
CRAM-Seq: Accelerating RNA-Seq Abundance
Quantification Using Computational RAM

ZAMSHED I. CHOWDHURY , S. KAREN KHATAMIFARD , SALONIK RESCH , H€USREV ClLASUN ,
ZHENGYANG ZHAO , MASOUD ZABIHI , (Graduate Student Member, IEEE), MEISAM RAZAVIYAYN ,
(Member, IEEE), JIAN-PING WANG , (Fellow, IEEE), SACHIN S. SAPATNEKAR , (Fellow, IEEE), AND

ULYA R. KARPUZCU , (Member, IEEE)

CORRESPONDING AUTHOR: ZAMSHED I. CHOWDHURY (chowh005@umn.edu)

This work was supported by National Science Foundation (NSF) under Grant SPX-1725420.

ABSTRACT RNA Sequence (RNA-Seq) abundance quantification is an important application in different
fields of genomic studies, e.g., analysis offunctionally similar genes in a biological sample. This application
depends on the availability of high volume of sequence data for high accuracy abundance estimation, which
is made possible by next generation sequencing platforms. Large scale data processing requirements of this
quantification application push conventional computing systems to their limits due to excessive data move-
ment required between processing and memory elements. Processing-In-memory presents a viable solution
to this drawback, through in-situ processing of the genomic data. In this paper, we present CRAM-Seq, an
accelerator for RNA-Seq abundance quantification based on Computational RAM (CRAM) – an in-memory
processing substrate capable of high degree of parallel processing with very low energy consumption.
Through hardware/software co-design, we demonstrate that CRAM-Seq outperforms a commonly used state-
of-the-art software abundance quantification algorithm, Kallisto – in terms of throughput and energy effi-
ciency, while being highly scalable.

INDEX TERMS Abundance, accelerator, CRAM, quantification, RNA- seq, SHE-MTJ, spintronics

I. INTRODUCTION

Given a biological molecule, sequencing is the process of con-
structing its genomic composition in terms of the basic build-
ing blocks –i.e., nucleotide bases A(denine), T(hymine)/U
(racil), C(ytosine), G(uanine)– where each base is represented
by a character. Next Generation Sequencing (NGS) machines
can typically generate very high volumes of sequence data per
run, easily reaching hundreds of Giga (109) bases that trans-
lates into millions of fixed length strings of base characters
called reads. Figure 1 shows sequencing throughput over time
as a proxy for the volume of sequencing data produced by
NGS platforms [28]. This trend is expected to hold and result
in a steady increase in the volume of sequence data available
for genomic analysis, enabling unprecedented advances in bio-
informatics and medical research.
RNAmolecules, as well, represent chains of nucleotide bases

A, U, C and G. RNA-Seq(uencing) Abundance Quantification

is an important emerging application that particularly bene-
fits from the growth in sequence data volume as more data
translates into higher computational accuracy. The goal is to
estimate the relative distribution of a given set of RNA
sequences in a biological sample. Hence, RNA-Seq in a
sense “learns” from data. Important use cases for RNA-Seq
include novel gene identification, gene expression quantifi-
cation, mutation analysis, protein synthesis, precision and
personalized medicine research (to identify active genes in
cells, e.g.) to name a few.
Each RNA-Seq read usually is a smaller sub-sequence of a

longer RNA sequence called an RNA transcript. Such reads
are typically sequenced from a biological sample such as a
single cell. The set of transcripts that is fixed and already
known for a given sample is called RNA transcriptome, and
uniquely characterizes that sample. The reads sequenced from
a sample come from different transcripts in that sample, where

Zamshed I. Chowdhury, S. Karen Khatamifard, Salonik Resch, H€usrev Cllasun, Zhengyang Zhao, Masoud Zabihi, Jian-Ping Wang, Sachin S. Sapatnekar, and
Ulya R. Karpuzcu are with the Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA

Meisam Razaviyayn is with the University of Southern California, Los Angeles, CA 90007 USA

Received 16 July 2021; revised 7 February 2022; accepted 19 February 2022.
Date of publication 1 March 2022; date of current version 6 December 2022.

Digital Object Identifier 10.1109/TETC.2022.3153613

VOLUME 10, NO. 4, OCT.-DEC. 2022

2168-6750 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE

permission. See ht_tps://www.ieee.org/publications/rights/index.html for more information. 2055Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4096-7000
https://orcid.org/0000-0002-4096-7000
https://orcid.org/0000-0002-4096-7000
https://orcid.org/0000-0002-4096-7000
https://orcid.org/0000-0002-4096-7000
https://orcid.org/0000-0002-7574-8975
https://orcid.org/0000-0002-7574-8975
https://orcid.org/0000-0002-7574-8975
https://orcid.org/0000-0002-7574-8975
https://orcid.org/0000-0002-7574-8975
https://orcid.org/0000-0002-9050-3685
https://orcid.org/0000-0002-9050-3685
https://orcid.org/0000-0002-9050-3685
https://orcid.org/0000-0002-9050-3685
https://orcid.org/0000-0002-9050-3685
https://orcid.org/0000-0002-5421-1159
https://orcid.org/0000-0002-5421-1159
https://orcid.org/0000-0002-5421-1159
https://orcid.org/0000-0002-5421-1159
https://orcid.org/0000-0002-5421-1159
https://orcid.org/0000-0002-8017-3635
https://orcid.org/0000-0002-8017-3635
https://orcid.org/0000-0002-8017-3635
https://orcid.org/0000-0002-8017-3635
https://orcid.org/0000-0002-8017-3635
https://orcid.org/0000-0003-1916-901X
https://orcid.org/0000-0003-1916-901X
https://orcid.org/0000-0003-1916-901X
https://orcid.org/0000-0003-1916-901X
https://orcid.org/0000-0003-1916-901X
https://orcid.org/0000-0003-4342-6661
https://orcid.org/0000-0003-4342-6661
https://orcid.org/0000-0003-4342-6661
https://orcid.org/0000-0003-4342-6661
https://orcid.org/0000-0003-4342-6661
https://orcid.org/0000-0003-2815-6624
https://orcid.org/0000-0003-2815-6624
https://orcid.org/0000-0003-2815-6624
https://orcid.org/0000-0003-2815-6624
https://orcid.org/0000-0003-2815-6624
https://orcid.org/0000-0002-5353-2364
https://orcid.org/0000-0002-5353-2364
https://orcid.org/0000-0002-5353-2364
https://orcid.org/0000-0002-5353-2364
https://orcid.org/0000-0002-5353-2364
https://orcid.org/0000-0001-9238-4256
https://orcid.org/0000-0001-9238-4256
https://orcid.org/0000-0001-9238-4256
https://orcid.org/0000-0001-9238-4256
https://orcid.org/0000-0001-9238-4256

the transcripts vary in length and are more likely to generate a
read if longer. Therefore, to get a representative RNA-Seq
read dataset where the relative number of reads from each
transcript follow a similar distribution to the transcripts in that
sample, a very large number of RNA-Seq reads are required.
Technically, the abundance of the RNA-Seq reads refers to

the relative distribution of the transcripts in a sample. Quanti-
fying this distribution requires alignment between a large num-
ber of RNA-Seq reads and the transcriptome. (Exact)
Alignment entails finding out where in each transcript (from
that transcriptome) an RNA-Seq read matches the most–
through base by base comparison. Classic (exact) alignment
algorithms such as TopHat2 [16] or Cufflinks [29], however,
require extensive computational resources due to exact align-
ment that relies on base by base comparison between RNA-
Seq reads and the transcriptome. This results in a large number
of slow and energy-hungry data transfers between the compute
and memory elements (in a traditional setting), which inevita-
bly degrades the performance– in terms of quantification
throughput. Luckily, for abundance quantification, the actual
location of alignment (i.e., exact alignment) is not required.
Commonly used algorithms such as Sailfish [22] and Kal-
listo [4] hence avoid the costly exact alignment process by
exploiting the characteristics (e.g., order) of common sub-
sequences (called k-mers) in both RNA-Seq reads and tran-
scripts, while maintaining a comparable accuracy to exact-
alignment based methods. Such pseudo-alignment approxima-
tion significantly reduces the volume of data transfers during
quantification, although for representative problem sizes it still
remains forbidding.
A processing-in-memory (PIM) solution such as Compu-

tational RAM (CRAM) [30] can effectively address this
performance bottleneck by fusing memory and compute ele-
ments together. CRAM is a generic PIM architecture and can
be used with a wide-range of non-volatile (e.g., spintronic,
resistive) memory cell technologies to perform both memory
and in-situ computing operations. In this paper, we introduce
and detail the hardware-software co-design of CRAM-Seq, a
CRAM-based accelerator for RNA-Seq abundance quantifica-
tion. We demonstrate that CRAM-Seq can achieve accuracy
similar to state-of-the-art software solutions such as Kal-
listo [4], while operating faster and more energy-efficiently.
The key contributions of this paper are as follows:

� We show that only presence (i.e., not order) of
unique k-mers suffices to perform RNA-Seq abun-
dance quantification.

� We present an end-to-end PIM-based accelerator archi-
tecture to achieve higher quantification throughput with
lower energy consumption and comparable accuracy
when compared to a commonly used high throughput
abundance quantification algorithm, even in the pres-
ence of noise in the sequence data.

The rest of this article is organized as follows: Section II
discusses the core concepts related to RNA-Seq, transcripts
and abundance quantification. Section III illustrates the archi-
tecture and discusses different design aspects. Section IV and
Section V present the evaluation setup and experimental find-
ings. Related work is discussed in Section VI with Section VII
concluding this article.

II. BACKGROUND

A. RNA-SEQ

Typically, both transcripts and RNA-Seq reads don’t contain
U(racil) as they are sequenced from complementary DNA
molecules composed of {A, T, C, G} where each character
represents a base pair (bp). Transcripts are longer than fixed
length reads, and read length depends on the sequencing
technology. Reads from Illumina [25] platforms, e.g., usually
are �100 bp long.

B. RNA-SEQ ABUNDANCE QUANTIFICATION

Given a set of transcripts, abundance quantification deter-
mines the distribution of each transcript in a biological sam-
ple when a large number of RNA-Seq reads are sequenced
from that sample. If T ¼ ft0; t1; t2; . . .tNT�1g is the set of
transcripts, the quantified abundance of a transcript is:
QðtiÞ ¼ CðtiÞ=

PNT�1
j¼0 CðtjÞ where CðnÞ is the number of

RNA-Seq reads mapped to transcript n.
Figure 2 shows a typical abundance quantification pipe-

line: A biological sample (containing varying length tran-
scripts T0, T1 and T2 in different quantities) produces a large
(N) number of fixed length RNA-Seq reads. The first step
involves, for each RNA-Seq read, identifying the transcripts
that have the highest degree of similarity with that read (e.g.,
the total number of locations where both the transcript and
RNA-Seq read have a common sub-sequence of a given
length in bp). Be it exact or approximate, this alignment step
(as enclosed in the dashed box) helps to identify the (group
of) transcript(s) that more likely originated that particular
read. Each unique group of transcripts denotes a similarity
class. As the read dataset is exhausted, upon the processing
of each read, a collection of such similarity classes with cor-
responding counts of RNA-Seq reads (i.e., members) that
map to them gets updated. The similarity class of a read can
have one transcript (which is uniquely identified as the
source of that read), or multiple transcripts (where maximum
similarity applies to all transcripts in the class). In the final
step, an iterative clustering algorithm –typically, Expectation
Maximization (EM) [8]– distributes read counts to the cluster

FIGURE 1. Evolution of sequencing throughput over time.

2056 VOLUME 10, NO. 4, OCT.-DEC. 2022

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

points, i.e., the transcripts, utilizing all similarity class infor-
mation, to maximize the abundance of each transcript. The
most compute-resource-heavy part of this problem is the
alignment step. As an example, even pseudo alignment (which
is typically faster than exact alignment) can consume >85%
of total runtime in Kallisto [4] or Sailfish [22]. Therefore,
accelerating this step is of particular importance to improve
the overall quantification throughput as shown in Figure 3.
Being independent from (and significantly faster than) the
alignment step, EM algorithm for one set of reads can overlap
with the alignment step of the next set of reads. The alignment
step determines the rate of quantification as the slower step of
computation, i.e., accelerating alignment is critical in improv-
ing the overall rate of quantification.

C. ERRORS IN RNA-SEQ READS

Due to imperfection in sequencing technology, RNA-Seq
reads can have errors at random locations along the
sequence, which typically take the form of insertion, deletion
or substitution of one or more bps. The correctness of the
abundance algorithm depends on the ability of the quantifica-
tion algorithm to tolerate such noise. Transcripts are consid-
ered to be free from noise since these are verified across
multiple iterations of sequencing.

D. CRAM BASICS

A CRAM tile is a 2D array of non-volatile memory cells. Different
options exist for the memory device technology, which can give rise
to subtle differences in inter-cell connectivity in a tile due to differen-
ces in the number of terminals per memory device1. Without loss of
generality, we consider Spin-Hall-Effect (SHE)-MTJ (also known as
Spin-Orbit-Torque or SOT-MTJ), as the memory device, connected
to the rest of the tile through two access transistors (Figure 4) [31].
SHE-MTJ has lower switching latency and energy consumption in
comparison to Spin-Transfer Torque (STT)-MTJ, Phase Change
Memory (PCM) and Resistive RAM (ReRAM). In terms of endur-
ance and data retention as well, SHE-MTJ outperforms PCM and
ReRAM.On top of these, due to separation of read andwrite current
paths, SHE-MTJ is not susceptible to read disturbance errors. Each
SHE-MTJ has one Magnetic Tunneling Junction (MTJ), juxtaposed
on top of a heavy metal SHE channel. Each MTJ consists of two

layers of ferromagnets– pinned and free layers, insulated by a thin
layer. The pinned layer has its magnetic spin orientation fixed, which
is controllable in the free layer. A current through SHE channel,
depending on the direction andmagnitude, can switch the spin orien-
tation of free layer. The relative spin orientation of the free layer com-
pared to the pinned layer gives rise to two distinct MTJ resistance
levels: Rhigh and Rlow which encode logic 1 and 0, respectively. A
wire along each column, logic line (LL), connects memory cells in
that column via access transistors to perform logic operations in the
CRAM tile, controlled by Read (Write) Word lines (RWL and
WWL, respectively).
Memory operation: A voltage is applied between LL and

Bit Select Line (BSL). For reads(writes), current flows
through SHE-MTJ (only SHE channel) (Figure 4(a)).
Logic operation: Figure 4(b) illustrates a logic gate with

two inputs (Input1 and Input2), and one output (Output) which
is preset to a known value (0 or 1, depending on the type of
logic operation). Input and output cells are attached to oppo-
site BSL: odd or even (OBSL or EBSL), alternately connected
to adjacent cells in each column. Figure 4(c) also depicts the
equivalent circuit: a voltage, Vgate, is applied between OBSL
and EBSL. The currents through the inputs, I1 and I2, depend
on Vgate and their respective resistance values, R1 and R2.
RWL andWWL, set to 1 (bold and colored), connect the input
and output cells to LL. Iout ¼ I1 þ I2 flows through the output
resistance, ROUT . The orientation of the free layer is switched
(in a direction specified by the direction of the current) when
Iout � Icrit, the threshold switching current, causing the logic
state of Output to change. If not, previous (preset) state is
maintained by Output. The use of logic gate specific voltages
(Vgate) and presets enable CRAM to be Boolean complete.

III. DESIGN

A. PROBLEM STATEMENT

k-mers are sub-sequences of length k (e.g., a RNA-Seq
“TCGAC” has three 3-mers: TCG, CGA and GAC). The

FIGURE 3. Timing diagram of abundance quantification.

FIGURE 2. Quantification Overview.

1We direct interested readers to literature that use CRAM architectures with
2- and 3-terminal spintronic devices [6], [24], for more insight on portability
of CRAM-Seq to other cell technologies.

VOLUME 10, NO. 4, OCT.-DEC. 2022 2057

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

presence, and not the order, of distinct k-mers in a RNA-Seq
read sequenced from a transcript matters. Abundance quan-
tification only requires information regarding the presence of
different k-mers in transcripts and corresponding RNA-Seq
reads to produce an estimate with an accuracy comparable to
commonly used quantification algorithms. Accordingly, we
convert a (read/transcript) sequence to a bit-vector (of length
determined by k), using the sequence’s k-mers. Since k-mers
are overlapping in a sequence, the maximum number of k-
mers in a sequence of length N is equal to N � k þ 1. Each
unique k-mer generates a unique numerical value when
passed through a hash function (due to position and value of
each base character in that k-mer). For example, with a hash
function

Pk�1
i¼0 4

i � fA; T;C;Gg – where {A = 0, C = 1, G =
2, T = 3} and i demarcates the location in the k-mer – a 5-
mer “CTCGA” gets the value of 157, as shown in Figure 5
(a). The maximum number of unique hash values from a
sequence depends on k, e.g., hash values in Figure 5(a) have
a range between 0 and 4k � 1. By using hash values to iden-
tify individual bit locations on a bit-vector and setting those
bits, the presence of unique k-mers can be marked in the bit-
vector. In a nutshell, a bit-vector records all unique k-mers in
a (read/transcript) sequence, but the order of 1’s in the bit-
vector does not necessarily reflect the order of k-mers in the
corresponding sequence.
A longer k-mer yields longer bit-vectors that are more

likely to be unique, hence such sparser bit-vectors can deter-
mine similarity between a RNA-Seq and a transcript more
accurately. A small k-mer, on the other hand, can save hard-
ware resources due to smaller (but denser) bit-vectors. Con-
sidering noise in sequence data, however, large k may not
always deliver higher accuracy. The choice of k depends on

the trade-off between required hardware resources and the
desired quantification accuracy. Ideally, a bit-vector should
be sparse enough such that it uniquely represents a sequence
to distinguish it from the other sequences.
A set of very long sequences, e.g., transcripts, might have

all unique k-mers (for a given k) in each of them, resulting in
identical bit-vectors. This loss of information (i.e., distinction
between different sequences) is very likely if the sequence
length L>> #uniquely identifiable k-mers. To handle this
issue, we break the transcripts down into overlapping seg-
ments (as shown in Figure 5(b)) of constant maximum length,
and generate for each segment the corresponding bit-vector.
These bit-vectors, together, are more likely to uniquely repre-
sent the corresponding transcript. The maximum segment
length (> read length) is selected to be neither much greater
than read length nor too small to produce too many segments.
Without overlapping between segments, a RNA-Seq read that
spans across two consecutive segments of a transcript could
have low similarity with both segments even though that
RNA-Seq read comes from that particular transcript.

B. ALGORITHM DESIGN

A set of RNA-Seq reads, {RS1;RS2; . . .;RSN} and a set of
transcripts, {TS1; TS2; . . .; TSM} are given. Reads are trans-
formed into the corresponding bit-vectors {R1;R2; . . .;RN}.
Each transcript is transformed into a number of bit-vectors
(T10; T11; T12; T20; T21,..., TM0; TM1) since each transcript is
also divided into smaller segments of a fixed maximum size.
In the first stage of the algorithm, each RNA-Seq read bit-vec-
tor is bit-wise compared with all transcript segment bit-vectors
to compute the similarity between each {RNA-Seq read, tran-
script segment} pair. The comparison operation (bit-wise
AND), in Figure 6, generates a string of 1 s and 0 s, theMatch
String, where logic 1 marks the presence of a unique k-mer in

FIGURE 5. (a) k-mer in RNA-Seq; (b) Segmentation of transcript.

FIGURE 4. Bit-wise logic operation in CRAM.

FIGURE 6. Similarity computation.

2058 VOLUME 10, NO. 4, OCT.-DEC. 2022

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

both RNA-Seq read and transcript segment. The number of
logic 1’s in the Match String is a proxy of similarity between
that {RNA-Seq read, transcript segment} pair. Once a RNA-
Seq read is evaluated against all transcript segments, transcript
segments with maximum similarity are identified, and mem-
ber counts of corresponding classes are updated accordingly.
Once all reads are processed, member counts suffice to com-
pute abundance.
Algorithm 1 summarizes CRAM-Seq’s processing steps.

For each read, the for loop (lines 7-10) counts the number of
common k-mers with each transcript segment by performing
bit-wise comparisons, and a sequence of bit-wise additions,
i.e., pop(ulation)_count. Then, for each read, SimClass func-
tion (Algorithm 2) returns the transcript indices with maxi-
mum similarity score (line 11). The list of indices (stored in
sclass) serves as the ID of the similarity class of the read cur-
rently being processed. If this class hasn’t been encountered
before, it is recorded as a new entry in SCT, an array of key-
value stores with key = class ID, value = member count.
Finally, the corresponding member count in SCT is incre-
mented by 1 (line 15). The MAX operation in Algorithm 2
(line 2) returns all transcript segment indices with the maxi-
mum score. All such segment indices are used to access a
look-up-table (LUT) that stores the mapping between the
segment and transcript indices, to extract the corresponding
transcript indices (line 6).

Algorithm 1. CRAM-Seq algorithm

1: // Number of transcripts: T
2: // Number of transcript segment bit-vectors: S (S > > T)
3: // Number of RNA-Seq read bit-vectors: N (for N reads)
4: Initialize entries of Similarity Class Table SCT to 0
5: Initialize entries of count array (of size S) to 0
6: for all R in N do
7: for all t in S do
8: MS = R & t //MS: Match String
9: count[t] = pop_count(MS)
10: end for
11: sclass = SimClass(count)
12: if !(sclass in SCT) then
13: Create class entry in SCT and return sclass
14: end if
15: SCT[sclass] += 1
16: end for

Finally, after all reads are processed, the class information
from SCT feeds the EM algorithm to quantify the abundance
of the transcripts. All operations in Algorithm 1 and (except
for LUT accesses) Algorithm 2 – AND, pop_count, MAX,

class ID check and member count increment – are highly par-
allel bit-wise operations, hence can effectively be mapped to
CRAM.

Algorithm 2. SimClass(count)

1: Initialize transcript_indices array
2: index_list = MAX(count) // List of all segment indices

with maximum score
3: for all E in index_list do
4: transcript_indices.append(LUT[E])
5: end for
6: return transcript_indices

C. BUILDING BLOCKS

For the AND gate to perform bit-wise comparison, the corre-
sponding bits of the transcript segment and RNA-Seq read
bit-vectors act as inputs (stored in the same column of a
CRAM tile). Table 1 provides the truth table. Vgate is selected
such that I11 does not exceed Icrit, while I00, and I01 ¼ I10 do,
so that Out would switch from its preset value of 1 to 0, for
all input combinations but 11. Logic OR can be configured
similarly with preset 1 and specific Vgate.
Bit-wise addition of 1 s inMatch String (pop_count in Algo-

rithm 1) is performed by a sequence of MAJ(ority)-3, MAJ
(ority)-5 and INV(erter) operations: Co = MAJ(In1; In2;Ci); S1
= S2 = INV(Co); Sum = MAJ(In1; In2;Ci; S1; S2). In1 and In2
represent the augend and addend, respectively; Ci, the initial
carry input (¼ 0). Steps- 2 and 3 are fused together by a 2-out-
put INV gate. The operation principle of these gates is no differ-
ent than any other bit-wise logic operation, except for the
combination of the specific preset and Vgate.

D. HIGH LEVEL ARCHITECTURE

Figure 7 (a-c) show the functional blocks necessary for execut-
ing Algorithm 1 and Algorithm 2. CRAM-Seq is comprised of
three top-level modules, namely vector transformation unit
(VTU), similarity class unit (SCU) and a collection of core
computational units, termed processing elements (PE). A given
set of transcripts are segmented and transformed into corre-
sponding bit-vectors in VTU (cost of which is amortized over
multiple iterations of quantification with millions of reads), and
mapped to PEs before (global controller orchestrated) compu-
tations take place. After a RNA-Seq read arrives at CRAM-Seq
from the host, the read is first transformed in VTU into the cor-
responding bit-vector, and mapped to all PEs to compute the
similarity scores between that read and all pre-stored transcript
segments. Through a sequence of in-situ logic and arithmetic
operations, the similarity scores are computed and sifted
through to derive the similarity class statistics for that particular
read. SCU stores and updates the statistics, and sends the statis-
tics back to the host once all reads are processed.
Vector Transformation Unit (VTU): This unit is respon-

sible for receiving the data, e.g., RNA-Seq reads from the
host, and for generating the corresponding bit-vectors. The
k-mer length used by VTU is the same as what is used in the

TABLE 1. 2-Input and Truth Table (Out Preset = 1).

In1 In2 Out Iout ¼ I1 þ I2

0 (Rlow) 0 (Rlow) 0 I00 � Icrit
0 (Rlow) 1 (Rhigh) 0 I01 � Icrit
1 (Rhigh) 0 (Rlow) 0 I10 ¼ I01 � Icrit
1 (Rhigh) 1 (Rhigh) 1 I11 < Icrit

VOLUME 10, NO. 4, OCT.-DEC. 2022 2059

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

transformation of the transcript segments in order to make
all bit-vectors to have the same length for bit-wise compari-
sons. Figure 8 illustrates the transformation operation per-
formed by the VTU. The bit-vector in VTU is a collection
of data-latches that can be SET(RESET) to logic 1(0). At
the beginning of the VTU operation, the bit-vector is initial-
ized to all logic 0 s. Transformation of a RNA-Seq read
(/transcript segment) entails SET-ting individual bit-loca-
tions on that bit-vector where each bit-location corresponds
to a unique k-mer along that read (k-mers are considered
overlapping). k-mers in a RNA-Seq read, in 2-bit encoded
format, represent overlapping groups of 2 k bits. In
Figure 8, the group of 10-bits represents the first 5-mer,
ATAGC, in a RNA-Seq read, ATAGCTGAC. The second k-
mer, TAGCT, refers to the subsequent group of 10-bits–
skipping the first two bits (i.e., one character). The group of
bits refers to the location of the bit in the bit-vector that
would be SET. This process is repeated for all k-mers in
that read. Once all overlapping k-mers are processed, i.e.,
all corresponding bit locations on the bit-vector are SET,
the transformation is complete, and VTU notifies the global
controller. As soon as the PEs are done processing the pre-
vious read, the global controller writes the transposed read
bit-vector to PE(s) through the standard write mechanism

(Section II-D). Such pipelined operation hides the latency
incurred by VTU.
Processing Elements (PE) are the core computational

units, which are responsible for performing computations
with CRAM tiles. Each PE consists of a number of connected
CRAM tiles. The number of columns in a PE is the number of
columns in any PE tile, whereas the number of rows in a PE is
the sum of all rows of all tiles in that PE. Figure 7(c) shows
the internal details of the tile, the basic building block of each
PE. Each tile is a 2D array of SHE-MTJ cells, capable of per-
forming bit-wise universal logic operations on the stored data.
Tile connectivity: The tiles are connected through an

array of switches (i.e., transistors) that are controlled by the
corresponding PE controller, which column-wise connects
the LL(s) of adjacent tiles (Figure 7(b)). When switches are
OFF, LL(s) across adjacent tiles are effectively disconnected,
hence the tiles can compute in parallel, using individual LL
(s) in each tile. However, when turned ON, the switches
effectively connect LLs across tiles and along PE columns.
Therefore, logic operations such as COPY can be performed
along columns across the boundary between adjacent tiles.
The ON resistance of transistors is much lower than that of
SHE-MTJ cells, which makes the overhead of transistor
based connection between two LLs across tiles negligible.
This control over computation across tiles enables us to
exploit tile-level parallelism efficiently.

E. DATA LAYOUT

As shown in Figure 9, each PE column is organized in four
compartments: transcript segment and RNA-Seq read bit-
vectors, result (for storing Match String and similarity score)
and scratch bits (to store intermediate data during computa-
tion). To exploit tile-level parallelism within a PE, a tran-
script segment bit-vector is divided into a number (equal to
the number of tiles in a PE) of smaller sub-vectors and conse-
cutive sub-vectors are stored in consecutive tiles in a PE col-
umn. Same applies for read bit-vectors. To summarize, a PE
column stores the (transcript segment and read) bit-vectors as
a whole, spread across all tiles in that PE.FIGURE 8. Vector transformation unit (VTU).

FIGURE 7. High-level architecture of CRAM-Seq.

2060 VOLUME 10, NO. 4, OCT.-DEC. 2022

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

F. PE OPERATIONS

Next, we describe the sequence of computational steps
within a PE, as captured by Figure 10 considering all tiles in
the PE. Each step (e.g., St1) shows a snapshot of the PE state
after a sequence of CRAM logic operations are completed.
Note that, for ease of illustration and explanation, rows and
columns are transposed. This figure illustrates how (tran-
script segment and read) bit-vectors, T1–T4 and R1, are
mapped to a PE, and how the corresponding similarity scores
are generated. Initially at step St0, the transcript segment bit-
vectors are stored in the PE: each such bit-vector is divided
into equal length sub-vectors with adjacent tiles storing con-
secutive sub-vectors. For instance, the transcript segment bit-
vector, T1, is divided into 4 equal length sub-vectors T1.0–
T1.3 and stored in row-0 of tile-0 – tile-3. Each row of each

tile contains one sub-vector of a transcript segment bit-vec-
tor. The read bit-vector (of same length) is mapped in the
same way and written to rows of each tile. All rows in a tile
contain the same read sub-vector (e.g., R1:0 in tile-0, R1:1 in
tile-1 and so on).
In step St1, partial Match String, MX.Y, is produced

through bit-wise AND operations between the stored tran-
script segment sub-vectors (TX.Y) and RNA-Seq read sub-
vectors (R1.Y), e.g.,M1:0 represents the partialMatch String
between T1:0 and R1:0. The Match String, MX, which is the
output of AND operations between T1 and R1, is the concate-
nation of MX.Y, e.g., M1 ¼ {M1.0, M1.1, M1.2, M1.3}.
Subsequent steps compute the number of 1’s in MX. Recall
that each row of the PE tiles contains partial Match strings.
Specifically, tile-Y computes a partial count of 1’s in MX.Y at
step St2. E.g., tile-0 computes number of 1’s in M1.0 through
M4.0, in a row parallel fashion. The result is partial similarity
scores (e.g., S1.0-S4.0 in tile-0), where S1.0-S1.3 represent
the partial scores of the final score S1. To compute the total
counts of 1’s (i.e., the final similarity score) in individual
Match Strings, these partial similarity scores in different tiles
need to be reduced to single similarity score.
To this end, partial scores are transferred to the adjacent

tile(s) at step St3, to perform binary (i.e., ripple-carry) addi-
tion between partial scores (i.e., a sequence of standard bit-
wise additions starting from the least significant bits). E.g.,
S1.0-S4.0 from tile-0 are transferred to tile-1, in correspond-
ing rows. Similar transfers from tile-3 to tile-2 are conducted
simultaneously. Step St4 (not shown explicitly) performs
another round of bit-wise addition between the partial scores,
in tile-1 and tile-2 simultaneously. Step St5 again transfers
partial outputs of the binary additions from tile-1 to tile-2. A
final step of binary addition, at Step St6, produces the final
similarity scores in tile-2, S1-S4 (shown in green).

FIGURE 9. PE data layout in CRAM-Seq.

FIGURE 10. Sequence of computational steps within a PE (rows and columns are transposed).

VOLUME 10, NO. 4, OCT.-DEC. 2022 2061

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

With the PE configuration shown in Figure 10, a bit-vector
length of 128-bits would be representative, spread across 4
tiles, with each row storing 32-bits of transcript segment bit-
vector each (Section IV). Not shown in the figure (to simplify
illustration) are scratch bits in each row which are preset
accordingly before computation starts, and peripheral over-
head. In this case, Step St1 encapsulates 32 AND operations.
The outputs of the bit-wise (reduction) addition of Match
String in each tile are available at Step St2, after having per-
formed a total of 139 more CRAM logic operations. The
copy operations on the 6-bit (bit-wise reduction addition)
outputs between adjacent tiles are completed at step St3, after
performing 6 more CRAM operations. The first round of
binary additions on partial reduction outputs are completed
at St4, after performing 18 more CRAM operations. The sub-
sequent copy at Step St5 encapsulates 7 more operations. The
final 8-bit similarity score is available after performing 21
more CRAM operations at St6, i.e., after completing 7-bit
binary additions at each row.

G. CLASS EXTRACTION

Class extraction corresponds toMAX function in Algorithm 2.
This is achieved in two steps: (i) finding the transcript seg-
ment(s) with maximum similarity score, i.e., PE columns
with the maximum score (across all PEs, simultaneously);
and (ii) finding out the transcript indices of the segment(s)
identified in step (i). In hardware, this is achieved through
the use of sense amplifiers (SA) present in PE tiles. Figure 11
shows the basic idea: The tile in the figure holds the final
scores along columns, in binary form, between a RNA-Seq
read and all transcript segments in the corresponding PE. To
find the maximum of two or more such binary values, we
simply perform bit-wise comparison starting from the most
significant bit (MSB) position. As an example, the tile in
Figure 11 stores similarity scores {0112 (310), 1102 (610),...,
0102 (210)}.
In each PE, each column of one specific tile (which keeps

the multi-bit end outcomes, e.g., tile 2 from Figure 10) needs

to be scanned (at one bit position at a time, from MSB to
LSB positions, across all PEs simultaneously), using the cor-
responding SAs. Prior to reading out the column bits at the
MSB position, PE controller sets the RESET feeding the
input of the D-FlipFlop (D-FF), which in turn enables (via
EN) all participating SAs in all PEs. In the first round of com-
parison, the bits at the MSB position in all columns are read
out simultaneously. If at least one bit is 1, all read-out values
are stored in the corresponding D-FFs. This in turn enables
only the columns (i.e., SA) with logic 1 at the MSB position
to participate in the next round of comparison at the next bit
position. However, if all values are 0, the sensed data is not
stored and all participating SAs remain enabled for the next
round. A transistor array pulled-up by a resistor, as shown in
Figure 12, generates a HIGH on DETECT when all SENSE
lines are LOW; SENSE lines are connected to gates of indi-
vidual transistors. A logic LOW on DETECT is required to
store the read-out values in the D-FFs. This self-filtering pro-
cess continues until the final round (reaching the LSB), when
the PE controller sets DONE. Thereby the global controller
gets either the read-out value (SENSE) OR the content of D-
FF corresponding to column(s) with the maximum value
only, i.e., columns that survived until the last round. Each
column, i.e., transcript segment is connected to a distinct
memory address in a lookup table (LUT) that stores the cor-
responding transcript index. Only the columns with maxi-
mum score determine which LUT address(es) to access. The
area overhead of additional logic (for MAX operation and all
logic 0 detection) is insignificant (only one tile per PE is
involved in these operations) compared to a SOT(SHE)-
MRAM substrate of similar size.

H. SIMILARITY CLASS UNIT (SCU)

SCU keeps track of similarity class information. The {class
ID, member count} values are stored in Similarity Class IDs
and Similarity Class Counts modules respectively. Figure 13
illustrates the process. Similarity Class IDs and Similarity
Class Counts are collections of CRAM tiles (similar to PE),
which have the same number of columns. For each entry
(i.e., column) in Similarity Class IDs, there is a correspond-
ing entry in Similarity Class Counts that stores and updates
the member count of that class. SCU controller receives the
transcript indices (which form a similarity class) from LUT
(in global controller) for a RNA-Seq read, such as {25, 91}
in Figure 13. Each similarity class is represented by an ID
bit-vector of length equal to the total number of transcripts
stored, where transcripts in a class are marked by setting the
corresponding bits to 1. This ID bit-vector is used to check if

FIGURE 11. In-Memory MAX operation on similarity scores.

FIGURE 12. Transistor array to detect logic 0 on all SENSE lines.

FIGURE 13. Similarity class store and update.

2062 VOLUME 10, NO. 4, OCT.-DEC. 2022

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

a class already exists in similarity class IDs module through
bit-wise AND operations with the stored ID bit-vectors, fol-
lowed by bit-wise OR operations to reduce the outcome to 0
or 1: If 0, no such class exists. A new similarity class is cre-
ated by storing that ID bit-vector in Similarity Class IDs, and
incrementing the corresponding entry in Similarity Class
Counts by 1 through in-situ bit-wise addition. Otherwise, the
corresponding entry in Similarity Class Counts is incre-
mented by 1. An alternative approach with lower compute
(i.e., lower latency and energy) and memory requirements, to
distinguish between similarity classes with common subset
of transcripts more efficiently, uses ID bit-vector as a bit-
mask to selectively perform bit-wise reduction AND on the
bits in a stored ID bit-vector. The remaining bits are also
reduced using bit-wise OR, followed by an INV. Finally, per-
forming AND on the outputs from both reduction steps
reveals (0/1) whether the ID bit-vector already exists in simi-
larity class IDs module.
Optimized encoding for class IDs using an advanced hash-

ing algorithm can reduce SCU energy consumption by reduc-
ing #bits to store class IDs. This would not only simplify the
underlying computations but also translate into more room
for transcript(-segment)s per chip. Algorithm 3 shows an
example, where class IDs are derived from the higher-order
bits of transcript indices only through shift-left and bit-wise
XOR operations (performed by SCU controller). The number
of higher-order bits and shift-left operations depend on the
maximum number of transcripts a class can hold.

Algorithm 3. Optimized hash

1: Tmax: maximum #transcripts per class
2: Nbits: #higher-order bits in a transcript index
3: Transcriptindex ¼ f100; 157; 852; 223; . . .g// list of

transcript indices
4: MBL: // maximum length of a transcript index, in bits
5: hash val ¼ 0 // to store final hash value
6: for i in range(Tmax) do
7: hash val¼ hash val� Transcriptindex½i�½MBL : MBL� Nbits�;
8: hash val < < 1
9: end for
10: return hash val

I. PIPELINE STAGES

Figure 14 illustrates the life-cycle of RNA-Seq reads in the
CRAM-Seq pipeline. A read flows through three functional
blocks, each constituting a pipeline stage: VTU, PE+MAX
and SCU. The VTU can operate on the next read while PEs
process the previous one. However, PEs cannot start process-
ing the next read until the maximum similarity score for the

current read is calculated and sent to the SCU. Therefore
MAX has to immediately follow PE operations, and together
they form the longest latency pipeline stage, PE+MAX.
Once the PE+MAX stage is done, the SCU begins immedi-
ately, and overlaps with the VTU and PE+MAX stages oper-
ating on subsequent reads. Once all reads are processed (i.e.,
exit the pipeline), the SCU transfers the final class informa-
tion to the host where the next step of quantification (i.e.,
EM algorithm) runs.

J. SYSTEM INTEGRATION

CRAM-Seq connects to the host through the standard mem-
ory interface. As an accelerator substrate, CRAM-Seq does
not share the virtual memory space with the host. Data (i.e.,
RNA-Seq reads) stream into the accelerator from the main
memory for pseudo-alignment. Once CRAM-Seq computa-
tions finish, the similarity class information is sent back to
the host which continues with the EM algorithm. Since no
fine-grain control over CRAM-Seq operations is necessary,
the programming interface involves instructions for sending
and receiving data to/from CRAM-Seq only.

K. MULTI-CHIP DESIGN

The number of transcript segments in a dataset may exceed
the storage capacity of a single CRAM-Seq chip, necessitat-
ing deployment of multiple chips. Figure 15 illustrates a
scale-out system with M CRAM-Seq chips. In this case, the
total number of transcript segments in the dataset is divided
into chunks and each chunk is assigned to a separate chip, as
shown in Figure 15(a). Each CRAM-Seq chip stores only the
class information corresponding to the chunk of transcripts it
is responsible for. The throughput is maintained across all
chips in the system due to weak scaling (i.e., addition of
more PEs across multiple CRAM-Seq chips).
As each bit-vector corresponding to a RNA-Seq read is

processed by all chips in parallel, there is no need for a sepa-
rate VTU in each CRAM-Seq chip. Sharing the VTU
between multiple chips increases area efficiency, leaving
more room for actual computation units (i.e., PEs) in the
same chip area, or alternatively resulting in smaller chips for
the same PE count. As the amount of memory required per

FIGURE 14. Pipeline stages in CRAM-Seq.

FIGURE 15. Scale-out system of CRAM-Seq chips.

VOLUME 10, NO. 4, OCT.-DEC. 2022 2063

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

chip depends on the number of transcript(segment)s stored,
and all chips in the scale-out design can store the same num-
ber of transcript(segment)s, the scale-out design is as mem-
ory efficient as a single CRAM-Seq chip.
On the other hand, the energy consumption of the scale-

out design is by construction higher due to the higher number
of pseudo-alignments per read. While exploiting read charac-
teristics (such as the number of unique k-mers) to assign
reads only to a subset of chips for pseudo-alignment may
reduce the number of pseudo-alignments, a more effective
solution is combining such read scheduling with clustering
of transcript(segment)s into partitions (as shown in Figure 16
(a)) based on the pair-wise similarity between the transcripts
in the dataset [32], where each transcript partition is uniquely
identified by k-mer(s), called sig-mer(s). This partitioning of
the transcriptome is based on the following observation: For
typical datasets, the bit-wise ANDs between the transcript
segment bit-vectors and a given read bit-vector tend to gener-
ate a non-sparse output only for a specific subset of tran-
scripts. Therefore, confining the quantification within such
subset of transcripts on a per read basis can cut the number
of unnecessary pseudo-alignment computations significantly.
Assigning each such partition to a cluster of CRAM-Seq
chips and confining the pseudo-alignment of the reads to the
chips in that cluster with the respective partitions only would
be especially useful.
Transcript partitioning and subsequent mapping to chips

are done only once (before storing the transcripts in CRAM-
Seq chips) and therefore, the overhead of such pre-process-
ing is amortized over many iteration of quantification with
millions of reads in each iteration. In this case, successive
transcripts can go into non-adjacent partitions (e.g., partition-
0: {T0,T11,T526...}, partition-1: {T1,T2,T87,T901...},...).
This does not have any impact on quantification since each
chip keeps track of its transcripts using the original transcript
indices within the transcript dataset.
Since a partition of transcripts can have a different #tran-

script(segment)s than another, a large partition might require
more than one CRAM-Seq chip to be stored. In the scale-out
design, we pack most similar transcripts forming a partition
in a single cluster of chips (where #chips in a cluster � 1),
and schedule reads with the same similarity signature as the
partition to the corresponding cluster, thereby confining the
processing of each read to a single cluster. Such clusters of

chips are logical clusters where all chips within one (logical)
cluster receive the same read for pseudo-alignment. If the
transcript database and the corresponding partitions are
changed, then simply updating the partition information in
the read scheduler would suffice. Depending on the dataset,
multiple partitions may reside in the same chip cluster, as
well. Even then, the energy consumption per read wouldn’t
exceed the energy consumed in the cluster with maximum
number of CRAM-Seq chips, as opposed to brute-force
pseudo-alignment involving all chips in the system on a per
read basis.
Cluster workload balance: As the entire pool of reads is

available for quantification at once, groups of reads from the
pool are considered for scheduling simultaneously (and in
any order), and placed on a queue of length X in the read
scheduler (X > #chip clusters). The sig-mer(s) of the tran-
script partitions stored by all chips are known to the read
scheduler, and are used to select a particular cluster of chips
for a read, from these X reads, based on the presence of the
sig-mer(s) within that read. The k for sig-mers can be greater
than the k used in PEs, for fine-grain partitioning of tran-
scripts. The read scheduler, feeding from the RNA-Seq read
pool, thereby can schedule different reads to different chip
clusters, effectively increasing the throughput by a factor of
M ¼ #chip clusters. Only the scheduled reads are removed
from the queue (and the read pool), and the rest of the queue is
filled up by reads from the pool, for the next scheduling cycle.
With a practical (randomized) read pool and large enough X,
it is highly likely that, within that window of X reads, distinct
RNA-Seq reads would be scheduled to most (if not all) of the
chip clusters, maximizing the utilization of the chip clusters.
The hardware overhead (e.g., memory, logic) of the read
scheduler is determined by X. Figure 16(b) illustrates the idea.
Partitioning of the transcript dataset (i.e., transcriptome) along
with selective scheduling enable ideal performance scaling
without compromising energy efficiency.

IV. EVALUATION SETUP

To model a PE, a step-accurate simulator is used where each
step corresponds to a logic function such as AND. Latency and
energy for sense-amplifier based MAX operation, transistors
and VTU are derived from HSPICE estimates. Peripheral over-
heads associated with PE are obtained from NVSIM [9],
including parasitic effects. All estimates use 22 nm technology

FIGURE 16. (a) Transcriptome partitioning and mapping to CRAM-Seq chip clusters; (b) read scheduling to clusters of chips.

2064 VOLUME 10, NO. 4, OCT.-DEC. 2022

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

node. SHE-MTJ specific parameters come from [12], [20].
Latency and energy for CRAM logic functions are extracted
from equivalent circuits as shown in Figure 4(c). Table 2 pro-
vides technology parameters.
PE specifics: Each tile is 128� 128 that ensures signal

integrity (both within the tile and across tiles in a PE), and
enough tile-level parallelism while keeping the peripheral cir-
cuit overheads moderate. Each PE incorporates 32 tiles. Note
that the number of PEs required is determined by the total
number of transcript segments, therefore, the total number of
PEs required may vary across different datasets even with the
same number of transcripts. For simplicity we keep the tran-
scripts in transcript datasets of particular sizes unchanged.
Chip size: Since each 2T(ransistor)1M(agnet) SHE-MTJ

cell consumes	2� area of a 1T1M STT-MTJ cell (where the
number of transistors used dominates the cell area), we
assume a maximum chip size of 64MB, considering the maxi-
mum STT-MRAM chip size available commercially [10].
This chip size estimate is conservative based on the current
state of SHE-MTJ technology, which is expected to improve
as the technology matures.
Problem datasets: Table 3 lists the problem sizes used in

the evaluation. To eliminate selection bias, for a dataset of M
transcripts, the first M transcripts are taken from [13] (the
nucleotide sequences of all transcripts in the reference chro-
mosomes in a human) with lengths � 100bp (read length).
Transcript segments are selected to be maximum 200 bp
long (with 100 bp overlap between successive segments).
CRAM-Seq in this implementation uses 5-mers, i.e., 1024-
bit vectors that ensure a sparse representation of transcript
segments and RNA-Seq reads (unlike 4-mer) without a big
memory footprint (unlike 6-mer). The number of RNA-Seq

reads in read datasets is selected in proportion to the number
of transcript segments in the transcript datasets. 5 read data-
sets from each transcript dataset are generated, by randomly
sampling 100-bp long sub-sequences from the transcripts.
Then, noise is added to the reads, assuming a single substitu-
tion rate of 0.13% and insertion/deletion error rates of 0.01%
to imitate practical Illumina sequencing platforms. The maxi-
mum number of similarity classes supported by CRAM-Seq
for different problem datasets is derived by profiling the
datasets.
Baseline for comparison: We use Kallisto [4], the state-

of-the-art abundance quantification software which outper-
forms popular (exact and pseudo-alignment based) quantifi-
cation approaches in terms of runtime and accuracy, and is
widely adopted in stand-alone, as well as cloud based quanti-
fication [17], [18]. Kallisto uses a pre-generated colored de
Bruijn graph (DBG) of k-mers present in the transcripts for
similarity class detection, and EM algorithm for quantifica-
tion. Note that, the graph structure in Kallisto is based on the
order of the k-mers in transcripts, and the accuracy of quanti-
fication depends on storing this order information correctly.
Therefore, Kallisto is significantly sensitive to k-mer length
and their relative orders, unlike CRAM-Seq. There is no
standard GPU baseline for abundance quantification, and
alignment accelerators which map reads to (several orders of
magnitude) longer references do not qualify as baselines
without changing the designs to introduce problem-specific
data structures. Since CRAM-Seq accelerates the pseudo-
alignment part of quantification, for a fair comparison, we
profile only the pseudo-alignment routine in Kallisto with 8
threads on an Intel i9-9900 system. Table 4 lists the pseudo-
alignment throughput values derived from profiling. Note
that, these values depend on: i) #transcripts, ii) the similarity
among (and length of) these transcripts, and iii) the reads. To
maximize the throughput of Kallisto, a cache-friendly read
file organization (non-randomized, reads from a transcript
are placed together) is used. The energy consumption of Kal-
listo is derived by feeding Kallisto’s dynamic instruction mix
to an optimistic energy model based on [15], [27].
Evaluation metrics: We characterize the performance of

CRAM-Seq in terms of throughput in KSeq(uences)/s(econd)
and energy efficiency in KSeq/s/mJ, and normalize to those
of Kallisto. The accuracy of (per transcript) abundance esti-
mates is calculated as the absolute difference between the

TABLE 2. Technology Parameters.

Parameters Value

MTJ Type Interfacial PMTJ
MTJ Diameter (nm) 10
TMR (%) 100
RA Product (Vmm2) 20
Critical Current Icrit (mA) 3.0 (SHE Channel)
Switching Latency (ns) 1
RP, RAP (KV) 253.97, 507.94
RSHE, Rtrans: (KV) 64,1

TABLE 3. Problem Sizes Evaluated.

#Transcripts #Segments #PE #Reads (�106) #Sim. Class

100 931 8 0.2 1000
200 2091 17 0.45 2000
400 4724 37 1.01 6000
800 10691 84 2.3 13000
1000 (default) 14687 115 3.2 17000
3000 46065 360 10.0 34000
5000 78144 611 17.1 60000
8000 123185 963 27.0 80000

TABLE 4. Kallisto Throughput (KSeq/s).

#Transcripts Throughput

100 566.44
200 663.86
400 839.67
800 669.11
1000 653.29
3000 647.01
5000 622.57
8000 620.87

VOLUME 10, NO. 4, OCT.-DEC. 2022 2065

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

known abundance of the synthetic read datasets and the
reported estimates (by CRAM-Seq and Kallisto), and
expressed as a percentage of the known abundance (i.e., rela-
tive error). Although, both mean and median (of the) relative
errors are used to evaluate the overall accuracy of quantifica-
tion, unless otherwise specified, mean relative error is the
default accuracy metric.

V. EVALUATION

A. PERFORMANCE ANALYSIS

Figure 17(a) illustrates the improvement in throughput exhib-
ited by CRAM-Seq, over Kallisto, with 1000 transcripts. The
unoptimized column represents the naive design, without any
optimization, as explained in Section III. The corresponding
improvement in energy efficiency, over Kallisto, is shown in
Figure 17(b). Even with an unoptimized design, CRAM-Seq
outperforms Kallisto on both throughput (1:4�) and energy
efficiency (54�) fronts. The throughput of CRAM-Seq is
determined by the PE latency and the class extraction (MAX)
where PE operations make up for 	98% of the total latency,
as shown in Figure 18(a). The VTU and SCU components are
hidden (pipelined) and have lower latency in comparison.
Figure 18(b) captures the relative contributions to energy of
PE (including MAX) and SCU operations (share of the VTU
is negligibly small) consuming >99% of total CRAM-Seq
energy.
To improve the throughput of CRAM-Seq, we examine

optimization opportunities in PE operations since PE opera-
tions dominate the latency of the CRAM-Seq pipeline stages.
Breakdowns of unoptimized PE latency and energy, illus-
trated in Figure 19(s) (a) and (b), respectively, reveals
that PE latency is dominated by the preset (50% of total

and 	1:5� of compute since 2-output INV logic requires 2�
more preset per logic operation), an enabler step to perform
the actual computations, while the actual computations, e.g.,
AND operations, consume a mere one-third of the total. The
presets in the unoptimized design are performed in a sequen-
tial manner right before a logic operation, although in multi-
ple columns at the same time. Luckily, gang-presets are
possible (where target output cells in multiple rows and mul-
tiple columns are preset at the same time) due to the low pre-
set energy, coupled with separate read and write paths of
SHE-MTJ cells that translate into a peak current draw of 	12
mA per tile. This optimization reduces the share of the preset
latency in overall PE latency by >95%, as illustrated in
Figure 19(c). The corresponding change in throughput is
reflected in the optimized column (Figure 17(a)) that shows
>3� throughput improvement over the baseline, i.e., a
	130% increase in throughput over the unoptimized design.
Since the total number of presets (and the corresponding
energy) in the optimized design is unchanged, the improve-
ment over unoptimized design in terms of the energy effi-
ciency is similar to that of the throughput, as observed in
Figure 17(b). These improvements clearly demonstrate the
benefits of data communication reduction (vs. Kallisto), and
efficient in-situ computation in CRAM-Seq.

B. SCALABILITY

Performance scaling within a single chip: Figure 20 illus-
trates how CRAM-Seq performance scales with the increas-
ing number of transcripts per CRAM-Seq chip. Throughput
remains stable as more transcript segments are processed by
(i.e., more PEs are added to) CRAM-Seq. Such weak scaling
reduces the energy efficiency improvement which decreases
linearly with growing #transcripts. Energy for class ID check
increases quickly with higher number of transcripts (e.g.,
	20% of the total energy with 3000 transcripts) due to the

FIGURE 17. CRAM-Seq (a) throughput and (b) energy efficiency.

FIGURE 18. CRAM-Seq (a) latency and (b) energy breakdown.

FIGURE 19. (a) Latency and (b) energy breakdowns for unoptimized PE; (c) Latency breakdown for optimized PE.

2066 VOLUME 10, NO. 4, OCT.-DEC. 2022

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

naive one-hot encoding of class IDs. Even then, with 3000
transcripts (maximum number of segments that fits on chip)
CRAM-Seq still provides >30X improvement in energy
efficiency over the baseline.
The opt hash bars in Figure 20 capture the impact of opti-

mized hashing (Algorithm 3). Optimized hashing makes the
energy efficiency scale better (vs. the naive one-hot encod-
ing) due to the lower #bits to encode the class ID, which
reduces the energy consumption in the SCU. Moreover, opti-
mized hashing itself scales better as the number of transcripts
per chip increases. The maximum number of transcripts per
chip also improves due to the more compact representation
of class ID, as we will detail next. That all said, hashing in
this context still has room for improvement (e.g., a hashing
algorithm that converts a set of transcript indices to a unique
value in a fixed 64-bit number space).
Memory scaling: The memory sizes for CRAM-Seq (and

the baseline) with varying number of transcripts are shown
in Figure 21. For Kallisto, only the memory required for
transcript index file is considered– to favor the baseline.
PEs in CRAM-Seq, which store the transcript segments,
require less memory than Kallisto (with default 31-mer) for
all datasets, making CRAM-Seq more memory efficient for
transcript storage even though CRAM-Seq stores multiple
segments for each transcript. The contribution of LUT in
system size is negligible. However, the class information
storage in SCU increases quickly and with >3000 tran-
scripts, total CRAM-Seq storage (60 MB) exceeds the
Kallisto transcript index file size due to inefficient encoding
of similarity class IDs. Optimized hashing (Algorithm 3)

reduces memory overhead of SCU significantly, as shown
in Figure 22. With optimized hashing, more (up to 5000)
transcripts (i.e., more PEs) fit on a single chip, at the same
time, SCU energy reduces accordingly. Hence, the total
memory requirement still remains less than Kallisto’s.
This trend holds in a system of multiple CRAM-Seq
chips, as well.
Performance scaling across multiple chips: Figure 23

captures the impact of scaling out a system of CRAM-Seq
chips, following the methodology from Section III-K, to han-
dle larger transcriptomes. In this case, we assume the same
number of PEs in each CRAM-Seq chip (corresponding to
the 5 K transcript dataset). We experiment with transcrip-
tomes of 10 K and 20 K. The read scheduler considers
10 (=X) reads at a time and tries to schedule one distinct read
to each cluster of chips where the most similar transcripts
partition to the read resides. As Figure 23 suggests, the mean
throughput keeps improving with the increasing number of
transcripts in the dataset. The theoretical peak throughput is
limited by a factor equal to #clusters of chips in the system
(¼3 for 10 K and 4 for 20 K), whereas the minimum through-
put is equal to that of a single CRAM-Seq chip. The energy
efficiency remains stable due to balancing between increas-
ing energy consumption and improvement in throughput. It
is possible to further improve the energy efficiency by opti-
mizing partitioning of transcripts (i.e., changing similarity
threshold [32])–to minimize the partition sizes and conse-
quently, have smaller cluster of chips to avoid unnecessary
computation within a cluster.

FIGURE 21. Memory required for CRAM-Seq and Kallisto.

FIGURE 22. Memory required for CRAM-Seq with optimized hash.

FIGURE 23. Throughput and energy efficiency of a system of

CRAM-Seq chips.

FIGURE 20. Performance scaling of CRAM-Seq.

VOLUME 10, NO. 4, OCT.-DEC. 2022 2067

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

C. ACCURACY ANALYSIS

Figure 24 shows the trend in accuracy, i.e., mean % (relative)
error in quantification for all datasets, up to 3000 transcripts
(i.e., the single chip limit with naive SCU encoding scheme).
The error reported by both Kallisto and CRAM-Seq remains
< 10% across all datasets. Although CRAM-Seq utilizes
smaller k-mers than Kallisto, the mean difference between
reported errors is 0.78% (with the maximum reaching
2.61%) across all datasets. The mean relative error metric is
not robust against local outliers (i.e., large difference
between per-transcript actual and the estimated abundance
values), leading to the 	3% loss shown for a few transcript
dataset sizes (0.4 K, 0.8 K, 1 K) in Figure 24. Pearson’s cor-
relation coefficient [3], a more robust metric against local
outliers in capturing correlation between the ground truth
and estimated abundances, is 0.9822633935 for CRAM-Seq,
and 0.9966648441 for Kallisto (for 1 K case). These values
indicate very strong correlations between the actual abun-
dance and the estimates from both CRAM-Seq and Kallisto,
even for the cases showing some sizable difference in accu-
racy – as the Pearson’s coefficient is >0:9 for both CRAM-
Seq and Kallisto, the difference (between these coefficients)
of 0.014 does not bear any significance. Furthermore, with
more robust accuracy metrics such as median relative error,
which provide more insight about the center of the abun-
dance distribution (i.e., objective of abundance quantifica-
tion), the accuracy of CRAM-Seq and Kallisto are very
similar (e.g., 3.9% in CRAM-Seq vs. 4.1% in Kallisto, with
1 K transcripts), as shown in Figure 24. Overall, considering
mean relative error, the accuracy of CRAM-Seq and Kallisto
are nearly identical. Having said that, irrespective of the met-
ric used, the contribution of these infrequent outliers is
expected to be insignificant due to much higher number of
transcripts in practical datasets. The trend in accuracy holds
beyond 3000 transcripts, as well. For 5000 transcripts,
CRAM-Seq experiences 8.07% of mean relative error as
opposed to 8.11% by Kallisto.
Our experiments show that the accuracy of Kallisto with 5-

mers is much worse (>90%) than CRAM-Seq, attributable
to the much smaller (than transcripts) k-mer length used in
building the DBG, where segmented transcripts used in
CRAM-Seq help improve accuracy.

Figure 25 illustrates the impact of k on the accuracy. For
1000 transcripts and respective read datasets, we vary k
and report accuracy. The mean relative error in quantifica-
tion reported by Kallisto is for the default k (=31). For 4-
mers, the number of distinct k-mer patterns are only 256
(not significantly higher than the RNA-Seq read length
assumed), which degrades accuracy and renders a mean
relative error of >10%, about 2X of that of Kallisto. The
accuracy improves significantly as k increases to 5, consid-
ering both mean and median relative error metrics. As
explained in Section III-A, 5-mers result in 1024 distinct
k-mer patterns which is sufficient to correlate reads with
individual transcript(s). However, increasing k in CRAM-
Seq beyond 5 does not improve accuracy by a significant
margin, but decreases throughput and increases energy
consumption (Table 5; with mean relative error). The
improvement in accuracy becomes increasingly smaller
with increasing k due to larger PEs (more CRAM tiles for
each PE to accommodate longer bit-vectors resulting from
longer k-mers, translating into more computation to derive
similarity scores) which also increases the memory foot-
print of CRAM-Seq.

VI. RELATEDWORK

CRAM-Seq is the first to accelerate RNA-Seq abundance
quantification on a PIM substrate. A typical RNA-Seq abun-
dance quantification algorithm entails alignment of each read
from a set of (usually millions of) reads to a large number of
long transcripts, followed by EM which quantifies abundance
using the alignment outcome. CPU based exact alignment is
too time consuming. Many GPU [19] and FPGA based
implementations [2], [11], [23], [26] to accelerate popular
exact sequence alignment algorithms such as Smith-Waterman

FIGURE 25. Variation in CRAM-Seq accuracy with k-mer length.

TABLE 5. Impact of k on Quantification Error, Throughput, Energy

Efficiency andMemory Size (Relative to k=4). d in%.

k d Error d Throughput d Efficiency dMemory

5 �35:42 �6:1 �6:3 þ35:8
6 �50:81 �11:4 �12:0 þ107:4
7 �56:70 �16:2 �16:9 þ179:0
15 �56:72 �41:5 �43:2 þ680:1

FIGURE 24. Accuracy of quantification.

2068 VOLUME 10, NO. 4, OCT.-DEC. 2022

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

exist. PIM based exact alignment is also gaining traction
due to potentially higher alignment throughput and lower
energy consumption than both GPU and FPGA. Recent
designs that use SOT-MRAM [1], [7], ReRAM [14], [33]
and conventional technology [5] have reported significant
throughput and energy improvements over GPU based
implementations. However, exact alignment is redundant
for abundance quantification simply because the exact loca-
tion of alignment is not required. Therefore, such PIM
based exact alignment accelerators would result in sizable
latency and energy overhead if employed in the abundance
quantification pipeline. Moreover, unlike typical alignment
accelerators, abundance quantification involves matching
against multiple reference (i.e., transcript) sequences simul-
taneously as opposed to a very long one. To summarize,
PIM-based based alignment accelerators, in principle, can
be deployed to build a RNA-Seq abundance quantification
accelerator using the design principles presented in this
paper. However, such designs cannot be used off-the-shelf
for quantification without design modifications which
would warrant separate end-to-end accelerator designs.
Therefore, such designs are not considered as baselines in
this paper. The pseudo-alignment algorithms such as Kal-
listo [4] and Sailfish [22], on the other hand, rely on order
or frequency of k-mer patterns that are common in both
read and transcripts to quantify abundance. Matataki [21],
another application that utilizes k-mer based approxima-
tion, is highly susceptible to errors in RNA-Seq reads and
therefore limited to large-scale reanalysis, unlike CRAM-Seq
that is impacted minimally by errors in reads due to the use of
small k-mers. While these CPU based software solutions pro-
vide significant speedup over exact alignment based quantifi-
cation, they suffer from significant data movement overhead,
which is addressed by CRAM-Seq effectively.

VII. CONCLUSION

RNA-Seq abundance quantification is an essential tool in
gene expression analysis, useful in many applications such
as differential expression analysis to infer biological function
at the gene/transcript level. As a compute intensive applica-
tion (due to the use of millions of RNA-Seq reads), it suffers
from significant data movement overheads in classical von
Neumann systems. In this paper, we propose computational
RAM (CRAM) as a PIM substrate to accelerate abundance
quantification. The resulting design, CRAM-Seq, performs
the pseudo-alignment steps in CRAM. We demonstrate the
key design challenges and opportunities to achieve a signifi-
cant improvement in throughput and energy efficiency, while
maintaining a similar level of accuracy when compared to
the state-of-the-art RNA-Seq abundance quantification algo-
rithm, Kallisto.

REFERENCES

[1] S. Angizi, J. Sun, W. Zhang, and D. Fan, “AlignS: A processing-in-mem-
ory accelerator for DNA short read alignment leveraging SOT-MRAM,”
in Proc. 53nd ACM/IEEE Des. Automat. Conf., 2019, pp. 1–6.

[2] J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging FPGAs for accel-
erating short read alignment,” IEEE/ACM Trans. Comput. Biol. Bioinf.,
vol. 14, no. 3, pp. 668–677, May/Jun. 2017.

[3] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coeffi-
cient,” in Noise Reduction in Speech Processing. Berlin, Heidelberg:
Springer, 2009, pp. 1–4.

[4] N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, “Near-optimal probabi-
listic RNA-seq quantification,” Nature Biotechnol., vol. 34, no. 5, pp. 525–
527, 2016.

[5] D. S. Cali et al., “GenASM:Ahigh-performance, low-power approximate string
matching acceleration framework for genome sequence analysis,” in Proc. 53rd
Annu. IEEE/ACM Int. Symp.Microarchit., 2020, pp. 951–966.

[6] Z. Chowdhury et al., “Efficient in-memory processing using spintronics,”
IEEE Comput. Archit. Lett., vol. 17, no. 1, pp. 42–46, Jan.–Jun. 2018.

[7] Z. I. Chowdhury et al., “A DNA read alignment accelerator based on
computational RAM,” IEEE J. Explor. Solid-State Computat., vol. 6,
no. 1, pp. 80–88, Jun. 2020.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. Roy. Stat. Soc. Ser. B. Stat.
Methodological, vol. 39, no. 1, pp. 1–22, 1977.

[9] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level perfor-
mance, energy, and area model for emerging nonvolatile memory,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 31, no. 7, pp. 994–
1007, Jul. 2012.

[10] Everspin Technologies, EMD4E001G, pp. 1–174, 2020. [Online]. Avail-
able: “www.everspin.com/spin-transfer-torque-mram-products”

[11] X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, “FPGASW: Accelerating
large-scale Smith-Waterman sequence alignment application with back-
tracking on FPGA linear systolic array,” Interdiscipl. Sci.: Comput. Life
Sci., vol. 10, no. 1, pp. 176–188, 2018.

[12] K. Garello et al., “Ultrafast magnetization switching by spin-orbit tor-
ques,” Appl. Phys. Lett., vol. 105, no. 21, 2014, Art. no. 212402.

[13] J. Harrow et al., “GENCODE: The reference human genome annotation for
the ENCODE project,”Genome Res., vol. 22, no. 9, pp. 1760–1774, 2012.

[14] W. Huangfu, S. Li, X. Hu, and Y. Xie, “Radar: A 3D-reram based DNA
alignment accelerator architecture,” in Proc. 55th Annu. Des. Automat.
Conf., 2018, pp. 1–6.

[15] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, vol. 31, no. 5,
pp. 7–17, Sep./Oct. 2011.

[16] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg,
“TopHat2: Accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions,”Genome Biol., vol. 14, no. 4, pp. 1–13, 2013.

[17] A. Lachmann, D. J. Clarke, D. Torre, Z. Xie, and A. Ma’ayan, “Interopera-
ble RNA-Seq analysis in the cloud,” Biochimica Biophysica Acta-Gene
Regulatory Mechanisms, vol. 1863, no. 6, 2020, Art. no. 194521.

[18] A. Lachmann, Z. Xie, and A. Ma’ayan, “Elysium: RNA-seq Alignment in
the cloud,” bioRxiv, 2018, Art. no. 382937.

[19] C.-M. Liu et al., “SOAP3: Ultra-fast GPU-based parallel alignment tool for
short reads,” Bioinformatics, vol. 28, no. 6, pp. 878–879, 2012.

[20] D. Mahendra et al., “Room-temperature high spin-orbit torque due to
quantum confinement in sputtered BixSeð1�xÞ films,” Nature Mater.,
vol. 17, no. 9, pp. 800–807, 2018.

[21] Y. Okamura and K. Kinoshita, “Matataki: An ultrafast mRNA quantifica-
tion method for large-scale reanalysis of RNA-Seq data,” BMC Bioinf.,
vol. 19, no. 1, pp. 1–9, 2018.

[22] R. Patro, S. M. Mount, and C. Kingsford, “Sailfish enables alignment-free
isoform quantification from RNA-seq reads using lightweight algorithms,”
Nature Biotechnol., vol. 32, no. 5, pp. 462–464, 2014.

[23] C. Pham-Quoc, B. Kieu-Do, and T. N. Thinh, “A high-performance FPGA-
based BWA-MEMDNA sequence alignment,”Concurrency Comput.: Pract.
Experience, vol. 33, no. 2, 2019, Art. no. e5328.

[24] S. Resch et al., “PIMBALL: Binary neural networks in spintronic memory,”
ACMTrans. Archit. Code Optim., vol. 16, no. 4, pp. 1–26, Oct. 2019.

[25] S. Rodrigue et al., “Unlocking short read sequencing for metagenomics,”
PLoS One, vol. 5, no. 7, 2010, Art. no. e11840.

[26] E. Rucci, C. Garcia, G. Botella, A. De Giusti, M. Naiouf, and M. Prieto-Mat-
ias, “SWIFOLD: Smith-waterman implementation on FPGA with opencl for
longDNA sequences,” BMC Syst. Biol., vol. 12, no. 5, pp. 43–53, 2018.

[27] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level
energy model of intel’s Xeon Phi processor,” in Proc. Int. Symp. Low
Power Electron. Des., 2013, pp. 389–394.

[28] Z. D. Stephens et al., “Big Data: Astronomical or genomical?,” PLoS Biol.,
vol. 13, no. 7, 2015, Art. no. e1002195.

VOLUME 10, NO. 4, OCT.-DEC. 2022 2069

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

www.everspin.com/spin-transfer-torque-mram-products

[29] C. Trapnell et al., “Transcript assembly and quantification by RNA-Seq
reveals unannotated transcripts and isoform switching during cell differen-
tiation,” Nature Biotechnol., vol. 28, no. 5, p. 511, 2010.

[30] J.-P. Wang and J. D. Harms, “General structure for Computational Ran-
dom Access Memory (CRAM),” U.S. Patent 9,224,447, Dec. 29, 2015.

[31] M. Zabihi et al., “Using spin-hall MTJs to build an energy-efficient in-
memory computation platform,” in Proc. 20th Int. Symp. Qual. Electron.
Des., 2019, pp. 52–57.

[32] Z. Zhang and W. Wang, “RNA-Skim: A rapid method for RNA-Seq quan-
tification at transcript level,” Bioinformatics, vol. 30, no. 12, pp. i283–
i292, 2014.

[33] F. Zokaee, H. R. Zarandi, and L. Jiang, “Aligner: A. process-in-memory
architecture for short read alignment in ReRAMs,” IEEE Comput. Archit.
Lett., vol. 17, no. 2, pp. 237–240, Jul.–Dec. 2018.

Zamshed I. Chowdhury received the BSc and MS
degrees in applied physics, electronics and communi-
cation engineering from the University of Dhaka, Ban-
gladesh. He is currently working toward the PhD
degree with the Department of Electrical and Com-
puter Engineering, University ofMinnesota, Twin Cit-
ies, USA. He is a faculty member (on leave) with
Jahangirnagar University, Bangladesh. His primary
research interests include in-memory computing, hard-
ware accelerator design, and approximate computing.

S. Karen Khatamifard received the BSc degree
in electrical engineering from the Sharif University
of Technology, Tehran, Iran, in 2013. He is cur-
rently working toward the PhD degree with the
Department of Electrical Engineering, University
of Minnesota, Minneapolis. His primary research
interests include improving energy efficiency of
computing, designing application-specific hardware
accelerators, approximate computing, and reliabil-
ity implications of process technology scaling.

Salonik Resch received the MS degree in electri-
cal engineering from the University of Minnesota,
where he is currently working toward the PhD
degree. His research interests include quantum
computing, processing in memory, and intermittent
computing.

H€usrev Cllasun is currently working toward the
PhD degree with the University of Minnesota.
Between 2016 and 2019, he was with Aselsan Inc.
He has authored several conference and journal
papers in his research field, which include computer
architecture, FPGA prototyping, digital signal, and
image processing.

Zhengyang Zhao received the BS degree in elec-
trical engineering from Xi’an Jiaotong University,
China. He is currently working toward the PhD
degree in electrical and computer engineering with
the University of Minnesota, Minneapolis, MN.
His research focuses on development of novel spin-
tronic devices to implement energy-efficient mem-
ory cells and logic applications. His recent work
includes studying current-induced magnet reversal
using spin-orbit torque (SOT), and also voltage-
induced magnet reversal using piezoelectric strain

or VCMA effect. More specific work includes the stack design, MTJ cell
nanofabrication, advanced device characterization and physics study.

Masoud Zabihi (Graduate Student Member,
IEEE) received the BSc degree in electrical engi-
neering and electronics from the University of
Tabriz in 2010, and the and MS degree in electrical
engineering and electronics from the Sharif Univer-
sity of Technology in 2013. He is currently work-
ing toward the PhD degree in electrical engineering
with the University of Minnesota. His research
interests include in-memory computing and spin-
tronic based memory technologies.

Meisam Razaviyayn (Member, IEEE) received
the PhD degree in electrical engineering with minor
in computer science from the University of Minne-
sota. He is currently an assistant professor with the
Department of Industrial and Systems Engineering,
University of Southern California (USC), with
courtesy appointments at the electrical engineering
and computer science departments. Prior to joining
USC, he was a postdoctoral research fellow with
the Department of Electrical Engineering, Stanford
University. Dr. Razaviyayn was the recipient of the

Signal Processing Society Young Author Best Paper Award in 2014, Best
Paper Award in IEEE Data Science Workshop in 2019, ICCM Best Paper
Award in Mathematics in 2020, and 3M’s Non-Tenured Faculty Award in
2021. He was the finalist for Best Paper Prize for Young Researcher in Con-
tinuous Optimization in 2013 and 2016.

Jian-Ping Wang (Fellow, IEEE) is currently the
Robert F. Hartmann chair and a Distinguished
McKnight University professor of electrical and
computer engineering with the University of Minne-
sota. He is the director of the Center for Spintronic
Materials for Advanced Information Technology
(SMART), one of two SRC/NIST nCORE research
centers. He was the director of the Center for Spin-
tronic Materials, Interfaces and Novel Architectures
(C-SPIN). CSPIN was one of six SRC/DARPA
STARnet program centers. His inventions have

been used in both HDD products and STT-RAM products. He was the recipi-
ent of the Information Storage Industry Consortium (INSIC) Technical Award
in 2006 for his pioneering work in exchange coupled composite magnetic
media. He was the recipient of the 2019 SRC Technical Excellence Award for
his innovations and discoveries in nanomagnetics and novel materials that
accelerated the production of magnetic random-access memories. He is an
APS fellow.

2070 VOLUME 10, NO. 4, OCT.-DEC. 2022

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

Sachin S. Sapatnekar (Fellow, IEEE) received
the BTech degree from the Indian Institute of Tech-
nology, Bombay, the MS degree from Syracuse
University, and the PhD degree from the University
of Illinois. He taught with Iowa State University
from 1992 to 1997 and has been with the Univer-
sity of Minnesota since 1997, where he holds the
Distinguished McKnight University professorship
and the Robert and Marjorie Henle chair with the
Department of Electrical and Computer Engineer-
ing. He was the recipient of seven conference best

paper awards, the Best Poster Award, two ICCAD 10-year Retrospective
Most Influential Paper awards, SRC Technical Excellence Award, and SIA
University Researcher Award. He is a fellow of ACM.

Ulya R. Karpuzcu (Member, IEEE) received the
MS and PhD degrees in computer engineering from
the University of Illinois, Urbana-Champaign. She
is currently an associate professor with the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Minnesota. Her research interests include
the impact of technology on computing, energy-effi-
cient computing, application domain specialized
architectures, approximate computing, and comput-
ing at ultra-low voltages.

VOLUME 10, NO. 4, OCT.-DEC. 2022 2071

Chowdhury et al.: CRAM-SEQ: ACCELERATING RNA-SEQ ABUNDANCE QUANTIFICATION USING COMPUTATIONAL RAM

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:30:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

