
Chapter 18
Approximate Ultra-Low Voltage
Many-Core Processor Design

Nam Sung Kim and Ulya R. Karpuzcu

18.1 Pushing Voltage Overscaling to Its Limits at Ultra-Low
Operating Voltages

Divergence from Dennardian scaling [9] rendered modern computing platforms
power-(budget)-limited [15, 23]. One promising way to cram more computations
into the available power budget is to reduce the operating voltage Vdd, as power
consumption reduces super-linearly with Vdd. The question is by how much. If Vdd
remains slightly above the threshold voltage Vth, power consumption can decrease
by more than an order of magnitude [10].

Power consumption decreases with the proximity of the near-threshold Vdd to
Vth, however, so does the operating frequency, f. Therefore, operation at as ultra-low
voltages as near-threshold, near-threshold computing (NTC), is only meaningful if
such f degradation is tolerable. In fact, more parallelism by distributing computation
to more compute engines (in the form of general purpose cores or dedicated
accelerators) can help mask the negative impact of the degraded f from throughput
performance. At near-threshold voltages, by construction, more compute engines
can fit into a given power budget. As power savings from near-threshold voltage
(NTV) operation exceed the power cost of more compute engines participating in
computation [4], parallelism becomes a limiting factor, as opposed to the power
budget.
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Fig. 18.1 Evolution of the
operating point with
Vdd [10, 16]

Figure 18.1 depicts power, frequency f, and energy per operation as a function of
Vdd. STV (super-threshold voltage) corresponds to conventional, super-threshold
voltage computing. At NTV, energy per operation improves by about 2–5× over
STV—at the expense of a 5–10× f degradation [10, 16]. The corresponding power
reduction by 10–50× enables more compute engines to fit into a given power
budget. Minimum power and energy/operation points fall into the sub-threshold
region (Vdd<Vth), where f degrades significantly. Highest f of operation resides
in the super-threshold region (STV), but comes at the cost of notably higher power
and energy/operation. Near-threshold region (NTV), on the other hand, facilitates
a sweet spot with power savings closer to sub-threshold, but f closer to STV.
Away from NTV, higher Vdd leads to substantially higher power, and lower Vdd,
to substantially lower f. Therefore, Vdd should remain as close to Vth as possible.

To a first order, execution time is proportional to work per parallel task and the
inverse of clock f, where the problem size distributed over the total number of cores
engaged in computation (N) determines work per parallel task (Eq. (18.1)):

Execution Time ∝ Work per parallel task

f

∝ Problem Size/N

f

(18.1)

Therefore, for a fixed problem size, in order to offset the NTC-induced f degradation
of 5–10× from Fig. 18.1 such that the execution time remains intact, at least 5–
10× additional cores are required, bringing about a power cost of 5–10×. Per-core
NTC power savings of 10–50× can easily counterbalance the power cost of 5–10×
more cores contributing to computation. The question rather is whether the fixed
problem size can render enough work to keep 5–10× more cores busy. Even in
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Fig. 18.2 (a) Variation-induced timing error rate [20], (b) timing guardband [4] vs. Vdd

the presence of abundant parallelism, however, the corresponding expansion in the
chip area (to accommodate 5–10× additional cores) is likely to further exacerbate
NTC’s already intensified vulnerability to errors, particularly the critical class of
(parametric) variation-induced errors.

With each technology generation, manufacturing imperfections exacerbate vul-
nerability to parametric variations, deviation of transistor parameters from nominal
specifications. Already at STV variation results in not only slower cores, but
also ample speed differences among the cores. At lower Vdd, transistor delay
becomes more sensitive to variation. Therefore, NTC accentuates variation-induced
slowdown and speed differences. As a result, the likelihood of variation-induced
timing errors increases as Vdd reaches Vth (Fig. 18.2a). Timing errors emerge if
variations slow down logic to prevent operation at the designated clock f. A common
STV design practice to eliminate timing errors is operating the system at a lower
f than sustainable were there no variation. This slowdown to guarantee error-
free execution constitutes the timing guardband. Figure 18.2b depicts the timing
guardband as a function of Vdd, considering two technology nodes. Unfortunately,
the guardband excessively grows as Vdd reaches Vth, where the nominal f –the
sustainable f were there no variation—is already low. Thus, relying on worst-case
guardbanding is not feasible at NTV. A further difficulty stems from the diminishing
efficacy of state-of-the-art STV variation mitigation techniques when adapted at
NTV [11, 19].

18.2 Embracing Errors at Ultra-Low Operating Voltages

Emerging R(ecognition), M(ining), and S(ynthesis) applications rely on proba-
bilistic, often iterative algorithms to process massive, yet noisy and redundant
data. Usually the solution space has many more elements than one, deeming a
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range of application outputs valid as opposed to a single “golden” output [5].
Therefore, RMS applications can tolerate errors emanating from data-intensive
program phases as opposed to control [7]. Thread decomposition of most parallel
RMS algorithms already conforms to decoupled data and control. Still, embracing
errors necessitates

1. enforcing errors to be contained where they can be tolerated (i.e., within
data-intensive program phases): where they manifest as degradation in output
accuracy, i.e., quality of computing, Q, and not as catastrophic termination; and

2. controlling or configuring the output quality Q explicitly to prevent excessive
loss in computation accuracy.

It is not uncommon for application-specific input parameters such as time step
granularity or resolution to dictate output quality. Such inputs usually associate
with the problem size, as well [6, 8]. To utilize more cores, the application can
scale in two distinct ways, depending on whether the problem size changes with the
number of cores (weak scaling) or not (strong scaling) [14]. Compensation for a
typical NTC-induced f degradation of ≈5–10× (Fig. 18.1) can easily exceed strong
scaling limits. For a compute-bound application, the execution time incurred by a
problem size of interest is often unacceptably large. Accordingly, only problem sizes
taking no longer than the maximum tolerable execution time become practical. The
maximum tolerable execution time induces a time budget (e.g., as determined by
machine utilization policies in a shared cluster) which remains mostly constant. For
these applications, rather than accelerating the execution of a problem of fixed size,
solving a problem of larger size within this constant time budget matters [22]. RMS
applications are largely compute-bound [2], thus conform to weak scaling, where
the problem size tends to scale with the number of cores engaged in computation.

A larger problem size cannot only facilitate a lower operating Vdd by engaging
more cores in computation, but also result in a higher tolerance to errors where
the vulnerability to errors increases due to the lower Vdd. By careful configuration,
the degraded Q in the presence of errors can remain higher than its counterpart
under a smaller problem size. In this case, increasing the problem size translates
into configuring the application to generate an output of higher quality Q.

Figure 18.3 demonstrates, for two representative RMS benchmarks from the
PARSEC suite [3], hotspot and canneal, respectively, how output quality Q changes
with the problem size under three different scenarios. Both axes are normalized.
Under Default, all parallel tasks assigned to computation actually contribute to
computation: Q increases with problem size monotonically, although the sensitivity
to problem size varies. By construction, the application can tolerate higher error
rates at larger problem sizes. hotspot exhibits a higher sensitivity to the problem
size. Thus, the same Δ increase in problem size would lead to a larger Q increase,
which in turn enables operation at higher error rates. To understand how the picture
changes under the onset of errors, the next two scenarios mimic a close-to-worst-
case manifestation of errors by dropping a quarter (Drop 1/4), and a half (Drop 1/2)
of the parallel tasks assigned to computation. The bottomline is that even Drop 1/2
does not render an excessive Q degradation.
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Fig. 18.3 Impact of problem size on quality of computing [20]

Hotspot is a thermal simulator that iteratively solves the heat transfer differential
equations for a given chip floorplan. The number of iterations is the input parameter
dictating the problem size. The output is the temperature at each point of a grid
super-imposed on the floorplan. Canneal, on the other hand, implements simulated
annealing to minimize the routing cost of a given chip design. At each temperature
step, swaps per temperature step times, each thread attempts to swap two randomly
picked blocks on chip to arrive at a lower-cost design. The thread searches for an
optimal solution by attempting swaps, and only swaps leading to a lower routing
cost are accepted:

while ( temperature steps < max temperature steps ){
while ( swaps < swaps per temperature step){

swap()
...
swaps++

}
temperature steps++

}

Total number of temperature steps, max temperature steps, and swaps per tem-
perature step represent input parameters. The product thereof governs the problem
size. At the same time, both of the input parameters dictate how much effort the
application puts to search for local optima. Since more effort is expected to result in
a higher quality solution, the input parameters also affect the quality of computing.
In this case quality corresponds to the relative routing cost. Figure 18.3 provides
the resulting Q vs. problem size fronts as swaps per temperature step increases.
Changes in the problem size as a function of such input parameters do not result
in a different problem, but make the same problem result in a different solution
accuracy. Therefore, problem size can act as a quality knob.

At NTV, the optimal core count, N, strongly depends on the proximity of the
near-threshold Vdd to Vth. An effective way to have the execution time at NTV
converge to the execution time at STV therefore becomes modulating N along with
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Table 18.1 Modulating problem size along with number of cores and f to have NTV and STV
execution times converge [20]

Goal: Execution TimeNTV → Execution TimeSTV

Problem size (PS) Number of cores Quality
Operating frequency

Default Over-scaled

PSNTV = PSSTV NNTV > NSTV QNTV ≤ QSTV fNTV ≤ fNTV,Safe fNTV > fNTV,Safe

PSNTV < PSSTV No restriction

PSNTV > PSSTV NNTV > NSTV

fSTV corresponds to the nominal f at STV; fNTV,Safe, to the highest possible f at NTV to exclude
timing errors; fNTV, to the modulated f at NTV. fSTV > fNTV ≥ fNTV,Safe applies

the near-threshold Vdd and f [20]:

Problem SizeNTV

fNTV × NNTV
︸ ︷︷ ︸
∝Execution TimeNTV

−−−−−−−→ Problem SizeSTV

fSTV × NSTV
︸ ︷︷ ︸
∝Execution TimeSTV

(18.2)

Table 18.1 summarizes different ways to modulate the problem size, number of
cores, and frequency of operation to have NTV and STV execution times converge.

The first option strictly follows strong scaling semantics by keeping the problem
size (PS) intact. Due to PSNTV = PSSTV, the NTV core count NNTV should
increase by at least fSTV/fNTV to retain the STV execution time. The next option
is compressing the problem size to reach the STV execution time despite lower
fNTV. As long as per-core work ∝ PS/N reduces proportional to fNTV/fSTV,
NTV execution time can reach the STV execution time. However, the compressed
problem size translates into a degradation in output quality Q. Hence, a threshold
on Q may impose a limit on the compressed problem size. Even under limited
compression, per-core work can reduce by fNTV/fSTV, by carefully modulating N.
The final option is expanding the problem size. In this case, reaching the STV
execution time despite fNTV is only possible if N increases more than the problem
size does, such that per-core work ∝ PS/N reduces. However, in order to come
close to the STV execution time, per-core work should reduce by fNTV/fSTV. This
translates into N increasing by fSTV/fNTV × PSNTV/PSSTV. Such an increase in N
may not always be feasible. In this case, operation at a higher fNTV than the near-
threshold Vdd can safely accommodate (fNTV,Safe) can help. A higher fNTV than safe
would raise the likelihood of timing errors, yet the expanded problem size can make
up for the corresponding Q degradation by careful modulation. Depending on how
fNTV is set, each option from Table 18.1 comes in two flavors:

• Default with fNTV ≤ fNTV,Safe excludes quality degradation due to errors by
imposing a safe operating f. However, problem size compression may still result
in degraded output quality.

• Over-scaled with fNTV > fNTV,Safe, on the other hand, by imposing a higher
operating f than safe, may incur quality degradation due to the potential onset
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of timing errors. This voltage overscaling equivalent at NTV is especially
feasible under problem size expansion, where the (expanded) problem size can
be configured to reduce quality degradation in the presence of errors.

Default variants under problem size compression (which exclude timing errors)
may lead to similar quality degradation (due to the compressed problem size) as
Over-scaled variants under constant or expanded problem size (which embrace
errors). Only under problem size compression can NNTV remain less than NSTV.

Over-scaled variants represent a more typical use case for expanded problem
sizes. However, since the problem size gets modulated along with the number of
cores, even for Default variants under problem size expansion (where the operating
f is not increased) not necessarily more work would be the case for already slow
NTV cores—as long as N increases more than the problem size does.

18.3 Decoupling Data and Control Flows

All cores engaged in (data-intensive) computation run at the same frequency f to
ensure that parallel tasks make similar progress. This typically leads to faster overall
execution, and eliminates any synchronization overhead that would be incurred if
cores operated at different frequencies. An expanded problem size activates more
cores to operate at a lower f. As the number of active cores expands, cores suffering
from substantial variation-induced slowdown become more likely to participate in
computation. These cores can limit the overall operating f. A compressed problem
size, on the other hand, activates less cores to operate at a higher f. Due to the higher
operating f and the increased likelihood of including more resilient and faster cores,
a compressed problem size would not necessarily incur severe quality degradation.

Timing errors should stay where they can be tolerated. One option is executing
error-tolerant data-intensive program phases on error-prone Data Cores, and reserv-
ing more reliable Control Cores for control [1]. CCs and DCs work in master–slave
mode, where each CC coordinates computation on a designated set of DCs.

Control Cores should be protected from any type of error to prevent catastrophic
failures or hangs. To this end, these cores can be designed to encompass robust
transistors and circuits and/or operate at a higher Vdd. A variation-afflicted can
reserve the fastest (or most resilient) cores for CCs. CCs periodically check whether
DCs are done with the assigned computation. CCs are in charge of housekeeping;
once DCs finish computation, the master CCs merge or reduce results from different
DCs. To detect potential crashes or hangs of DCs, CCs keep watchdogs on a per DC
basis. To prevent error propagation from DCs, CCs never rely on data produced by
DCs for control. CCs communicate with DCs over a dedicated memory location,
both to find out whether slave DCs are done with computation and to collect DC
results. DCs can only read, but not modify the data produced by master CCs.

To facilitate effective coordination with CCs, DCs feature fast reset and restart
hardware. A DC has access to a private read–write memory where the DC can write,
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Fig. 18.4 Architectural design space for decoupled data and control flow [1]

in addition to a read-only memory where shared data managed by master CCs reside.
To avoid error propagation, DCs cannot write to the private space of CCs or of other
DCs. Instead, a dedicated memory location serves intra-DC communication.

Figure 18.4 demonstrates a proof-of-concept chip design, clustered to enhance
scalability. A few cores with per-core private memories and a shared cluster memory
constitute each cluster. Various options exist to differentiate control cores from data
cores.
Spatio-temporal Heterogeneity (Fig. 18.4a): Each cluster accommodates identical
cores. There is no difference in the design of CCs and DCs. CCs are distinguished
from DCs spatio-temporally: CCs correspond to the fastest, most reliable cores
(i.e., the cores of minimum slowdown under variation). This option is simpler from
the hardware perspective. Still, the organization is very flexible in that number of
CCs can be configured—although the example from Fig. 18.4a depicts one CC per
cluster. Since variations govern the f of CCs, the range of CC frequencies may differ
across chips.
Temporal Heterogeneity, (Fig. 18.4b): CCs and DCs are identical by design. Instead
of explicitly assigning cores to operate as CCs or DCs, each core is time-multiplexed
between CC and DC functionality. This option provides a better use of hardware
resources, yet complicates the design due to the support required for different
memory protection domains.
Design-driven Heterogeneity, (Fig. 18.4c): CCs and DCs per cluster represent
different types of cores by design. In this case DCs and CCs specialize. However,
the number of CCs may easily become a bottleneck. Depending on the application, a
higher or a lower CC to DC ratio may be favorable. The organization from Fig. 18.4c
assumes one CC per cluster. CCs are expected to consume more area than DCs due
to the control-intensive specialization and the demand for enhanced reliability.
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18.4 Modeling Errors

The most challenging task in designing systems to embrace errors is modeling
errors themselves. Tools such as VARIUS-NTV [18] can help extract VddMIN, the
minimum near-threshold Vdd each memory block can support under parametric
variation. To have blocks stay functional at NTV, any designated near-threshold
operating Vdd should remain higher than such VddMIN. VARIUS-NTV can also
determine safe operating frequencies, and estimate timing error rates as a function
of the operating frequency at the designated near-threshold Vdd.

VARIUS-NTV can quantify the variation-induced slowdown and the resulting
timing error rates across the cores of the hypothetical NTV chip from Fig. 18.4a, as
follows: first extract the minimum Vdd, VddMIN, each cluster can support to remain
functional at NTV. Below such VddMIN, memory blocks may not be able to hold
or change state. Figure 18.5a shows the distribution of per-cluster VddMIN for one
representative chip (out of 100): Per-cluster VddMIN is defined as the maximum
VddMIN across all memory blocks within a cluster. The data is shown as a histogram.
Per-cluster VddMIN values vary in a significant range, and the maximum per cluster
VddMIN becomes the chip-wide VddNTV.

Tasks get assigned to cores at the granularity of clusters. Each cluster constitutes
a f domain. The slowest core within each cluster determines the operating f of
the cluster. Figure 18.5b depicts variation-induced timing error rate per cycle,
Perr, when operating at VddNTV, as a function of f. For each cluster, the figure
demonstrates the error rate curve of the slowest (i.e., most error prone) core within
the cluster. The y axis is on log-scale. Perr values rapidly increase to reach 1, as
f increases beyond 0.5 GHz. Even at acceptably low Perr of [1e-16,1e-12], the
majority of the cores cannot operate at the NTV fNOM of 1 GHz—the sustainable
f were there no variation. Perr in the range of [1e-16,1e-12] induce a timing error
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every [1e16,1e12] cycles. According to Fig. 18.5b, at the lower end of this Perr
range, the maximum f the slowest core in each cluster can support exhibits 0.14–
0.72× slowdown over the NTV fNOM.

VARIUS-NTV does not capture how the errors would actually manifest. The
exhaustive set of potential manifestations of variation-induced errors can be sum-
marized as (1) no termination (due to crashes or hangs); (2) termination with
excessive Q degradation; and (3) termination with acceptable Q degradation. The
execution model relies on CCs to detect (1), e.g., by deploying watchdog timers. The
application layer would perceive (1) mainly as dropped computation, as captured by
Drop scenarios in Fig. 18.3. (2) points to degradation of data-intensive phases to
lead to unacceptable accuracy. CCs can capture (2) by enforcing preset limits on
maximum Q degradation (e.g., as defined by the user). Threads not conforming to
such limits can be treated exactly as threads leading to (1), as mimicked by Drop.

On the other hand, (3) does not require CCs intervention. The above analysis
assumes that (3) cannot lead to higher Q degradation than (1), purely relying on
inherent algorithmic error tolerance of RMS applications. This assumption can
be validated by statistical error injection, to corrupt the end result in various
ways: all bits/higher order bits only/lower order bits only stuck-at-1(0)/randomly
flipped/inverted, instead of ignoring the end result of infected threads. Then, it can
be concluded that Drop can capture close-to-worst case error manifestation under
the decoupled execution model. Drop conservatively ignores potential masking of
errors at various levels of the system stack: Any timing error of probability Perr
reaches the application layer to corrupt the end output each thread generates. The
end result of any infected thread is ignored altogether.

18.5 Concluding Remarks

In strict sense, weak scaling implies constant per-core work. While applications
strictly conforming to weak scaling would benefit most from the techniques covered
in this chapter, problem size can still be useful as an effective quality knob even if
per-core work increases slightly with problem size.

The fundamental limitation, however, stems from the modeling of errors. Without
loss of generality, this chapter focused on variation-induced timing errors, as a
running example. Voltage overscaling or timing speculation variants [12], be it
implemented at STV or NTV, can always lead to a sudden bursty onset of errors,
due to aggressive timing optimization practices [21]. The remedy is designing
these systems from the ground-up for timing speculation [13]. Even then, capturing
actual manifestation of errors at higher levels of the system stack is challenging.
Attempting to characterize the worst-case as covered in Sect. 18.4 may help.

At ultra-low voltages, due to the reduced operating voltage aging-induced errors
become less of a concern. However, soft errors as induced by alpha particle radiation
become more prominent [17]. Due to their transient and random nature, detecting
and tolerating soft errors in logic is especially challenging. The techniques from
this chapter can still help if, for example, soft errors were confined to data cores
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(Sect. 18.3) by hardening control cores against soft errors by design. Still, the
question of how exactly such errors would manifest themselves at higher levels of
the system stack at ultra-low voltages remains open.
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