborate on two example applica-
tions, corresponding to implementations of 2D convolution
and a neural inference engine, in Section 5. We discuss the
evaluation and results in Section 6, related work in Section 7,
and then conclude the paper in Section 8.

2 CRAM ARCHITECTURE

2.1 MTJ Devices

The unit storage cell used in a typical STT-MRAM is an MTJ,
which is composed of two ferromagnetic layers – a fixed
polarizing layer and a free layer – separated by an ultrathin
nonconductive MgO barrier [11]. We consider perpendicular
MTJ (PMTJ) technology, where both the free layer and the
fixed layer are magnetized perpendicular to the plane of
the junction. When the magnetization orientations of the
two layers are parallel to each other (referred to as the P
state), applying a voltage across the MTJ causes electrons to
tunnel through the ultrathin nonconductive layer without
being strongly scattered, as a result of which we have high
current flow and relatively low resistance,RP [12]; when the
magnetization orientations of two layers are anti-parallel to
each other (referred to as the AP state), the MTJ has a higher
resistance, RAP . In this way, an MTJ can store logic 1 and
0 depending on its resistance state, and we define logic 1
and 0 for the AP and P states, respectively [13]. A critical
attribute of an MTJ is the tunneling magnetoresistance ratio
(TMR), defined as

TMR =
RAP −RP

RP
(1)

With an electrical current flowing through the MTJ, the
magnetization direction of the free layer can be reversed due
to the spin-transfer-torque (STT) effect, and thus the MTJ
can be switched between P state and AP state. To flip the
magnetization direction of the free layer, the current density
should be larger than a threshold switching current density,
Jc, which is technology-dependent.

WL0
LL0

WL1
LL1

MTJ00 MTJ01 MTJ02 MTJ03

MTJ10 MTJ11 MTJ12 MTJ13

BS
L0

BS
L1

BS
L2

BS
L3

LB
L0

LB
L1

LB
L2

LB
L3

M
BL

0

M
BL

1

M
BL

2

M
BL

3

WL2
LL2

MTJ20 MTJ21 MTJ22 MTJ23

Bitline Driver Bitline Driver Bitline Driver Bitline Driver

WE LBL D WE LBL D WE LBL D WE LBL D

Figure 1: Overall structure of the CRAM.

2.2 The CRAM Array

The general structure of the spintronic CRAM is illustrated
in Fig. 1. The overall configuration of the CRAM array is
very similar to the standard 1-transistor 1-MTJ (1T1MTJ)
STT-MRAM, except that the CRAM uses a 2T1MTJ bit-
cell, with one additional transistor. Like the standard STT-
MRAM memory array, the MTJ in each bit-cell is addressed
using the memory word line (WL). The second transistor
in the bit-cell, which enables logic operations, is enabled
by selecting the logic bit line (LBL) for the transistor while
turning off WL. The array can operate in two modes:
Memory mode: When the WL is high, it turns on an access

transistor in each column and enables data to be read
from or written into the MTJ through the memory bit
line (MBL). The second transistor is turned off during
this mode by holding down LBL, and the configuration
is effectively identical to a bit cell in a memory array.

Logic mode: Turning on the LBL allows the MTJ to be con-
nected to a logic line (LL) in each row. In the logic mode,
several MTJs in a row are connected to the logic line.
To realize a logic function with multiple inputs and one
output, an appropriate voltage is applied to the bitlines.
Since the states of the input MTJs are expressed in terms
of their resistance, the current through the output MTJ
depends on the input MTJ resistances, and if it exceeds
the critical switching current, Ic, the output MTJ state
is altered.

To understand the logic mode more clearly, consider the
scenario where three MTJ devices are connected to the logic
line, as shown in Fig. 2. The state variables are expressed in
terms of the MTJ resistance, where resistances R1 and R2

correspond to the states of the two inputs, and Ro is the
output MTJ resistance. Before the computation starts, the
output MTJ state is set to a preset value. The bit select lines
(BSLs) of the input MTJs are connected to a pulse voltage,
while that of the output MTJ is grounded. This configuration
corresponds to the application of a voltage VBSL across a

2

Inputs

BSL1 BSL2 BSL3
VBSL VBSL Ground

I1 I2

LL I1 + I2I =

I

Output

R1 R2 Ro

R1 R2 Ro, , and
are state variables

Figure 2: Performing a logic operation in a row of the CRAM
array.

resistance of (R1 || R2) in series with Ro. As a result, a
current I flows through the logic line:

I = VBSL

/[(
R1R2

R1 +R2

)
+Ro

]
(2)

If I > Ic, where Ic is the critical threshold current required
to switch the output MTJ from it preset value, the output
state changes; otherwise it remains the same.

2.3 Performing Logic Operations Across Rows

LL

BSL 3BSL 2BSL 1

Inputs Output

R1 R2 Ro

Threshold
Detector
(I > Ic?)

R1, R2, Ro
are state
variables

I =I1+I2

I1 I2

VBSL VBSL Ground

I
S01

S12

S02

LL0

LL1

LL2
S23

S34

S24

S13

S35

LL3

LL4(a) (b)

Figure 3: Switches between rows for inter-row transfers.

The scheme in Fig. 2 shows how logic operations can
be carried out between MTJs in the same row. However,
it is important at times to perform logic operations that
traverse multiple rows. To enable inter-row communication,
we augment the array of Fig. 2 by inserting switches be-
tween logic lines which, when turned on, allow MTJs in
different rows to communicate. It is unrealistic to allow
every row to communicate with every other row, and nor
is this required in typical computations.

To maintain the simplicity of the architecture, an LL in
row i is connected through switches to the LLs in its two
nearest adjacent rows, i.e., as illustrated in Fig. 3, the LL in
row i− 2, i− 1, i+ 1, and i+ 2, if they exist. In performing
in-memory computations, it is important to ensure that an
internal data traffic bottleneck is not introduced: in fact, the
best solutions will perform very local data movement. This
is the reason why our CRAM architecture only allows direct
movement to the two nearest adjacent rows. Data movement
to more distant rows is not prohibited, but must proceed
in sequential hops of one or two rows. In principle, it is
possible to connect every row to every other row. However,
for n rows, such a scheme would add C(n, 2) = O(n2)
transistors, and would also introduce significant routing

overheads. In contrast, our scheme adds 2n transistors, and
these local connections can be made quite easily. To illustrate
the use of this structure, let us consider a very common
operation where the output of an operation in row N must
be moved to row M for the next operation. Each such
operation requires the implementation of a BUFFER gate,
which copies a value from one row to another. To move
from row N to row M , the data can “jump” two rows at a
time to reach its destination, except when the destination is
one row away, where it “jumps” one row. For example, to
copy a value from row 0 to row 7, for example, one could
move first to row 2, then row 4, then row 6, and then finally
to row 7. It is easy to see that in general the number of
steps required to transfer one bit from row M to row N is⌈
|M−N |

2

⌉
.

Other interconnection schemes may also be possible and
could reduce the communication overhead, depending on
application characteristics. The scheme described above is
built on the assumption that energy considerations dictate
that most inter-row communication must be local.

2.4 Peripheral Circuitry

D W
E

LB
L

GND

VMBL

MBL

V0

BSL

S 0S 1

V1V2V3
00

S1

VBSL

S0

S0S1

S0S1

S0S1

V3

V2

V1

V0

011011

S0
S1

GND

Figure 4: Bitline driver circuitry.

The voltages on BSL, LBL, and MBL are set by the bitline
drivers. While LBL takes on normal Vdd values, required
to turn on the access transistor, the chosen voltage on BSL
depends on the logic function being implemented. As we
will show in Section 3.2, this voltage is on the order of 100s
of mV in today’s technologies and 10s of mV in advanced
technologies. The bitline drivers are illustrated in Fig. 4: the
inputs are WE, D, and LBL, and the outputs BSL and MBL
are generated using the circuitry shown in Fig. 4.

The generation of the MBL and BSL signals in Fig. 2 is
illustrated in Fig. 4. In memory mode, LBL is grounded and
line D is used to control the direction of the current. In case
of a write operation, WE is set to Vdd, and if D is also at
Vdd, then current is injected from MBL to BSL; otherwise, if
D is grounded, the current direction is reversed. For a read
operation, WE is grounded and both drivers are off; in this
case, MBL is separately driven and connected to the sense
amplifier. In logic mode, WL and WE are grounded, and LBL
is at Vdd. If D is also at Vdd, then the driver connects BSL
to ground, while if D is grounded, then BSL is connected to
VBSL.

3

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

3 DESIGNING ARITHMETIC FUNCTIONS

3.1 Device-level Models
In evaluating the performance of the CRAM, we consider
two sets of device-level models whose parameters are listed
in Table 2: (i) Today’s MTJ technology, corresponding to a
mainstream process today, and (ii) Advanced MTJ technol-
ogy, corresponding to a realistic future process. The value
of the latter point is that due to the rapid evolution of
MTJ technology, using only today’s node is likely to be
pessimistic. Moreover, by using technology projections, the
evaluation on an advanced MTJ technology provides a clear
picture of design issues and bottlenecks for this method.
For each technology, the table provides specifics of the MTJ
materials and dimensions, the TMR, the resistance-area (RA)
product, the critical switching current density, Jc, the critical
switching current, Ic, the write time, twr, as well as the MTJ
resistance in each state.

Table 2: MTJ Specifications

Parameters Today’s MTJ Advanced MTJ

MTJ type Interfacial PMTJ Interfacial PMTJ
Material system CoFeB/MgO/ CoFeB (SAF)/MgO/

CoFeB CoFeB
MTJ diameter 45nm 10nm
TMR 133% [14] 500%

RA product 5Ωµm2 1Ωµm2 [15]
Jc 3.1× 106A/cm2 106A/cm2

Ic 50µA 0.79µA
twr 3ns [16] 1ns [14]
RP 3.15KΩ 12.73KΩ

RAP 7.34KΩ 76.39KΩ

In general, for the CRAM application, a higher TMR is
beneficial since this helps differentiate between the 0 and
1 states more effectively. To select the parameters for the
Advanced MTJ technology, we consider various roadmaps
and projections, as well as consultations with technology
experts. Today, the largest demonstrated TMR is 604% at
room temperature for an MTJ built using a material stack
of CoFeB/MgO/CoFeB [9], [17]. However, this MTJ uses
a thick MgO layer, which results in a large RA product;
moreover, it uses in-plane magnetization, which requires
larger area due to its need for shape anisotropy in the plane,
and is less preferred over perpendicular MTJ magnetization.
While the best TMR for perpendicular MTJs in the lab today
is about 208% [18], there are pathways to much higher
TMRs. Accordingly, we set the TMR for the Advanced
MTJ to 500%. This is further supported by predictions that
show that a TMR of 1000% at room temperature will be
attainable by 2024 [9]. The RA product can be tuned using
new tunneling barrier materials (e.g., MgAlO), or reducing
the MgO thickness while maintaining crystallinity.

3.2 Gate-level Design
When MTJs are connected together in logic mode, the type
of gate functionality that results from the connection can be
controlled by two factors: (i) the voltage applied on the BSL
lines, which appears across the connected MTJ devices, and
(ii) the logic value to which the output MTJ is preset. The
corresponding bias voltage range and the preset value to
implement each gate are summarized in Table 3. The output

preset for each gate is unique and depends on the gate type
rather than on MTJ technology parameters.

Consider the case where the configuration in Fig. 2 is
used to implement a NAND gate. SinceRAP = (TMR+1)RP ,
and a logic 0 corresponds to RP , from Eq. (2), we have:

I00 = VBSL

/(
RP

2
+Ro

)
I01 = I10 = VBSL

/((
TMR + 1

TMR + 2

)
RP +Ro

)
I11 = VBSL

/(
(TMR + 1)RP

2
+Ro

)
(3)

The requirements for the NAND gate is that the first two
cases should result in logic 1 at the output MTJ, but the last
case should keep the output value at logic 0. Using the fact
that TMR > 0, it is easy to verify that the current mono-
tonically decreases as I00 > I01 = I10 > I11. Therefore,
if the output is preset to logic 0, then by an appropriate
choice of VBSL, the first two cases can result in a current
that exceeds Ic, thus switching the output while the last can
result in a current below Ic, keeping the output at logic 0.
A similar argument can be made to show that if the output
is preset to 1, the gate will not function correctly because it
requires the first two cases (higher currents) not to induce
switching, while the last case (lowest current) must induce
switching. The same arguments can be used to argue that an
AND implementation should be preset to logic 1, allowing
switching in the 00 and 01/10 cases, but not the 11 case.

It can further be seen that an XOR cannot be naturally
implemented in a single gate under this scheme: depending
on the preset value, it requires switching for the 00 and
11 cases but not 01/10, or vice versa. Neither case follows
the trends by which the current I increases. Therefore, like
CMOS, an XOR must be implemented using multiple stages
of logic.

For the NAND gate, for a preset output value of 0, Ro =
RP . Therefore the results for the three cases are:

I00 =
VBSL

RP

(
2

3

)
I10 = I01 =

VBSL

RP

(
TMR + 2

2TMR + 3

)
I11 =

VBSL

RP

(
2

TMR + 3

)
(4)

The requirements for the NAND gate is that the first two
cases should induce switching to logic 1, but the last case
should keep the output value at logic 0. Therefore,(

TMR + 2

2TMR + 3

)
VBSL

RP
> Ic >

(
2

2TMR + 3

)
VBSL

RP
,

i.e.,
(
2TMR + 3

TMR + 2

)
IcRp < VBSL <

(
2TMR + 3

TMR + 2

)
IcRP .

(5)

From the values ofRP , TMR, and Ic provided in Table 2
and the requirement that the 00 and 10/11 cases should
switch, while the 11 case should not, we can obtain the
values in Table 3. For NAND gate, 270.0mV < VBSL <
354.5mV for today’s MTJs, and 18.6mV < VBSL < 40.2mV
for advanced MTJs. Similar methods are used for other
gates. From the table, it can be seen that the voltage VBSL

required to implement each gate type using today’s MTJ

4

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

Table 3: Bias Voltage Ranges and Output Preset Values

Gate Bias voltage range Output
Today’s MTJ Advanced MTJ preset

NOT 315.0 – 551.5mV 20.1 – 70.4mV 0
BUFFER 551.5 – 788.0mV 70.4 – 120.6mV 1
AND 506.5 – 591.0mV 68.9 – 90.5mV 1
NAND 270.0 – 354.5mV 18.6 – 40.2mV 0
OR 472.7 – 506.5mV 65.3 – 68.9mV 1
NOR 236.2 – 270.0mV 15.0 – 18.6mV 0
MAJ3 459.6 – 481.5mV 64.9 – 67.8mV 1
MAJ3 223.1 – 245.0mV 14.6 – 17.5mV 0
MAJ5 435.4 – 443.2mV 63.3 – 64.3mV 1
MAJ5 198.9 – 206.7mV 13.0 – 14.0mV 0

technology is higher than that for the advanced MTJ tech-
nology.

For a NAND gate, the lower end and upper of the bias
voltage (VBSL) is shown in Eq. (5). For each gate type, if we
denote the lower and upper ends of the bias voltage range
as Vmin and Vmax, respectively, then we can define the noise
margin, NM , as:

NM = (Vmax − Vmin)/Vmid (6)
where Vmid = (Vmax + Vmin)/2 (7)

This metric provides a measure of the range of the voltage
swings, normalized to the mean.

Figure 5: A comparison of the noise margin for various gate
types, implemented in a CRAM today’s MTJs and advanced

MTJs, as defined in Table 2.

Fig. 5 shows the noise margin for various gate types.
It can be seen that for Advanced MTJs, the noise margin in
most cases is about 2X larger than those of today’s MTJ. This
noise margin is intended to capture the level of resilience of
each gate type to shifts in parameter values due to process
variations, supply voltage variations, thermal noise, etc.
While it is difficult to know the level of such drifts, since
these technologies are still evolving and are in a high state
of flux. In this work, we choose a threshold for the minimum
acceptable noise margin in this work as NM = 5%. From
the figure, it can be seen that the MAJ3, MAJ5, and OR
gates for both technologies and the MAJ5 gate for today’s
technology fall below this threshold, and are not used here.

3.3 Functional-level Design
In [5], NAND based logic was applied to implement a full
adder (FA) using CRAM. A NAND-based implementation
of FA requires 9 stages of logic. As shown in [5], Carry and
Sum can, respectively, be generated after 9 and 8 CRAM
computation steps. This large number of sequenced oper-
ations for an addition can can incur high delays. FAs can
be implemented more efficiently using majority logic [19]

instead of NAND gates. While such implementations can
reduce the number of steps required to implement a FA in
the CRAM, MAJ3 and MAJ5 have low NM values (Fig. 5),
but MAJ3 and MAJ5 gates have sufficient NM for advanced
MTJs. Therefore, we adapt the MAJ-based FA designs to use
complementary MAJ logic for advanced MTJs, and stay with
NAND gates for today’s MTJs.

M
A

J
3

M
A

J
5

CoutA
B
C

S

A B C C
ou
t

D S

A B C C
ou
t

S

A B C C
ou
t

S

D
=
C
ou
t

D
=
C
ou
t

Step 1

Step 2

Step 3

(a) (b)

M
A

J
3

M
A

J
5

CoutA
B
C

S

A B C C
ou
t

D S

A B C C
ou
t

S

A B C C
ou
t

S

D
=
C
ou
t

D
=
C
ou
t

Step 1

Step 2

Step 3

(a) (b)

A
B
C

(b)

(a)

Figure 6: (a)The full adder implementation based on MAJ
logic (b) scheduling CRAM operations on the adder. For

simplicity, the output preset before each step is not shown in
the schedule above.

!"#"!$#$!%#%!&#&

'"

("

($

(&

()

'$

("(&

'%'&'*+,
!$#$!&#&

MAJ
Adder

MAJ
Adder

MAJ
Adder

MAJ
Adder

Figure 7: 4-bit ripple carry adder using bubble-pushing.

We propose a modification of the MAJ-based FA using
the MAJ-based logic structure shown in Fig. 6(a) to im-
plement the complement of a FA. It can easily be verified
that this correctly produces the outputs S and Cout based
on input bits A, B, and C. We will defer the precise set of
scheduling operations to our discussion in Section 4.

To demonstrate how this complemented FA can be used
to build an n-bit adder, we show a 4-bit ripple carry adder
in Fig. 7. The LSB (zeroth bit) uses the logic in Fig. 6
to generate the complemented output carry, which is the
complemented input carryC1 of the first bit, and to generate
the complemented sum bit S0. The latter is taken through
an inverter to generate S0. Instead of inverting C1, we use
“bubble-pushing” to implement the first bit, based on the

5

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

observation that:

Cout = MAJ3(A,B,C) (8)

S = MAJ5(A,B,C,Cout, Cout) (9)

Thus, we invert A1 and B1, which are not on the critical
path, instead of inverting C1, to generate S1 and C2, and so
on. In general, for an n-bit adder, alternate bits use true
and complemented inputs to the MAJ-based FA. In this
proposed scheme inversions are not required for any Cout

bits (except for the MSB for an n-bit adder where n is odd
– but it is unusual for n to be odd in real applications).
Explicit inversions (i.e., NOT gates) are only required for
the Sum outputs of alternate FAs in the n-bit adder.

4 SCHEDULING CRAM OPERATIONS
Scheduling an n-bit addition on the CRAM: We begin
with the implementation of single-bit addition in the CRAM
and then move to multibit additions. The FA structure
involves multiple steps that implement MAJ3, MAJ5, NOT,
and BUFFER, and these computational steps are shown in
Fig. 6(b). For each step, it is assumed that initializations (out-
put presets) are performed before the shown computational
steps.
Step 1 For the FAs corresponding to odd-numbered bits in

n-bit addition, the input is not complemented. In Step
1, we initialize the Cout cell to 0, and then compute
Cout ← MAJ3(A,B,C) by activating the BLL transis-
tor, after initializing the Cout cell to 0.

Step 2 We copy the computed Cout using D ←
BUFFER(Cout). The register D is used to store the value
of Cout, as two Cout operands are required for the next
step.

Step 3 We compute S ← MAJ5(A,B,C,Cout, Cout).
In principle, this would have to be followed by Steps 4 and
5 (not shown in the figure), which use the NOT function to
obtain the uncomplemented S and Cout outputs. However,
bubble-pushing makes it unnecessary to invert a rippled
carry output, and alternate output bits need no inversion
on the sum bits, but need input inversions. However, for
odd-numbered FAs, we require a Step 4 to invert the Sum
output, and for even-numbered bits, we add a “Step 0” that
inverts the input bits A and B; note that neither of these is
typically on the critical path.

The computation for even-numbered bits is analogous.
We compute Cout using Equation (8), then copy it to another
location D, and finally use Equation (9) to compute S.

We consider data placement and scheduling for an n-bit
carry-propagate adder (CPA) using n = 4 to illustrate the
idea, based on Fig. 7. Each of the four MAJ-based FAs in
this structure is implemented within a separate row of the
CRAM, and the computation in each row is performed in
separate steps that capture data dependencies.

MAJ

Adder

B0A0

S0

Cin
MAJ

Adder

B1A1

MAJ

Adder

B2A2

S2

MAJ

Adder

B3A3

S1S3

C1C2C3

Cout

Figure 5: 4-bit ripple carry adder using the bubble-pushing technique.
In each MAJ FA complement of sum and carry are achieved after 3

steps.

Time 1 2 3 4 5 6 7 8 9

Row 0 C1 – D0 S0 S0

Row 1 – C1 C2 – D1 S1

Row 2 – – – C2 C3 D2 S2 S2

Row 3 – – – – – C3 Cout D3 S3

Table III: Scheduling table for the 4-bit CPA from t = 1 to 9.

The computational steps are shown in Fig. 4(b). For odd-numbered
bits, where the input is not complemented, in Step 1, we compute
Cout ← MAJ3(A,B,C) by activating the BLL transistor, after
initializing the Cout cell to 0. Next, in Step 2, we copy this computed
value to its adjacent cell by performing D ← BUFFER(Cout).
Finally, in Step 3, we compute S ← MAJ5(A,B,C,Cout, Cout).
The computation for even-numbered bits is analogous.

In principle, this would have to be followed by Steps 4 and 5
(not shown in the figure), which use the NOT function to obtain the
uncomplemented S and Cout outputs. However, as explained in the
previous section, the bubble-pushing approach makes it unnecessary
to invert a rippled carry output, and alternate output bits need no
inversion on the sum bits, but need the input bits to be inverted
instead. Therefore, for odd-numbered FAs, we require a Step 4 to
invert the Sum output, and for even-numbered bits, we add a “Step
0” that inverts the input bits A and B; note that neither of these is
typically on the critical path.

B. Scheduing an n-bit addition on the CRAM
Next, we consider data placement and scheduling for an n-bit

addition operation, using the example of n = 4 to illustrate the idea,
based on Fig. 5. Each of the four MAJ FAs in this structure is
implemented within a separate row of CRAM, and the computation
in each row is performed in separate steps that capture the sequential
data dependency of the computation.

The scheduling table of the 4-bit carry ripple adder is shown in
Fig. III, where the ith bit-slice is implemented in row i of the CRAM.
Once a carry in row i is generated, it is transferred to row i+1. Thus,
at t = 1, C1 is generated and is transferred to row 1 at t = 2; at
t = 3, C2 is generated in row 1 and transferred to row 2 at t = 4, and
at t = 5, C3 is generated and transferred to row 3 at t = 6. Now that
all inputs to the MSB are available, using the schedule described in
Fig. 4(b), three time units later, at t = 9, the computation is complete.

C. Multiplications and Dot Products
The dot notation is a useful tool to represent arithmetic oper-

ations [16]. The notation is intuitive and is illustrated in Fig. 6
for the addition and multiplication of two 4-bit binary digits. Each
dot represents a place significance, and dots representing each input
number correspond to its four bits, with weights of 1, 2, 4, and 8,
respectively, from right to left. Fig. 6(a) shows that the sum of these
two 4-bit numbers is a 5-bit number represented with five dots. The
multiplication of two 4-bit numbers, shown in Fig. 6(b), generates
a set of four shifted partial products that are added to generate the
8-bit product.

Breaking down the product computation further by mapping it to
FA operations, a fast method for adding the partial products of a

Figure 6: Dot notation representation [16]: (a) Addition of two 4-bit
digits, (b) Multiplication of two 4-bit digits

Figure 7: 4× 4 Wallace tree multiplier: (a) The schematic, (b) The dot
notation representation.

multiplication is to use Wallace/Dadda trees [17]. The schematic of
4× 4 Wallace tree multiplier is shown in Fig. 7, annotated with the
intermediate computations Cij and Sij for various values of i and
j. At each level of the computation, we use a FA to reduce 3 (or
sometimes 2, using a half-adder (HA)) bits of the partial products
to a sum bit and a carry bit that is propagated to the next column.
For instance, in Level 1, A2, B1, and C0 are added to produce S11

and C11, which are added to similar terms in Level 2. Each such
FA/HA is shown by a red dotted rectangle containing 2 or 3 dots. The
numbered label at the bottom left corner of the rectangle represents
the CRAM row number that implements the FA operation. It can be
seen that each column of the computation, which corresponds to a
place significance, maps to the same CRAM row in each Level (e.g.,
the third-last column in Level 1 that adds A2, B1, and C0 maps to
CRAM row 2. The resultant sum output S11 remains in that row and
is added with with other operands in Level 2, while the carry output
is transferred to the next higher row).

Another view of the scheduling of these computations is presented
in Table IV. The implementation of each level requires 5 steps,
and computations related to FAs within each level are performed
in parallel. As in the case of the ripple carry adder, the first three
steps for each FA at Level 1 involve computing the complement of
the output carry, cloning the computed carry complement to another
cell, and then computing the complement of the sum at t = 1, 2, 3,
respectively. As before, bubble-pushing is used so that the inverted

Level 1 Transfer Level 2 CPA
Time 1 2 3 4 5 6 7 8

Row 0 C10 D1 S10

Row 1 C11 D2 S11 C10 C20 D5 S20

Row 2 C12 D3 S12 C11 C21 D6 S21 CPA
Row 3 C13 D4 S13 C12 C22 D7 S22

Row 4 C13 C23 D9 S23

Table IV: Scheduling table for the Wallace tree adder.

4

Figure 8: Scheduling table for the 4-bit CPA from t = 1 to 9.

The scheduling table of the 4-bit ripple carry adder is
shown in Fig. 8, where the ith bit-slice maps to CRAM

row i. Once a carry in row i is generated, it is transferred to
row i+ 1. Thus, at t = 1, C1 is generated and is transferred
to row 1 at t = 2; at t = 3, C2 is generated in row 1 and
transferred to row 2 at t = 4, and at t = 5, C3 is generated
and transferred to row 3 at t = 6. Now that all inputs to the
MSB are available, using the schedule described in Fig. 6(b),
three time units later, at t = 9, the computation is complete.
Multiplication: The dot notation is a useful tool to represent
arithmetic operations [20]. The notation is illustrated in
Fig. 9 for the addition and multiplication of two 4-bit binary
digits. Each dot represents a place significance, and dots
representing each input number correspond to its four bits,
with weights of 1, 2, 4, and 8, from right to left. Fig. 9(a)
shows that the sum of these two 4-bit numbers is a 5-bit
number. The multiplication of two 4-bit numbers (Fig. 9(b)),
generates a set of four shifted partial products that are
added to generate the 8-bit product.

Figure 9: Dot notation representation [20]: (a) Addition of two
4-bit digits, (b) Multiplication of two 4-bit digits.

Figure 10: (a) Schematic and (b) dot notation representation
for a 4× 4 Wallace tree multiplier.

Breaking down the product computation further by
mapping it to FA operations, a fast method for adding the
partial products of a multiplication is to use Wallace/Dadda
trees [21]. The schematic of 4 × 4 Wallace tree multiplier is
shown in Fig. 10, annotated with the intermediate computa-
tions Cij and Sij for various values of i and j. At each level
of the computation, we use a FA to reduce 3 (or sometimes
2) bits of the partial products to a sum bit and a carry bit that
is propagated to the next column. For instance, in Level 1,
A2, B1, and C0 are added to produce S11 and C11, which
are added to similar terms in Level 2. Some FAs can be
implemented as simpler half adders (HAs) since they have
only two inputs. Each such FA/HA is shown by a red dotted
rectangle containing 2 or 3 dots. The numbered label at the
bottom left corner of the rectangle represents the CRAM row

6

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

number that implements the FA operation. It can be seen
that each column of the computation, which corresponds to
a place significance, maps to the same CRAM row in each
Level (e.g., the third-last column in Level 1 that adds A2,
B1, and C0 maps to CRAM row 2. The resultant sum S11

remains in that row and is added with other operands in
Level 2, while the carry-out goes to the next row).

MAJ

Adder

B0A0

S0

Cin
MAJ

Adder

B1A1

MAJ

Adder

B2A2

S2

MAJ

Adder

B3A3

S1S3

C1C2C3

Cout

Figure 5: 4-bit ripple carry adder using the bubble-pushing technique.
In each MAJ FA complement of sum and carry are achieved after 3

steps.

Time 1 2 3 4 5 6 7 8 9

Row 0 C1 – D0 S0 S0

Row 1 – C1 C2 – D1 S1

Row 2 – – – C2 C3 D2 S2 S2

Row 3 – – – – – C3 Cout D3 S3

Table III: Scheduling table for the 4-bit CPA from t = 1 to 9.

The computational steps are shown in Fig. 4(b). For odd-numbered
bits, where the input is not complemented, in Step 1, we compute
Cout ← MAJ3(A,B,C) by activating the BLL transistor, after
initializing the Cout cell to 0. Next, in Step 2, we copy this computed
value to its adjacent cell by performing D ← BUFFER(Cout).
Finally, in Step 3, we compute S ← MAJ5(A,B,C,Cout, Cout).
The computation for even-numbered bits is analogous.

In principle, this would have to be followed by Steps 4 and 5
(not shown in the figure), which use the NOT function to obtain the
uncomplemented S and Cout outputs. However, as explained in the
previous section, the bubble-pushing approach makes it unnecessary
to invert a rippled carry output, and alternate output bits need no
inversion on the sum bits, but need the input bits to be inverted
instead. Therefore, for odd-numbered FAs, we require a Step 4 to
invert the Sum output, and for even-numbered bits, we add a “Step
0” that inverts the input bits A and B; note that neither of these is
typically on the critical path.

B. Scheduing an n-bit addition on the CRAM
Next, we consider data placement and scheduling for an n-bit

addition operation, using the example of n = 4 to illustrate the idea,
based on Fig. 5. Each of the four MAJ FAs in this structure is
implemented within a separate row of CRAM, and the computation
in each row is performed in separate steps that capture the sequential
data dependency of the computation.

The scheduling table of the 4-bit carry ripple adder is shown in
Fig. III, where the ith bit-slice is implemented in row i of the CRAM.
Once a carry in row i is generated, it is transferred to row i+1. Thus,
at t = 1, C1 is generated and is transferred to row 1 at t = 2; at
t = 3, C2 is generated in row 1 and transferred to row 2 at t = 4, and
at t = 5, C3 is generated and transferred to row 3 at t = 6. Now that
all inputs to the MSB are available, using the schedule described in
Fig. 4(b), three time units later, at t = 9, the computation is complete.

C. Multiplications and Dot Products
The dot notation is a useful tool to represent arithmetic oper-

ations [16]. The notation is intuitive and is illustrated in Fig. 6
for the addition and multiplication of two 4-bit binary digits. Each
dot represents a place significance, and dots representing each input
number correspond to its four bits, with weights of 1, 2, 4, and 8,
respectively, from right to left. Fig. 6(a) shows that the sum of these
two 4-bit numbers is a 5-bit number represented with five dots. The
multiplication of two 4-bit numbers, shown in Fig. 6(b), generates
a set of four shifted partial products that are added to generate the
8-bit product.

Breaking down the product computation further by mapping it to
FA operations, a fast method for adding the partial products of a

Figure 6: Dot notation representation [16]: (a) Addition of two 4-bit
digits, (b) Multiplication of two 4-bit digits

Figure 7: 4× 4 Wallace tree multiplier: (a) The schematic, (b) The dot
notation representation.

multiplication is to use Wallace/Dadda trees [17]. The schematic of
4× 4 Wallace tree multiplier is shown in Fig. 7, annotated with the
intermediate computations Cij and Sij for various values of i and
j. At each level of the computation, we use a FA to reduce 3 (or
sometimes 2, using a half-adder (HA)) bits of the partial products
to a sum bit and a carry bit that is propagated to the next column.
For instance, in Level 1, A2, B1, and C0 are added to produce S11

and C11, which are added to similar terms in Level 2. Each such
FA/HA is shown by a red dotted rectangle containing 2 or 3 dots. The
numbered label at the bottom left corner of the rectangle represents
the CRAM row number that implements the FA operation. It can be
seen that each column of the computation, which corresponds to a
place significance, maps to the same CRAM row in each Level (e.g.,
the third-last column in Level 1 that adds A2, B1, and C0 maps to
CRAM row 2. The resultant sum output S11 remains in that row and
is added with with other operands in Level 2, while the carry output
is transferred to the next higher row).

Another view of the scheduling of these computations is presented
in Table IV. The implementation of each level requires 5 steps,
and computations related to FAs within each level are performed
in parallel. As in the case of the ripple carry adder, the first three
steps for each FA at Level 1 involve computing the complement of
the output carry, cloning the computed carry complement to another
cell, and then computing the complement of the sum at t = 1, 2, 3,
respectively. As before, bubble-pushing is used so that the inverted

Level 1 Transfer Level 2 CPA
Time 1 2 3 4 5 6 7 8

Row 0 C10 D1 S10

Row 1 C11 D2 S11 C10 C20 D5 S20

Row 2 C12 D3 S12 C11 C21 D6 S21 CPA
Row 3 C13 D4 S13 C12 C22 D7 S22

Row 4 C13 C23 D9 S23

Table IV: Scheduling table for the Wallace tree adder.

4

Figure 11: Scheduling table for the Wallace tree adder.

Another view of the scheduling of these computations
is presented in Fig. 11. The implementation of each level
requires 5 steps, and computations related to FAs within
each level are performed in parallel. As in the case of the
ripple carry adder, the first three steps for each FA at Level 1
involve computing the complement of the output carry,
cloning the computed carry complement to another cell, and
then computing the complement of the sum at t = 1, 2, 3,
respectively. As before, bubble-pushing allows the inverted
sum and carry outputs to be used directly in the next bit
slice.

To begin the computations at Level 2, the computed
carry values in row i must be sent to row i + 1, and this
is accomplished at t = 4, 5. Note that due to the structure of
the CRAM, this must be performed in two steps: when row
i is connected to i + 1, we cannot simultaneously connect
row i + 1 to i + 2, otherwise we create an inadvertent path
from i to i+ 2. Therefore, transfers from all even-numbered
rows to the next row occur in one time slot, and transfers
from all odd-numbered rows in another. Three more steps
are required to perform the FA computation at Level 2,
which completes at t = 8, and the results then go to a CPA,
implemented as in Section 4.

5 CRAM APPLICATIONS

In this section, we present two applications of the CRAM:
a two-dimensional (2D) convolution operation for image
filtering using images and filters represented by multiple
bits, and a binary neuromorphic inference engine for digit
recognition.

5.1 2D Convolution for Image Filtering

Convolution is a building block of many image processing
applications, such as image filtering for sharpening and
blurring. Fig. 12(a) shows an input image with 512×512
pixels that is convolved by a 3×3 filter to yield an output
image with the same number of pixels, shown in Fig. 12(b).
The output pixel in location (i, j) is computed as follows, as
illustrated in Fig. 13(a):

Oi,j =
3∑

k=1

3∑
l=1

fk,l · Ii−k+2,j−l+2 (10)

100 200 300 400 500

100

200

300

400

500

(a)

100 200 300 400 500

100

200

300

400

500

(b)

Figure 12: Using the average (mean) filter to denoise an image:
(a) the noisy image with numerous specks, and (b) the

denoised version.

where f represents a matrix associated with the 3×3 filter,
and I is the matrix of input pixels. The image I is repre-
sented using 4 bits, and the filter f uses two bits. Thus, each
partial product (fk,l · Ii−k+2,j−l+2) has six bits.

To compute O(i, j), the result of the dot product rep-
resenting a pixel of the output image, nine six-bit partial
products are added together using a tree adder, as shown
in Fig. 13(b). The tree adder has four levels, and uses a
six-bit ripple carry adder at the final stage. As illustrated
in the figure, the total number of rows required for the
implementation of one dot product is 19. Similar to the
adder and multiplier, it is easy to build a scheduling table
for the implementation of the dot product: for conciseness,
it is not shown here. The total number of steps for the
implementation includes all steps for multiplication, addi-
tions within the rows, inter-row transfers, and the final CPA.
The convolution for each output pixel can be computed in
parallel.

5.2 A Neural Inference Engine
Using the building blocks described above, we show how
the CRAM can be used to implement a neuromorphic
inference engine for handwritten digit recognition using
data from the MNIST database [22]. The neural network
architecture from [23] (Fig. 14) is used to implement the
recognition scheme. Each of the MNIST images is scaled to
11×11 as in [23], a transformation that maintains 91% recog-
nition accuracy and reduces computation. Note that using
the full image, or using a more complex neural engine with
higher recognition accuracy, does not fundamentally change

7

Input Image
(512×512)

Output Image
(512×512)

Filter (3×3)
(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

15

17

18

25

36

811

9

14

12

1718

15

5811141718

8
1819

111417

Level 1

Level 2

Level 3

Level 4

6-bit CPA

(b)

Figure 13: The implementation of convolution using CRAM:
(a) a 512×512 image, with 4 bit per pixel, is filtered using a
3×3 filter, with 2 bits per word, and (b) the addition of nine

six-bit partial products to compute the dot product that
evaluates the output image pixel using a 4-level tree adder.

our approach or conclusions. This data is provided to the
neural net with a set of one-bit inputs, Xi, 1 ≤ i ≤ 121,
corresponding to each image bit, and fires one of 10 outputs,
corresponding to the digits 0 through 9. In principle, this
network can also be implemented using a larger number of
bits, as in the previous application, rather than as a binary
neural network; the unit operations for n bits have been
described in Section 4. As in [23], the synaptic weights Wij

have three bits and are trained using supervised learning.
The outputs of the neural network are computed as the

inner product:

Yi =
121∑
j=1

Wi,jXj (11)

The inner product Yi is computed as a sum of 121 partial
products. Fig 15(a) uses the dot notation to represent the
implementation of Yi. Each partial product is a bitwise
multiplication of a three-bit Wi,j with a one-bit Xj , and
this can be implemented using a bitwise AND operation.
The resulting three-bit partial products, shown in each row
at Level 1 in Fig. 15(a), are added together using a Wallace
tree adder. Note that one can also use a Dadda tree adder
or any other similar tree adder without changing the overall
delay significantly. This is because the overall delay does not

depend on the number of FAs in a level, as all FAs within
a level act in parallel. As long as the number of tree levels
(and the length of final ripple carry adder) is the same, the
overall delay is quite similar.

Recall that each group of three dots in the figure is a
FA computation performed in a row, after which the sum
and carry are propagated to the next level of computation.
In this case, the computation requires 9 levels. The choice
of row assignments for the FA computations is critical in
maintaining latency. In principle, it is possible to assign rows
sequentially by column, e.g., the dots in the last column are
assigned to rows 1 through d121/3e, then the second last
column gets row d121/3e+1 onwards, and so on. However,
this would mean large communication latencies (e.g., the
carry from row 1 may have to be sent to row 42 or higher).
We use an approach that performs a zigzag assignment of
rows, as shown in Fig. 15(a). After the computation in each
row, the sum output is sent to the median row and the
carry output to the largest row number. For example, the
first three FAs in the right column are in rows 1, 2, and 4,
according to the diagonal pattern. Their three sums are sent
to the median row, row 2, and their carries are sent to the
maximum row number, row 4. At Level 2, the same process
repeats: the FAs in the first three groups, now in rows 2, 10,
and 19, send their three sums to row 10 and three carrys
to row 19, and so on. The Wallace tree has 9 levels in all,
followed by a CPA stage.

Fig. 15(b) shows the footprint of computations, where
the y-axis is the row number and the x-axis is time. Each
colored block is an adder computation, which takes three
steps if we use majority complementary logic (for advanced
MTJ technology) or nine steps for NAND-based logic (us-
ing today’s MTJ technology). As described above, once a
computation in one level is complete, we transfer the sums
to the median row number (as shown by blue arrows) and
carrys to the largest row number (as shown by red arrows).
For example, after Level 1, the Sum outputs for Rows 1 and
4 are transferred to Row 2, to set up the Level 2 computation
that adds these to the Sum output produced in Row 2.
Such inter-row transfers correspond to BUFFER operations
that are carried out by activating the switches described in
Section 2.3.

The span of rows involved in the computation shrinks
from level to level. Fig. 16 shows the number of FA com-
putations at each level of the Wallace tree and the number
of inter-row data transfers involved before the beginning of
the full adder computation at each level. Due to the scheme
for moving sums and carrys across rows, as the computation
proceeds, the span of rows that contain active data shrinks.
For example, Level 1 involves all 120 rows, but fewer rows
are involved at Level 2, starting from Row 2; at Level 3, the
number reduces further, and the first active row is Row 5.

Our approach is shown on a binary neural network, a
family of structures that has recently attracted great atten-
tion for low-energy deep learning on embedded platforms.
However, the general concept and procedure for implement-
ing our design can be applied to other neural inference
engines, including multibit neural networks. In general,
when the number of bits per pixel (for the same application)
increases, the computation will employ unit operations with
a greater number of bits (e.g., a tree adder with more
levels and more FAs). This increases the number of steps
and the size of the CRAM array for implementation. The
fundamental operation in many neural computation models
is a convolution of the form Equation (10) or a dot product of

8

11 Pixels

11
 P

ix
el

s

0 1 2 3 4 5 6 7 8 9

1

2

10

Y0
Y1

Y9

1

2

3

121

X1

X2

X3

X121

W1,1

W2,1

W10,1

W1,3

W2,3

W10,3
W1,121

W2,121
W10,121

Input Image Classifier Layer Output

Figure 14: An inference engine for the digit recognition problem.

X1W1,1:
X2W1,2:
X3W1,3:
X4W1,4:
X5W1,5:
X6W1,6:
X7W1,7:
X8W1,8:
X9W1,9:

X121W1,121:

1

2

3

4

5

6

8

9

12

7

2

10

4

19

5

8

13

9

17

and so on till Level 10

Le
ve

l 1
Le

ve
l 2

(a)

Adder 1
Adder 2
Adder 3
Adder 4
Adder 5
Adder 6
Adder 7
Adder 8
Adder 9

Adder 10
Adder 11
Adder 12
Adder 13

Row 1
Row 2

Adder 120

Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13

Row 120

Adder 1Carry

Adder 2
Adder 3

Adder 4
Adder 5

Adder 7

Sum

Adder 8

Adder 6

Adder 1

Adder 2
Adder 3

Adder 4

Data Transfer 1 Data Transfer 2Level 1 Level 2 Level 3

So
 o

n
til

l L
ev

el
 1

0
an

d
C

PA

(b)

Figure 15: The implementation of each of the ten outputs, Yi, of the inference engine, illustrating the (a) zigzag scheme for
assigning addition operations to CRAM rows, and (b) the inter-row data transfers and the computation footprint of Yi along the

rows of the CRAM.

1 2 3 4 5 6 7 8 9 10
Level

0

20

40

60

80

100

120

of

 F
As

(a)

1 2 3 4 5 6 7 8 9 10
Transferring Phase

0

100

200

300

400

500

600

700

800

of

 M
ov

es

(b)

Figure 16: (a) The distributions of the number of FAs in each
level of Wallace tree. (b) The distribution of the total number

of moves required in the data transfer phases.

the form of Equation (11). As shown in Section 3, the CRAM
architecture can perform the unit operations (addition and
multiplication) for either. For example, the convolution layer
in a convolutional neural network (CNN) involves dot
product operations, and then a summation over the results
of these dot products. Computations in other CNN layers,
such as pooling and ReLU, also require simple arithmetic or
Boolean operations that can be implemented on the CRAM
substrate.

6 EVALUATION AND RESULTS
We evaluate the performance of the CRAM for two appli-
cations: (a) performing 2D convolution to filter a 512×512
image, and (b) digit recognition, used to analyze 10,000
handwritten digit images from the MNIST database. In both
applications, the execution time and energy of the CRAM
are compared with those of a near-memory processing
(NMP) system, where a processor is available at the edge of
the memory array. We do not explicitly show comparisons
between NMP and processor-based computing, where the
data is taken from memory to a processor or coprocessor
for computation, and the results are transported: it is well-
documented [2], [4], [24] that this method is vastly inferior
to the NMP approach due to the communication bottleneck
described in Section 1. For example, [24] reports a 6.5×
improvement through the use of NMP, as compared to
processor-based computing. Note that this communication
overhead limits the effectiveness of any processor or copro-
cessor that requires communication to and from memory,
including specialized accelerator cores (e.g., neuromorphic
units or GPUs).

The organization of the CRAM array is shown in Fig. 17.
For the 2D convolution application, a 256Mb [512Mb]
CRAM array is enough to compute all output pixels of a
512×512 image with 4 bits per pixel in parallel using the
advanced [today’s] MTJ device. For the digit recognition
application, we require a 1Gb memory, where each image
can be processed in parallel within a subarray. The overall

9

CRAM
Subarray

CRAM
Subarray

CRAM
Subarray

CRAM
Subarray

CRAM
Subarray

Decoder Decoder

Decoder Decoder

Predecoder

CRAM Array

1024 (or 512) Columns

1024 (or 128) R
ow

s

CRAM Unit

Figure 17: Each CRAM unit includes four CRAM subarrays
and one predecoder. A predecoder block is at the center of the

CRAM unit, and fans out to four CRAM column decoders.

array is divided into subarrays as shown in the figure. The
operations in the CRAM array are scheduled by activating
the appropriate LBL and BSL lines. In memory mode, the
predecoder and decoder modules drive the selection of WL
(see Fig. 1), while in logic mode, they drive the selection of
LBL. The predecoder at the center of the CRAM unit fans
out to a set of decoders in our evaluations: here, we show
four decoders, but if a larger number of subarrays is used,
this number can be different.

To calculate the energy and delay of the CRAM system,
we considered the energy and delay components in both
peripheral circuitry and the CRAM array. To determine the
impact of the size of CRAM on execution time and energy,
we considered two cases for the size of CRAM subarrays:
1024 rows × 1024 columns, and 128 rows × 512 columns.

6.1 Execution Time
CRAM: We assume that the data is placed in the appropriate
CRAM array location. The execution time, tCRAM , is:

tCRAM = tMTJ + tDr, (12)

where tMTJ and tDr are delay related to computations in
the MTJ array and in the bitline drivers of Fig. 4, respec-
tively. The total array delay is dominated by the MTJ delay,

tMTJ = Nsteptwr, (13)

whereNstep and twr are, respectively, the number of compu-
tation steps and the MTJ write time per computation. Here,

Nstep = NMul +NLNFA +
∑NL

i=1 Ii−→i+1 + tCPA (14)

where NMul is the number of steps required to generate
partial products for the first level of the tree adder. The
second term indicates total number of intrarow computation
steps required for the implementation of the neural network,
where NL the number of levels in the implementation tree
adder, and NFA the number of steps for the implementation
of a FA. The third term corresponds to the total number of
steps for transferring data between rows of the CRAM array:
at each level i of the tree, the number of such transfers
is denoted by Ii−→i+1. Finally, tCPA is the time required
for the carry propagation addition step at the end of the
Wallace tree computations. The preset adds no execution
time overhead and can be performed either during the write
operation when CRAM is in the memory mode, or online
during the computation when CRAM is in the logic mode.
In the latter case, the output MTJs are preset in parallel
with the logic computation of the previous step, adding no
overhead to the compute time. During the logic operation
LBLs, and BSLs are engaged in computation, and current

flows through LLs (see Fig. 1 and Fig. 2). Simultaneously,
one can also write the preset value for the next step, as
only MBL and BSL (of another column) are involved in the
writing operation, and there is no overlap between current
path related to computation and that to output preset.

For the 2D convolution application, we have:
• From Section 5.1, NMul = 9 and NL = 4.
• Based on Section 3.3, NFA = 3 using the MAJ gates,

with bubble-pushing, in advanced MTJ technologies,
and NFA = 9 using NAND-based logic in today’s
technology (where MAJ gates do not provide sufficient
noise margin, as shown in Section 3.2).

• We count all number of steps in the inter-row commu-
nication phases, and find that

∑NL

i=1 Ii−→i+1 = 14.
• Extending the argument from the four-bit adder in

Section 3.3, tCPA = 13 for the six-bit adder.
From (14), we obtain Nstep = 48 (for the advanced CRAM
with MAJ3 based logic) andNstep = 72 columns (for today’s
CRAM with NAND-based logic). Thus, the computation
for each pixel of the output image requires an array of
19 rows (Section 5.1) and Nstep columns. By rounding the
column counts to the nearest power of 2, and considering
all 512×512 pixels of the output image, a CRAM array size
of 256Mb is required for the computation on the advanced
MTJ; the corresponding number for today’s MTJ is 512Mb.

For the digit recognition application:
• From Section 5, NMul = 6, and NL = 10.
• As before, NFA = 3 using the advanced CRAM, and
NFA = 9 using today’s technology.

• The number of steps in the inter-row communication
phases is determined to be

∑NL

i=1 Ii−→i+1 = 247.
• From Section 3.3, tCPA = 9 for the four-bit adder.

Therefore, Nstep = 292 for the advanced MTJ technology
(using MAJ logic), and Nstep = 352 using today’s MTJs (us-
ing NAND logic). The computation of each image requires
an array of 121 rows (corresponding to the partial products)
times 10 outputs, and 292 or 352 columns (corresponding to
the steps in the computation), depending on the type of MTJ
used. Therefore, rounding 292 (or 352) to the nearest higher
power of 2, in a 1024 × 1024 memory subarray, we can fit
18 images (9 images along the rows and 2 images along
the columns). The entire set of 10,000 images thus requires
10,000/18 = 556 such arrays; rounding this up to 1024, we
see that we require 1024 such subarrays, providing a total
memory size of 1Gb, as listed earlier.

To incorporate the delay of bitline drivers in the CRAM,
an overhead delay estimated in each step by considering the
delay components of a DRAM array with the same physical
size. We use the parameters and models in the NVSim
memory simulator [25] at 10nm and 45nm to consider a
subarray of this size and use the underlying parameters to
obtain these delays. We tailor the NVSIM models to the
specifics of the CRAM computation. Specifically, in logic
mode, each computation step requires LBLs to be driven,
similar to driving wordlines, but does not require bitline
or sense amplifier circuitry. The load seen by the column
drivers in logic mode can be modeled in the same way as
the load seen by row drivers in memory mode: instead of
driving a wordline transistor as in memory mode, the LBL
drives the access transistor that connects a cell to the LL.
For each step of computation, we calculate the sum of the
delay of the decoder and predecoder using similar models
as NVSim, and this value is multiplied by Nstep to find the
total overhead corresponding to tDr. The size of the bit-cell

10

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

is also altered to reflect the increased size of the CRAM bit
cell over that for an STT-MRAM cell.
NMP System: The near-memory processing (NMP) system
takes data from the memory to a processor and performs its
computation outside the memory system. We assume that
the operation is based on a DRAM structure, with better
performance characteristics than a spintronic memory. For
the digit recognition application, to process all 10K images
of the MNIST database, 10,000 images, each of size 121 bits,
must be fetched from DRAM, for computations in the near-
memory processor. The delay for this scenario is estimated
using CACTI [26]. A similar approach is used for the 2D
convolution application.

Computing one of the outputs, Yi, of the neural net
requires 121 MAC operations. To find the processing time
of each block of data, it is assumed that the processor uses
instruction pipelining technique and that it can perform
the multiply-accumulator (MAC) operation in one clock
cycle. In case multiple processing units are available on
the processor, we appropriately scale the execution time by
the number of processors. We pessimistically assume max-
imum parallelism, where each fetched image is processed
in parallel, and the level of parallelism is only limited by
the data rate from memory. The clock frequency of the
processor is 1GHz, but due to the assumption above, the
precise computing speed of the processor does not affect the
evaluation of NMP execution time.

6.2 Energy
Analogous to delay, the CRAM energy is computed as:

ECRAM = EMTJ + EDr (15)

where EMTJ and EDr are the energy related to computa-
tions in the MTJ array and for the bitline drivers, respec-
tively. The energy in the MTJ array is given by

EMTJ = EPreset+EMul+Erow+Etransfer+ECPA (16)

in which EPreset is the preset energy before the logic
operation starts; EMul is the energy for multiplication to
produce partial products in Level 1 of the tree adders;
Erow is the energy for intrarow computation, and can be
obtained by enumerating all FAs working in parallel in the
9 levels of the implementation trees; Etransfer is the energy
for transferring data across rows between various levels of
computation, and can be obtained by enumerating all inter-
row moves and multiplying the count by the energy of
BUFFER gate; ECPA is the energy for the implementation
of the final ripple carry adders. For the advanced MTJ
technology using MAJ3 gates, Eq. (16) can be rewritten as
follows (a similar equation can be derived for today’s MTJ):

EMTJ =NpreEpre +NNOTENOT +NBUFEBUF+

NMAJ3EMAJ3 +NMAJ5EMAJ5

(17)

Here, Epre is the energy for preset the output of one gate;
Eg and Ng are the energy for the implementation of a
single gate g and the number of gates of type g, g ∈ {NOT,
BUFFER, MAJ3, MAJ5}. Note that Npre is equal to the sum
of counts of all gates, as we need to preset the outputs of all
gates. colorredAs an example, the energy values and counts
for gates and the output preset for the digit recognition
application using advanced CRAM are listed in Table 4.

The value of driver energy, EDr, for the CRAM is esti-
mated using NVSim, using analogous analysis techniques as
for the delay computation. Since multiple columns may be

driven in each step, we multiply the energy cost of driving
each column by Neff , the average number of columns
driven in any part of the computation. The energy within
each CRAM unit is the sum of energy of four CRAM subar-
rays and one decoder. This value is multiplied by Nstep to
obtain the total overhead corresponding to EDr.

For the near memory processing system, the energy
consists of two components: (i) memory access energy and
(ii) computation energy. The estimated cost for accessing 256
bits of the operand from memory is estimated using [2],
normalized to CACTI.

Table 4: The energy cost for various CRAM gate types and
preset operations under the Advanced MTJ technology.

Gate NOT BUFFER MAJ3 MAJ5 Preset
Energy/gate(aJ) 30.7 73.8 7.6 6.3 26.1

Count(×105) 365 3017 657 294 4333

6.3 Comparison between CRAM and NMP

The results for execution time and energy for CRAM (at
10nm and 45nm) and NMP (at 16nm and 45nm) are evalu-
ated for both applications (10nm data for CMOS/NMP was
not available).

The evaluation result for the 2D convolution application
is listed in Table 5. Based on the result, today’s CRAM is
620× faster, and 23× more energy efficient than the NMP
system. The advanced CRAM is 1500× faster, and 750×
more efficient than a NMP system.

Table 5: Comparison between the execution time, t, and
energy, E, in CRAM and NMP based computations for the 2D
convolution application. The size of the CRAM subarrays in

this evaluation is 128×128.

CRAM NMP
10nm 45nm 16nm 45nm

t 54.0ns 231.2ns 84.3µs 144.4µs
E 252.1nJ 16.5µJ 189.2µJ 388.6µmJ

For the digit recognition application, the results for exe-
cution time and energy for CRAM (at 10nm and 45nm) and
NMP (at 16nm and 45nm) are shown in Table 6 (10nm data
for CMOS/NMP was not available). The value of EMTJ is
53.8µJ for today’s MTJ technology, and 35.4nJ for advanced
MTJs, three orders of magnitude lower. While the driver
energy also reduces from 45nm to 10nm, the reduction is
more modest. As a result, the energy for advanced MTJs is
dominated by the driver delay.

The improvements shown in the table can be attributed
to (a) high locality of the operations and (b) large amounts
of parallelism as each row computes in parallel. We see that
• For the 1024×1024 subarray, the CRAM energy is about

40× better than NMP at 45nm, and improves to over
2500× lower at 10nm. The execution time is 1400×
better at 45nm, and about 1700× better at 10nm.

• The execution time [energy] for the 45nm CRAM are,
respectively, over 500× [20×] better than 16nm NMP.

• The 10nm CRAM execution time [energy] is over 3×
[80×] better than the 45nm CRAM.

• Further improvements are seen using the smaller sub-
array. The energy overhead associated with smaller
subarrays is small at 45nm, but is magnified at 10nm,
where the driver energy dominates the subarray energy.

11

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

Table 6: Comparison between the execution time, t, and
energy, E, in CRAM and NMP based computations for

neuromorphic digit recognition.

CRAM NMP
1024 × 1024 128 × 512

10nm 45nm 10nm 45nm 16nm 45nm
t 434ns 1381ns 338ns 1105ns 0.74ms 1.96ms
E 0.49µJ 60.3µJ 0.75µJ 63.8µJ 1.27mJ 2.57 mJ

The distributions of energy and delay for the CRAM,
both using today’s MTJs and advanced MTJs, with subar-
rays of 1024 rows × 1024 columns, and 128 rows × 512
columns, are shown in Fig. 18 and Fig. 19, respectively. For
the 1024 × 1024 case, under today’s technology, the MTJ
array in the CRAM consumes a dominant component of
the energy. However, for advanced MTJs, due to the greatly
improved energy of future MTJs, the energy bottleneck will
be in the driver circuitry. By decreasing the size of the
subarray to 128 rows×512 columns, the total execution time
decreases due to a reduction in the driver circuitry delay. As
a result, the execution time is dominated more strongly by
the MTJ array. However, the driver circuitry plays a slightly
more prominent role in determining the energy than for the
larger subarray in Fig. 18. Thus, tradeoffs between energy
and delay can be obtained by altering subarray sizes.

Execution Time - Today's CRAM

67.7%

32.3%

Today's MTJ Array
45nm Driver Circuit

Energy - Today's CRAM

89.3%

10.7%

Execution Time - Advanced CRAM

68.5%

31.5%

Advanced MTJ Array
10nm Driver Circuit

Energy - Advanced CRAM
7.2%

92.8%

Figure 18: Distribution of energy and delay of the driver and
CRAM array for CRAM with the subarray size of 1024× 1024.

These result clearly shows that for both applications,
CRAM outperforms the NMP system in both energy and
execution time. In the NMP system, it is necessary to fetch
the data from memory and process it in processor units.
Even with the maximum level of parallelism in NMP by
using multiple processor units, and exploiting hidden la-
tency techniques, the delay overhead of fetching data to
the NMP at the edge of the memory is a major bottleneck.
In contrast, the CRAM does not face this delay penalty.
Moreover, the CRAM computation model enables a very
high degree of parallelism as each row can perform its

Execution Time - Today's CRAM

92.8%

7.2%

Today's MTJ Array
45nm Driver Circuit

Energy - Today's CRAM

85.3%

14.7%

Execution Time - Advanced CRAM

87.9%

12.1%

Advanced MTJ Array
10nm Driver Circuit

Energy - Advanced CRAM
4.7%

95.3%

Figure 19: Distribution of energy and delay of the driver and
CRAM array for CRAM with subarray size of 128× 512.

computations independently.
For example, in the 2D convolution application, all dot

products generating output pixels can be computed in par-
allel. In contrast, the NMP system faces a serial bottleneck
in the way that data is fetched from the memory. Moreover,
the energy cost of the cost of data transfers cannot be hidden
in the NMP system as data must be taken along long lines
to the edge of memory. In contrast, all communication in
the CRAM is inherently local within the subarray, providing
large energy savings.

7 RELATED WORK
Methods for addressing the communication bottleneck

through distributed processing of data at the source have
been proposed in [27], [28]. Such techniques feature a rich
design space, which spans full-fledged processors [28], [29]
and co-processors residing in memory [30], [31]. However,
until recently, the promise of these approaches could not be
translated to designs due to the incompatibility of the state-
of-the-art logic and memory technologies.

This changed somewhat with the emergence of 3D-
stacked architectures [32], [33], where a processor is placed
next to the memory stack, has enabled the emergence of
several approaches for near-memory computing [34]–[36].
However, building true in-memory computing has been dif-
ficult. In CMOS-based technologies: the computing engine
is overconstrained as it must use the same technology as
memory, and typically, methods that are efficient for com-
putation may not be so for memory. As a result, techniques
that attempt in-memory computation must necessarily draw
the data out to the periphery of the memory array, e.g., to a
sense amplifier or auxiliary computational unit, to perform
the computation and then write the result back to memory
as needed. There are several examples of such platforms.
The work in [37] performs search operations for content-
addressable memory functionalities, which need no write-
back but are less general than full in-memory computing;

12

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

methods in [38] place a computational unit at the edge
of memory; logic functionalities in [39] perform bitwise
operations through the sense amplifier.

Post-CMOS technologies open the door to new archi-
tectures. The method in [40] presents a logic-in-memory
platform that combines magnetic tunneling junctions (MTJs)
with MOS transistors, and embeds computing elements
within a memory array. However, this breaks the regularity
of the array so that while it is efficient for computation,
it may not be ideal for use as a memory module. SPIN-
DLE [41], a spintronics-based deep learning engine pro-
poses a tiered architecture of processing elements with a
neural computing core and memory scratchpad at the edge,
communicating with off-chip memory. The Pinatubo [42]
processing-in-memory architecture performs bulk bitwise
operations through redesigned read circuitry that performs
computations at the periphery of a phase change mem-
ory array. A spintronics-based solution in [43] proposes a
spin-transfer torque magnetic random access memory (STT-
MRAM) approach that also performs bitwise computation
at the periphery of the array by modifying the peripheral
circuitry in a standard STT-MRAM module. Unlike CRAM,
these methods perform computation at the edge of the
memory array. Another architecture [44] builds a four-
terminal domain wall device based on the spin-Hall effect,
but incurs a significant area overhead. A memristor-based
approach [45] shows the ability to perform logic functions
in an array, but does not show larger applications.

8 CONCLUSION

This paper presents a detailed view of how the CRAM in-
memory computation platform can be designed, optimized,
and utilized. As opposed to many of the approaches pro-
posed so far to solve the memory bottleneck by bringing
processing closer to memory, CRAM implements a true in-
memory computing paradigm that performs logic opera-
tions within the memory array. Methods for implementing
specific logic functions have been presented and have been
used to perform basic arithmetic operations, namely, adders
and multipliers. At the application level, the problems of
2D convolution on multibit numbers, and an inference en-
gine for binary neuromorphic digit recognition, have been
mapped to the CRAM. An evaluation of these methods
shows that for the task of evaluating the entire MNIST
benchmark suite, the CRAM achieves improvements of over
three orders of magnitude in the execution time. For today’s
MTJ technology, improvements of about 40× in the energy
are seen, a figure that improves to > 2500× for future
generations of MTJs.

REFERENCES

[1] A. McAfee, et al., “Big data: The management revolution,” Harvard
Business Review, Oct. 2012.

[2] S. W. Keckler, et al., “GPUs and the future of parallel computing,”
IEEE Micro, vol. 31, pp. 7–17, 11 2011.

[3] K. Bergman, et al., “Exascale computing study: Technology
challenges in achieving exascale systems,” DARPA Informa-
tion Processing Techniques Office (IPTO) sponsored study, 2008.
www.cse.nd.edu/Reports/2008/TR-2008-13.pdf.

[4] M. Horowitz, “Computing’s energy problem (and what we can do
about it),” in Proceedings of the IEEE International Solid-State Circuits
Conference, pp. 10–14, Feb. 2014.

[5] J. P. Wang and J. D. Harms, “General structure for computational
random access memory (CRAM),” Dec. 29 2015. US Patent
9,224,447 B2.

[6] X. Liu, et al., “Reno: A high-efficient reconfigurable neuro-
morphic computing accelerator design,” in Proceedings of the
ACM/ESDA/IEEE Design Automation Conference, 2015.

[7] L. Fick, et al., “Analog in-memory subthreshold deep neural
network accelerator,” in Proceedings of the IEEE Custom Integrated
Circuits Conference, 2017.

[8] J. P. Wang, et al., “A pathway to enable exponential scaling for the
beyond-CMOS era,” in Proceedings of the ACM/ESDA/IEEE Design
Automation Conference, 2017.

[9] A. Hirohata, et al., “Roadmap for emerging materials for spintronic
device applications,” IEEE Transactions on Magnetics, vol. 51, pp. 1–
11, Oct. 2015.

[10] Z. Chowdhury, et al., “Efficient in-memory processing using spin-
tronics,” IEEE Computer Architecture Letters, 2017.

[11] J. Kim, et al., “Spin-based computing: Device concepts, current
status, and a case study on a high-performance microprocessor,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 106–130, 2015.

[12] F. Ren and D. Markovic, “True energy-performance analysis of the
MTJ-based logic-in-memory architecture (1-bit full adder),” IEEE
Transactions on Electron Devices, 2010.

[13] A. Lyle, et al., “Direct communication between magnetic tunnel
junctions for nonvolatile logic fanout architecture,” Applied Physics
Letters, vol. 97, no. 152504, 2010.

[14] G. Jan, et al., “Demonstration of fully functional 8Mb perpen-
dicular STT-MRAM chips with sub-5ns writing for non-volatile
embedded memories,” in Proceedings of the IEEE International Sym-
posium on VLSI Technology, 2014.

[15] H. Maehara, et al., “Tunnel magnetoresistance above 170% and
resistance-area product of 1Ω(µm)2 attained by in situ anneal-
ing of ultra-thin MgO tunnel barrier,” Applied Physics Express,
vol. 4(03300), 2011.

[16] H. Noguchi, et al., “3.3ns-access- time 71.2µW/MHz 1Mb embed-
ded STT-MRAM using physically eliminated read-disturb scheme
and normally-off memory architecture,” in Proceedings of the IEEE
International Solid-State Circuits Conference, 2015.

[17] S. Ikeda, et al., “Tunnel magnetoresistance of 604% at 300K by
suppression of Ta diffusion in CoFeB / MgO/ CoFeB pseudo-
spin-valves annealed at high temperature,” Applied Physics Letters,
vol. 93, no. 8(082508), 2008.

[18] H. Almasi, et al., “Effect of Mo insertion layers on the
magnetoresistance and perpendicular magnetic anisotropy in
Ta/CoFeB/MgO junctions,” Applied Physics Letters, vol. 109,
no. 3(032401), 2016.

[19] H. M. Martin, “Threshold logic for integrated full adder and the
like,” 1971. US Patent 3,609,329.

[20] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, pp. 349–356, Mar. 1965.

[21] E. E. Swartzlander, “Recent results in merged arithmetic,” in SPIE
Proceedings, vol. 3461, pp. 576–583, 1998.

[22] Y. LeCun, “The MNIST database of handwritten digits.” http:
//yann.lecun.com/exdb/mnist/.

[23] M. Liu, et al., “A sable time-based integrate-and-fire neuromor-
phic core with brain-inspired leak and local lateral inhibition
capabilities,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, 2017.

[24] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM
architecture increases density and performance,” in Proceedings of
the IEEE International Symposium on VLSI Technology, pp. 87–88,
June 2012.

[25] X. Dong, et al., “NVSim: A circuit-level performance, energy, and
area model for emerging nonvolatile memory,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
pp. 994–1007, July 2012.

[26] N. Muralimanohar, et al., “CACTI 6.0: A tool to model large
caches,” Tech. Rep. HPL-2009-85, HP Laboratories, 2009.

[27] H. S. Stone, “A logic-in-memory computer,” IEEE Transactions on
Computers, vol. C-19, pp. 73–78, Jan. 1970.

[28] D. Patterson, et al., “A case for intelligent RAM,” IEEE Micro,
vol. 17, no. 2, pp. 34–44, 1997.

[29] S. Rixner, et al., “A bandwidth-efficient architecture for media
processing,” in IEEE International Symposium on Microarchitecture,
pp. 3–13, Dec. 1998.

[30] Y. Kang, et al., “FlexRAM: Toward an advanced intelligent mem-
ory system,” in Proceedings of the IEEE International Conference on
Computer Design, pp. 192–201, 1999.

[31] J. B. Brockman, et al., “Microservers: a new memory semantics for
massively parallel computing,” in Proceedings of the 16th Interna-
tional Conference on Supercomputing, 1999.

[32] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Proceedings of
the IEEE HotChips Symposium, 2011.

[33] J. Macri, “AMD’s next generation GPU and high bandwidth
memory architecture: FURY,” in Proceedings of the IEEE HotChips
Symposium, 2015.

13

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2858251, IEEE
Transactions on Computers

[34] R. Nair, et al., “Active memory cube: A processing-in-memory
architecture for exascale systems,” IBM Journal of Research and
Development, vol. 59, no. 2/3, pp. 17:1–17:14, 2015.

[35] D. Zhang, et al., “TOP-PIM: Throughput-oriented programmable
processing in memory,” in Proceedings of the International Sympo-
sium on High-performance Parallel and Distributed Computing, pp. 85–
98, 2014.

[36] J. Ahn, et al., “PIM-enabled instructions: A low-overhead, locality-
aware processing-in-memory architecture,” in Proceedings of the
ACM International Symposium on Computer Architecture, pp. 336–
348, June 2015.

[37] S. Jeloka, et al., “A 28 nm configurable memory
(TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling
logic-in-memory,” IEEE Journal of Solid-State Circuits, vol. 51,
pp. 1009–1021, Apr. 2016.

[38] J. Draper, et al., “The architecture of the DIVA processing-in-
memory chip,” in Proceedings of the 16th International Conference
on Supercomputing, pp. 14–25, 2002.

[39] V. Seshadri, et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in IEEE Interna-
tional Symposium on Microarchitecture, 2017.

[40] A. Matsunaga, et al., “MTJ-based nonvolatile logic-in-memory
circuit, future prospects and issues,” in Proceedings of Design,
Automation & Test in Europe, 2009.

[41] S. G. Ramasubramanian, et al., “SPINDLE: SPINtronic Deep
Learning Engine for large-scale neuromorphic computing,” in
Proceedings of the ACM International Symposium on Low Power
Electronics and Design, 2014.

[42] S. Li, et al., “Pinatubo: a processing-in-memory architecture for
bulk bitwise operations in emerging non-volatile memories,” in

Masoud Zabihi received his B.Sc. and M.S. de-
grees in Electrical Engineering and Electronics
from University of Tabriz in 2010, and Sharif
University of Technology in 2013, respectively.
He is currently pursuing the Ph.D. degree in
Electrical Engineering at the University of Min-
nesota. His research interests include spintron-
ics, emerging memory technologies, in-memory
computing, and VLSI design automation.

Zamshed Iqbal Chowdhury received his B.Sc.
and M.S. degrees in Applied Physics, Electron-
ics and Communication Engineering from Uni-
versity of Dhaka, Bangladesh. He is a faculty
member (on leave) at Jahangirnagar University,
Bangladesh and currently pursuing his PhD at
the Dept. of Electrical and Computer Engineer-
ing, University of Minnesota, Twin Cities, USA.
His primary research interests include emerg-
ing non-volatile memory technologies, applica-
tion specific hardware design, and computer per-

formance analysis. He is a member of IEEE.

Zhengyang Zhao is currently pursuing the Ph.D.
degree in Electrical and Computer Engineering
at the University of Minnesota, Minneapolis, MN.
He received the B.S. degree in Electrical En-
gineering from Xian Jiaotong University, China.
His research focuses on the development of
novel spintronic devices to implement energy-
efficient memory cells and logic applications. His
recent work includes studying current-induced
magnet reversal using spin-orbit torque (SOT),
as well as voltage-induced magnet reversal us-

ing piezoelectric strain or VCMA effect. More specific work includes the
stack design, MTJ cell nanofabrication, advanced device characteriza-
tion and physics study.

Proceedings of the ACM/ESDA/IEEE Design Automation Conference,
2016.

[43] W. Kang, et al., “In-memory processing paradigm for bitwise logic
operations in STT-MRAM,” IEEE Transactions on Magnetics, 2017.

[44] S. Angizi, et al., “Design and evaluation of a spintronic in-memory
processing platform for non-volatile data encryption,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
2017. (in press).

[45] N. Talati, et al., “Logic design within memristive memories using
Memristor Aided loGIC (MAGIC),” IEEE Transactions on Nanotech-
nology, vol. 15, pp. 635–650, July 2016.

Ulya R. Karpuzcu is an associate professor
at the Department of Electrical and Computer
Engineering of University of Minnesota. She re-
ceived the Ph.D. and M.S. degrees in Computer
Engineering from University of Illinois, Urbana-
Champaign. Her research interests span the
impact of technology on computing, energy-
efficient computing, application domain special-
ized architectures, approximate computing, and
computing at ultra-low voltages.

Jian-Ping Wang received the Ph.D. degree
from the Institute of Physics, Chinese Academy
of Sciences, where he performed research on
nanomagnetism, Beijing, China, in 1995. He was
a Post-Doctoral Researcher with the National
University of Singapore, Singapore, from 1995
to 1996. He established and managed the Mag-
netic Media and Materials Program with the Data
Storage Institute, Singapore, from 1998 to 2002.
He joined the faculty of the Electrical and Com-
puter Engineering Department with the Univer-

sity of Minnesota, Minneapolis, MN, USA, in 2002 and was promoted to
Full Professor in 2009. He is the Robert F. Hartmann Chair and a Distin-
guished McKnight University Professor of Electrical and Computer Engi-
neering and a member of the Graduate Faculty in Physics and Chemical
Engineering and Materials Science at the University of Minnesota. He
is the Director of the Center for Spintronic Materials, Interfaces and
Novel Architectures (C-SPIN), one of six STARnet program centers. Dr.
Wang received the Information Storage Industry Consortium Technical
Award in 2006 for his pioneering experimental work in exchange coupled
composite magnetic media and the Outstanding Professor Award for
his contribution to undergraduate teaching in 2010. His group is also
known for several important experimental demonstrations and concep-
tual proposals, including the perpendicular spin transfer torque device,
the magnetic tunnel junction-based logic device and random number
generator, ultrafast switching of thermally stable MTJs, topological insu-
lator spin pumping at room temperature, and a computation architecture
in random access memory.

Sachin S. Sapatnekar (S’86, M’93, F’03) re-
ceived the B. Tech. degree from the Indian In-
stitute of Technology, Bombay, the M.S. degree
from Syracuse University, and the Ph.D. degree
from the University of Illinois. He taught at Iowa
State University from 1992 to 1997 and has been
at the University of Minnesota since 1997, where
he holds the Distinguished McKnight Univer-
sity Professorship and the Robert and Marjorie
Henle Chair in the Department of Electrical and
Computer Engineering. He has received seven

conference Best Paper awards, a Best Poster Award, two ICCAD 10-
year Retrospective Most Influential Paper Awards, the SRC Technical
Excellence award and the SIA University Research Award. He is a
Fellow of the ACM and the IEEE.

14

