
CAMeleon: Reconfigurable B(T)CAM in Computational RAM
Zamshed I. Chowdhury, Salonik Resch, Hüsrev Cılasun, Zhengyang Zhao, Masoud Zabihi,

Sachin S. Sapatnekar, Jian-Ping Wang and Ulya R. Karpuzcu
{chowh005,resc0059,cilas001,zhaox526,zabih003,sachin,jpwang,ukarpuzc}@umn.edu

University of Minnesota
Minneapolis, Minnesota, USA

ABSTRACT
Embedded/edge computing comes with a very stringent hardware
resource (area) budget and a need for extreme energy efficiency.
This motivates repurposing, i.e., reconfiguring hardware resources
on demand, where the overhead of reconfiguration itself is subject
to the very same tight budgets in area and energy efficiency. Numer-
ous applications running on resource constrained environments
such as wearable devices and Internet-of-Things incorporate CAM
(Content Addressable Memory) as a key computational building
block. In this paper we present CAMeleon – a novel energy-efficient
compute substrate which can seamlessly be reconfigured to per-
form CAM operations in addition to logic and memory functions.
CAMeleon has a similar level of latency to conventional CAM de-
signs based on SRAM and emerging memory technologies (such as
STT-MTJ, ReRAM and PCM), however, performs CAM operations
more energy-efficiently, consumes less area, and can support tra-
ditional logic and memory functions beyond CAM operations on
demand thanks to its reconfigurability.

CCS CONCEPTS
•Hardware→ Emerging architectures; Spintronics andmag-
netic technologies; Memory and dense storage.

KEYWORDS
CAM, CRAM, emerging, non-volatile, PIM, reconfigurable

ACM Reference Format:
Zamshed I. Chowdhury, Salonik Resch, Hüsrev Cılasun, Zhengyang Zhao,
Masoud Zabihi,, Sachin S. Sapatnekar, Jian-PingWang and Ulya R. Karpuzcu.
2021. CAMeleon: Reconfigurable B(T)CAM in Computational RAM. In
Proceedings of the Great Lakes Symposium on VLSI 2021 (GLSVLSI ’21),
June 22–25, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3453688.3461507

1 INTRODUCTION
Content addressable memory (CAM) is an extensively used func-
tional building block in many mainstream computing systems.
Rather than locating stored data using addresses (as in conven-
tional random access memory, RAM), CAM finds information using

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’21, June 22–25, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8393-6/21/06. . . $15.00
https://doi.org/10.1145/3453688.3461507

the content itself – hence the name. Specifically, upon getting a
search request for a data content, CAM performs the search on
all memory locations simultaneously, and returns the location (or
index) of match, if any.

On a per bit basis, Binary CAM (BCAM) can search for only
two states, i.e., 0 and 1, which Ternary CAM (TCAM) expands to
include also a third don’t care state, i.e., X. This wildcard X makes
searching for a data content, that partially matches with stored data,
possible, and therefore, can generate multiple matches for a single
content search request. In either case, the parallel search capability
enables CAM structures to perform low latency data lookup which
is desired in many contexts, including but not limited to network
devices [1, 11], neuromorphic associative memory [26], big-data an-
alytics [12, 22], pattern recognition [13, 31], data compression [24],
reconfigurable computing [25] and application-specific accelera-
tion [15].

Emergence of edge computing has further increased the range
of applications where parallel content based search is critical to
overall system performance. Examples include object detection [6],
neuromemristive circuits and near-sensor binary deep neural net-
works for edge computing devices [17, 18]. Besides fast CAM search,
operation in resource constrained environments (such as wear-
able devices and Internet-of-Things, IoT) require very low area
and energy consumption. At the same time, constrained hardware
resources make reconfigurability an increasingly desired feature
in these environments [16], to best match dynamically changing
computational demand of the workload, specifically, to deliver the
optimal performance without any waste in area and/or energy by
repurposing hardware resources on demand. However, reconfigura-
tion itself incurs an overhead which can easily become prohibitive
considering the extremely tight budgets in area and energy.

Be it based on traditional CMOS or emerging technologies (STT-
MTJ [10], ReRAM [13, 33] or PCM [27]), typical CAM designs suffer
from either high area overhead or energy consumption (or both).
Moreover, none is practically reconfigurable, hence re-purposing
CAM cells on demand during runtime to perform regular memory
or even logic operations is out of question. On the other hand,
PIM substrates –already by construction– can perform logic and
regular memory operations within the same array with minimal
reconfiguration overhead. By exploiting array regularity, adding
CAM operations on top would be an attractive solution as long as
the reconfiguration overhead can be kept at bay1. While various
recent PIM proposals target edge-computing systems [2, 29], none
explores this opportunity.

1Designs that use CAM to perform very restricted and limited number of logic opera-
tions are not considered as PIM enabled CAM architectures in this context.

Session 2A: Emerging Computing & Post-CMOS Technologies GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

57

https://doi.org/10.1145/3453688.3461507
https://doi.org/10.1145/3453688.3461507
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3453688.3461507&domain=pdf&date_stamp=2021-06-22

In this paper, we propose a novel reconfigurable architecture,
CAMeleon, targeting edge and embedded environments, which
seamlessly adds CAM functionality to nonvolatile PIM. CAMeleon
supports both BCAM and TCAM operations utilizing in-place logic
processing capabilities of PIM. The underlying PIM substrate is the
non-volatile (spintronic) Computational RAM (CRAM) [4], which
is shown to be a versatile and highly area/energy-efficient platform
for resource constrained environments [29], where CAMeleon does
not incur any changes to the cell architecture. CAMeleon’s energy-
efficiency comes from –unlike existing CAM proposals regardless of
the underlying memory technology– not requiring specially tuned
dedicated sense amplifiers to perform CAM operations. Moreover,
CAMeleon can switch between PIM and (B/T)CAM operations with
minimal reconfiguration overhead. In a nutshell, the contributions
of this paper are as follows:

(1) To the best of our knowledge, CAMeleon is a unique recon-
figurable architecture fusing generic BCAM/TCAM function-
ality with PIM (i.e., conventional memory and logic opera-
tions).

(2) We cover the HW/SW co-design in detail, that enables inte-
gration of CAM and PIM functionality with trivial reconfig-
uration overheads.

(3) We show that CAMeleon has comparable search latency
to fastest known CAM designs, while providing a higher
area/energy-efficiency.

The rest of this paper is organized as follows: Section 2 presents
CAM and CRAM basics, Section 3 details HW/SW co-design of
CAMeleon, Sections 4 and 5 provide the evaluation, and Section 6
concludes the paper.

2 BASICS
2.1 CAM Architecture
Fig. 1 illustrates basic hardware organization for CAM. CAM table
comprises a 2-D array of CAM cells, which store key words (typi-
cally 32–128 bits) along each row and which are connected tomatch
lines. Each CAM cell typically stores both key and inverted key bits.
The query to search, stored in the query register and connected to
the CAM table through search lines, connects a bit from each CAM
cell to the corresponding match lines. The match line indicates
whether the data stored in that row is a match for the query input.
All match lines are fed to an encoder that determines the match
location, i.e., index. TCAM typically requires one additional mem-
ory cell for each CAM cell that stores a wildcard bit, i.e., X (= 0/1).
In case of BCAM, one match for each query is expected –unlike
TCAM where more than one match is possible and therefore, a
priority encoder is employed that outputs the match location with
highest priority.

...

search line

Query Register

Query Word

E
N

C
O

D
E
R

Match
Location

lo
g

2
(N

)

match line

C
A

M
 T

A
B

L
E

1 00 1 11 1 ...

CAM Cell

...

0 01 0 01 1 ...

0 11 0 10 1 ...

..
.

..
.

Figure 1: Generic CAM architecture.

2.2 Computational RAM (CRAM) Basics
CRAM cells are organized in a 2-D layout (tile) where each cell
consists of a non-volatile memory device and an access transistor.
Fig. 2(a) illustrates a CRAM cell. CRAM cells in CAMeleon, without
loss of generality, use spintronic memory devices, STT-MTJ in
particular, which features superior endurance and low energy2.
Each STT-MTJ contains two adjacent layers of ferromagnets –fixed
and free layers, insulated by a thin tunneling layer. The fixed layer
has its spin orientation fixed; the free layer, controllable. A current
through the MTJ that is greater than a threshold (critical current,
𝐼𝑐𝑟𝑖𝑡) can change spin orientation, where the direction of the current
sets the polarity of the orientation. The relative spin orientation
of the free layer to the fixed layer results in high (𝑅ℎ𝑖𝑔ℎ) or low
(𝑅𝑙𝑜𝑤) resistance, interpreted as logic 1 or logic 0, respectively. One
terminal of each MTJ is connected to a bit select line (BSL) through
an access transistor that is controlled by the word line (WL). The
other MTJ terminal is tied to a wire, called logic line (LL). Each
row of the tile has a separate WL, whereas all cells in each column
are connected to a {LL, BSL} pair. Along each column of the tile,
there are two groups of BSL, namely Even BSL (EBSL) and Odd
BSL (OBSL). When not in logic mode, EBSL and OBSL are virtually
indistinguishable in terms of their functionality. All signals are
driven by a tile controller.
Memory operations: For read/write operation, WL is set to logic
HIGH (as shown in red in Fig. 2(a)). A voltage for read, applied be-
tween LL and BSL, results in a current through MTJ (which evolves
as a function of the MTJ resistance) that is sensed to determine the
data content. For writes, the voltage applied between LL and BSL is
set to the write voltage which is enough to create a current > 𝐼𝑐𝑟𝑖𝑡 .
Logic operations: Fig. 2(b) illustrates a logic gate, formed by three
CRAM cells along a column (transposed for illustration). The input
cells, Input1 and Input2, store the input bits (as encoded by their
respective MTJ resistances), and the output cell, Output, is preset to
logic 0 or 1 depending on the logic operation. All WLs to the input
and output cells are set to logic HIGH. Thereby all columns perform
the same logic operation in parallel since allWLs run along rows.
The inputs are connected to different group of BSLs (either OBSL
or EBSL) than the output. The HIGH onWL connects the cells to
the corresponding BSL. In logic mode, LL acts as a connecting wire.
Now, a voltage (𝑉𝑔𝑎𝑡𝑒) is applied between EBSL and OBSL, which
generates currents through input MTJs (𝐼1 and 𝐼2) that sink through
the output MTJ. If this combined current (depending on the stored
bits, i.e., resistance states of Input1 and Input2) is greater than 𝐼𝑐𝑟𝑖𝑡 ,
then the resistance state of the output MTJ switches, otherwise,
the preset resistance state remains – effectively implementing the
corresponding truth table. The use of a preset and gate specific
𝑉𝑔𝑎𝑡𝑒 during logic operation makes CRAM Boolean complete.

Putting it all together, the equivalent circuit in Fig. 2(c) shows
how the gate specific voltage 𝑉𝑔𝑎𝑡𝑒 , applied between EBSL and
OBSL, conducts a current through input cells (𝑅1 and 𝑅2). The com-
bined current, 𝐼𝑂𝑈𝑇 = 𝐼1 + 𝐼2, flows through the output cell (𝑅𝑂𝑈𝑇).
For simplicity the resistance of access transistors are not shown.
The orientation of the free layer in the output cell is switched (in a
direction specified by the direction of 𝐼𝑂𝑈𝑇) if 𝐼𝑂𝑈𝑇 > 𝐼𝑐𝑟𝑖𝑡 , causing
the 𝑅𝑂𝑈𝑇 to change accordingly.

2CRAM cells can support various memory devices [5, 28].

Session 2A: Emerging Computing & Post-CMOS Technologies GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

58

Memory Operation(a)

LL

EBSL
OBSL

W
L
0

I1,I2 I1+I2

O
u
tp

u
t

Logic Operation(b) (c)

Vgate

OBSL =

LL
Input2Input1

Output
(ROUT)

(R1) (R2)

In
p
u
t1

Equiv. Circuit

F
ix

ed
F
re

e LL

BSL

W
L

W
L
1

W
L
2

In
p
u
t2

EBSL =

gnd

Figure 2: CRAM cell architecture and operation.

Logic gates to support CAM operations: The only logic gates
required to perform CAM operations are NOR and AND. The truth
table of a 2-input NOR gate is shown in Table 1. The output cell
(𝑂𝑢𝑡𝑝𝑢𝑡) is preset to 0. The NOR gate specific voltage, 𝑉𝑁𝑂𝑅 is de-
termined such that 𝐼𝑐𝑟𝑖𝑡 is exceeded by 𝐼00 only. Therefore, 𝑂𝑢𝑡𝑝𝑢𝑡
switches from 0 to 1 only if both inputs are 0, and retains its preset
value for other input combinations. The same biasing conditions
implement an AND gate with a preset of 1 (and opposite current
direction), where 𝑂𝑢𝑡𝑝𝑢𝑡 switches from 1 to 0 for all input combi-
nations but 11.

𝐼𝑛𝑝𝑢𝑡1 𝐼𝑛𝑝𝑢𝑡2 𝑂𝑢𝑡𝑝𝑢𝑡 𝐼𝑂𝑈𝑇 = 𝐼1 + 𝐼2
0 (𝑅𝑙𝑜𝑤) 0 (𝑅𝑙𝑜𝑤) 1 𝐼00 > 𝐼𝑐𝑟𝑖𝑡

0 (𝑅𝑙𝑜𝑤) 1 (𝑅ℎ𝑖𝑔ℎ) 0 𝐼01 < 𝐼𝑐𝑟𝑖𝑡

1 (𝑅ℎ𝑖𝑔ℎ) 0 (𝑅𝑙𝑜𝑤) 0 𝐼10 = 𝐼01 < 𝐼𝑐𝑟𝑖𝑡

1 (𝑅ℎ𝑖𝑔ℎ) 1 (𝑅ℎ𝑖𝑔ℎ) 0 𝐼11 < 𝐼𝑐𝑟𝑖𝑡

Table 1: 2-input NOR truth table (𝑂𝑢𝑡𝑝𝑢𝑡 preset = 0).

3 CAMELEON ARCHITECTURE
3.1 Overview
Fig. 3 shows a generic CAM algorithm. A typical CAM handles
equal-length key and query words: Key words are stored in unique
locations inside CAM structure, and Query words (from a query
pool, one at a time) are used to search those unique memory loca-
tions simultaneously, to find the exact (partial) match(es) between
the key words and the query in case of BCAM (TCAM). For every
bit of a key word, both that bit and the corresponding inverted bit
are stored in CAM to form a bit-pair. Query words are written to a
structure inside CAM array, i.e., the query register, one at a time,
before firing search. The process repeats for each query word in
the pool.

Query
Pool

All
Done?

query

Yes: Exit

No
search next query

Match
Index

key0

key1

keyN-1

loc0

loc1

locN-1

...

E
n
co

d
e
r

Match:
No Match:

Figure 3: Generic CAM algorithm.

3.2 CAM operations in CRAM
Basics: For each bit in a key word, there is a bit-pair stored in the
corresponding column of the CRAM tile. Specifically, all bit-pairs
of a key word go to the same column. Each bit-pair in a key word
thereby forms a CAM cell along the CRAM column; multiple CAM
cells residing in a CRAM column. As typically one set of key words
is searched for many query words, the initial overhead of writing

key words to CRAM columns is amortized over many CAM search
operations. The query register stores a query word that generates
necessary signals to perform CAM operations in CRAM. After
search is complete, search outcomes are directly stored in CRAM
which are subsequently read out and fed to (priority) encoders. The
mechanism for CAM search in CRAM is simple: only if a bit in the
query and key words match, a CRAM cell storing logic 0 at that
bit position (either key or inverted key bit) is connected to the LL
along the column. Therefore, by construction, a subsequent NOR
of all such cells along the column (which keep the search outcomes
for the entire key, query pair) generates a 1 to indicate a match, iff
all bits match.

Key0: 1001 (col0)
Key1: 0001 (col1)

Reserved
WildCard
Bit (RWB)

1

0

0

1

0

1

1

0

col0

query
reg.

1

X

X

1

WL

WL
0 1

MATCH

(b) TCAM

0

0
RWB0

RWB1

0

0
RWB2

RWB3

MSB

0

1

0

1

0

1

1

0

0

0

0
RWB0

RWB1

0

0
RWB2

RWB3

col1
row0

row1

row11

row12

LL LL

.
.

.

NO MATCH

(a) BCAM

1

0

0

1

0

1

1

0

col0

query
reg.

0

0

0

1

WL
0 1

NO MATCH

MSB

0

1

0

1

0

1

1

0

0

col1LL LL

MATCH

row0

row1

row7

row8

.
.

.

Key Bit

Inv. Key Bit

CAM
Cell

row7

row8

.
.

.

Output Cell
with Preset Bit

 Current
Logic HIGH
Logic LOW

Figure 4: (B/T)CAM search in CAMeleon.

BCAMoperation: Fig. 4(a) illustrates the principle of BCAM search
in CRAM with an example 9 × 2 tile (where red lines indicate logic
HIGH). The two columns (col0 and col1) store Key0 and Key1 re-
spectively. The columns are 9-bit long where row 0 - row 7, in each
column, store the bit-pairs corresponding to 4-bit key words in
adjacent CRAM cells. Each CAM cell spans two rows, hence incor-
porates two CRAM cells: #CAM cells/column = #bits in key or query
word. For example, in Fig. 4(a), in each column, the two CRAM cells
in row 0 and row1 together form a CAM cell. Each bit in the query
register selects either of the rows in a CAM cell; if the query bit is
0 (1), it selects the stored (inverted) key bit. The cell in the selected
row gets connected to the LL in the respective column, to serve as
an input to the subsequent NOR. In Fig. 4(a), in each column, the
output cell to NOR (in row8), connected to a different BSL group
than the rest of the cells in the column, is preset to logic 0. On a per
column basis, as each query bit selects one cell to connect to LL,
applying 𝑉𝑁𝑂𝑅 across the OBSL and EBSL (i.e., across cells storing
key or inverted key bits, and the output cell) effectively creates a
4-input NOR gate that switches the output cell (from 0 to 1) iff all 4
input cells are logic 0. This marks a match between the query bits
and the key bits stored in the respective column. In Fig. 4(a), the
first query (0001) selects in both columns the cells in rows 0, 2, 4
and 7 (indicated in red), which renders all 0 cells in col1, hence, a
1 at NOR output to indicate a match. This is not the case for the
content of the selected cells in col0: LL is connected to all logic 0s

Session 2A: Emerging Computing & Post-CMOS Technologies GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

59

but one, which is not enough to generate a current to switch the
output cell, hence, no match.
TCAM operation: As indicated in Fig. 4(b), the same search mech-
anism for BCAM from Fig. 4(a) applies to TCAM search with two
changes: i) a method to search the wildcard bits in query word –
stored as a bit-mask in a separate register (i.e., bit-mask register)
of equal size to the query register; and ii) additional bits in each
column to help in wildcard search – Reserved Wildcard Bits (RWB)
in row8-row11. RWBs are equal to the number of key bits stored in
a column (4 in this example). Each RWB corresponds to one unique
CAM cell in that column and stores a constant value (logic 0). When
a query bit is marked as a wildcard bit (by setting the corresponding
bit position in the bit-mask register to logic 1), the corresponding
RWB is selected instead of any row of the corresponding CAM cell,
effectively bypassing the BCAM match mechanism. When a query
bit is not marked as a wildcard bit, on the other hand, the search
proceeds exactly in the same way as BCAM search, as depicted in
Fig.4(a). In this case, as well, if all cells selected to be connected to
a LL are logic 0s, the output cell (in row12) in the respective column
switches – marking a match. In Fig.4(b) this is the case for col0 for
the query (1XX1) since all 4 cells in col0 selected to be connected to
LL have logic 0 (in rows 1, 7, 9 and 10), which doesn’t apply to col1.
Multi-gate logic operations: At the core of the search logic lies
the NOR operation to generate the match outcome, which has as
many inputs as the number of bits in the key (or equivalently
query) words. While typical key (query) lengths tend to be fixed,
CRAM logic gates cannot support arbitrary number of inputs –
hence a limit applies to the #inputs of NOR along a column. As a
workaround, we chunk query word into groups of bits and perform
the search with one chunk at a time, sequentially. Each search in
this case involves a n-bit NOR which is feasible to implement in
CRAM where n is the #bits in the chunk. To generate the final
match outcome, we feed the output of each such NOR gate to an
AND gate, on a per column basis, which generates a 1 (to indicate
a match) iff all NOR outputs are 1.
Row selection logic (RSL): Fig. 5(a) and (b) show the RSL for
BCAM and TCAM, respectively (red = logic HIGH), implemented
using conventional gates. Recall that each CAM cell spans two rows
in a column. Each query bit in BCAM selects either of the rows in
the corresponding CAM cell simply using a NOT gate. In TCAM, if
a query bit is marked as a wildcard bit, neither of these rows are
selected; instead the row with the corresponding RWB is selected.
As an example, in Fig. 5(b), the first query bit selects row1 and the
last bit in bit-mask register selects the row RWB3. The TCAM RSL
becomes the equivalent to the BCAM RSL if all bits in the bit-mask
register are logic 0. RSL signals drive the rows of all CRAM tiles
involved in search (in CAM mode).

During regular (non-CAM) CRAM operations, CRAM tile con-
trollers (responsible for driving rows in each tile) bypass RSL signals
for CAM operations– thereby making all cells available for CRAM
operations.

3.3 Hardware Organization
CAMeleon incorporates a collection of CRAM tiles that store the
key words – i.e., a sequence of bit-pairs corresponding to CAM

1 0 1 1

W
L r

o
w

0

W
L r

o
w

1

W
L r

o
w

2

W
L r

o
w

3

W
L r

o
w

4

W
L r

o
w

5

W
L r

o
w

6

W
L r

o
w

7

Query Register
1 0 1 1

W
L r

o
w

6

W
L r

o
w

7

Query Register

0 0 1
Bitmask Register

1

W
L R

W
B

3

W
L r

o
w

0

W
L r

o
w

1

W
L R

W
B

0

...
(a) (b)

...

Figure 5: Row selection logic for (a) BCAM and (b) TCAM.

Query

Key0

KeyN
Seg0 Seg1 SegN

.

.

.

...

(a) CAMeleon Architecture

Query
Seg0

Seg0

key 0
key 1

key 127
key 128
key 129

key 255
key 256
key 257

key 383

..
.

..
.

..
.

key 384
key 385

key 511
..

.

Ti
le

0
Ti

le
4

Ti
le

8
Ti

le
1

2

Query
Seg1

Seg1

key 0
key 1

key 127
key 128
key 129

key 255
key 256
key 257

key 383

..
.

..
.

..
.

key 384
key 385

key 511

..
.

Ti
le

1
Ti

le
5

Ti
le

9
Ti

le
1

3

Query
Seg2

Seg2

key 0
key 1

key 127
key 128
key 129

key 255
key 256
key 257

key 383

..
.

..
.

..
.

key 384
key 385

key 511

..
.

Ti
le

2
Ti

le
6

Ti
le

1
0

Ti
le

1
4

Query
Seg3

Seg3

key 0
key 1

key 127
key 128
key 129

key 255
key 256
key 257

key 383

..
.

..
.

..
.

key 384
key 385

key 511

..
.

Ti
le

3
Ti

le
7

Ti
le

1
1

Ti
le

1
5

Key Tiles

key 0
key 1

key 127
key 128
key 129

key 255
key 256
key 257

key 383

..
.

..
.

..
.

key 384
key 385

key 511

..
.

Ti
le

1
6

Ti
le

1
7

Ti
le

1
9

Ti
le

1
8

Reduction
Tiles

(b) Data Layout

1

0

1

0

1

0

01

1

0

1 1 {{{{

Key
Word

Column 0

CAM
cell

Key word 0

Key word 1

Key word 2

Key word 3

RWB

RWB

RWB

RWB P
re

se
t

B
it

s

K
e
y
 T

ile

E
x
tr

a
 B

it
s

R
e
d

u
ct

io
n
 T

ile

E
x
tr

a
 B

it
s

P
re

se
t

B
it

s

Constant
 Bits

Figure 6: Hardware organization of CAMeleon (transposed
to simplify illustration).

cells – along columns. All cells along a column that store the bit-
pairs (and that represent inputs to the NOR operation to determine
match outcome) are connected to same BSL group; cells keeping
the NOR output, to the opposite. The query word is stored in the
query register that is shared among tiles that perform search with
that query.

The high level architecture of CAMeleon is shown in Fig. 6(a).
The first step is to divide the query and key words into smaller equal
length segments (as captured by the top portion in Fig. 6(b)). This
serves two purposes: i) Storing very long key words (i.e., bit-pairs)
in one column of a tile compromises signal integrity across first
and last rows, ii) Long query words would require either CRAM
logic gates with large #inputs (more prone to process variation
of the MTJ, the peripheral circuitry and 𝑉𝑁𝑂𝑅); or to perform
logic operations in >2 steps – contributing to latency and energy
overheads. CAMeleon stores these segments in columns in key
tiles where CAM search is performed on each of these {Query,
Key} segment pairs, in parallel. Since each query bit is matched
against the corresponding bit in the key word, such parallel CAM
operations are bit-independent across all key tiles.

Fig. 6(a) illustrates an example where 512 key words and a query
are divided into 4 segments each. Each key word segment is stored
in a separate key tile. For example, key tiles 0-3 store segments 0-3
of key words 0-127. Tiles 0, 4, 8 and 12 store segment 0 of keys
0-511 and share the same RSL signals corresponding to the query
segment 0.

Search outcomes from individual {Query, Key} segment pairs,
i.e., partial search outcomes, are reduced to single match/no match
indication by the corresponding reduction tile (Fig. 6(a)). This is

Session 2A: Emerging Computing & Post-CMOS Technologies GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

60

MATCH

LL0

0

0

0

0

1

Reduction Tile
WL00

WL10

WL20

WL30

Read
Buffer

LL1

0

0

0

0

0

WL01

WL11

WL21

WL31

LLN

0

0

0

0

0

WL0N-1

WL1N-1

WL2N-1

WL3N-1

. . .

. . .

. . .

WLGATE WLGATE WLGATE

ke
y
_0

,S
e
g

_1

0

. . .

. . .

ke
y
_1

,S
e
g

_1

ke
y
_N

-1
,S

e
g

_1

1 0

Key Tile 1

. . .

W
L 1

0

W
L 1

1

W
L 1

N
-1. . .

. . . DDD

Q Q Q

Q
u
e
ry

 S
e
g
_1

ke
y
_0

,S
e
g

_2

0

. . .

. . .

ke
y
_1

,S
e
g

_2

ke
y
_N

-1
,S

e
g

_2

1 0

Key Tile 2

. . .

W
L 2

0

W
L 2

1

W
L 2

N
-1. . .

. . . DDD

Q Q Q

Q
u
e
ry

 S
e
g
_2

ke
y
_0

,S
e
g

_3

0

. . .

. . .

ke
y
_1

,S
e
g

_3

ke
y
_N

-1
,S

e
g

_3

1 1

Key Tile 3

. . .

. . .

W
L 3

0

W
L 3

1

W
L 3

N
-1. . .

DDD

Q Q Q

Q
u
e
ry

 S
e
g
_3

ke
y
_0

,S
e
g

_0
0

. . .

. . .

ke
y
_1

,S
e
g

_0

ke
y
_N

-1
,S

e
g

_0

1 0

Key Tile 0

. . .
W

L 0
0

W
L 0

1

W
L 0

N
-1. . .

. . . DDD

Q Q Q

Q
u
e
ry

 S
e
g
_0

Figure 7: Reduction operation in CAMeleon.

a special purpose CRAM tile whereWL of individual cells can be
independently selected. Similar to the key tiles, output cells in the
last row of the reduction tile hold the outcome of the reduction
operations, i.e., (0)1 for (Mis)match.
Data layout: Fig. 6(b) shows the data layout of key and reduction
tiles, with rows and columns transposed to simplify illustration.
RWBs always store logic 0 when configured for TCAM. Preset Bits
in each (key/reduction) tile act as output cells. The remaining bits in
each column are used as Extra bits which do not participate in CAM
search, rather provide flexibility in scheduling regular CRAM logic
operations. Both Preset and Extra bits are connected to same BSL
group, whereas the rest of the bits in each column are connected to
the opposite.
Reduction operation: The reduction operation is illustrated in
Fig. 7. Each N -column key tile stores one segment each from N
key words and the corresponding segment of the query word, e.g.,
Key Tile 0 stores segment 0 from {key 0, key 1, ... key N-1} and
performs search for segment 0 of the query word. The last row in
each key tile (green in figure) holds the partial search outcome from
(B/T)CAM operation. Each key tile has a read buffer (RB), i.e., a D-FF
array that stores the partial search outcome bits (which uses regular
CRAM read). The outputs (Q) from RB connect to individual WLs
(i.e., individual cells) along a row in the reduction tile. For example,
the RB outputs from Key Tile 0 connect to𝑊𝐿00,𝑊𝐿10, and so on,
where𝑊𝐿𝑋𝑌 refers to the WL of a cell at row X and column Y in a
reduction tile.

Accordingly, depending on the data stored in RBs (1/0), the in-
dividual WLs in the corresponding reduction tile get activated
(colored red). In each reduction tile, all cells along a column with an
active WL get connected to LL, by construction, effectively creating
a logic gate configuration in that column. Except the last row, all
cells in a reduction tile store a fixed 0 throughout CAM search. The
last row in each reduction tile, i.e., reduction output, is preset to
logic 0 before reduction operation begins. Reduction output keeps
the result of the NOR operation where each partial match is rep-
resented by a logic 0 at its input. This NOR (along all columns of
the reduction tile, simultaneously) outputs a logic 1 only if #cells
connected to a LL = #{query,key} segment pairs.

The #rows and #columns in a reduction tile depends on the
#segment pairs and #keys stored in each key tile connected to it
respectively (= 𝐾 × 𝑆 CRAM cells where K = #key words and S
= #segment pairs). The discussion on multi-gate logic operations
described earlier applies here as well, depending on S and the max-
imum #inputs required by CAMeleon logic operations.

When not configured to performCAM search, all cells in a (key or
reduction) tile are available for CRAM logic andmemory operations.

In order to use all cells in the key and reduction tiles in regular
CRAM operations, WL signals from corresponding tile controllers
are ORed with the signals from RSL and RB, respectively. Fig. 8
illustrates the idea. In case of CAM operations, RSL (RB) signals are
used to drive the rows in a key (reduction) tile; otherwise the WL
signals generated by the tile controller take precedence.

0 0 0. . .WL0

from
RSL

Cell

0 0 0
. . .

WL00

WL0

WL01 WL0N

Cell

(a) (b)

Figure 8: WL usage in (a) key and (b) reduction tiles.

Pipelining: Pipelining CAMeleon in order to reduce search latency
is straight-forward, where RBs in key tiles can act as pipeline reg-
isters. If the latency of key (reduction) tiles is 𝑇𝑘𝑡𝑖𝑙𝑒𝑠 (𝑇𝑟𝑡𝑖𝑙𝑒𝑠), the
total search latency of CAMeleon would be 𝑇𝐶𝐴𝑀𝑒𝑙𝑒𝑜𝑛 = 𝑇𝑘𝑡𝑖𝑙𝑒𝑠 +
𝑇𝑟𝑡𝑖𝑙𝑒𝑠 . Both 𝑇𝑘𝑡𝑖𝑙𝑒𝑠 and 𝑇𝑟𝑡𝑖𝑙𝑒𝑠 strongly depend on the number of
logic gate operations (during search) the tiles perform. Typically,
key and reduction tiles perform similar number and type of op-
erations, so a balanced pipeline is possible, where 𝑇𝐶𝐴𝑀𝑒𝑙𝑒𝑜𝑛 =

max(𝑇𝑘𝑡𝑖𝑙𝑒𝑠 ,𝑇𝑟𝑡𝑖𝑙𝑒𝑠) applies. In this case, read buffers store the par-
tial outcomes from key tiles, corresponding to a query, which re-
duction tiles use to derive the final search outcome (i.e., reduction
output), while key tiles begin with the search of the next query
from the query pool.

4 EVALUATION SETUP
The performance evaluation of CAM search using CAMeleon, in
terms of latency/search and energy/search/bit, is performed with
an in-house step accurate simulator, where each step is a logic oper-
ation, e.g., NOR. The energy and latency of NOR and AND gates are
derived from the electrical equivalent circuits (see Section 2). Ta-
ble 2 lists all STT-MTJ parameters used in the evaluation [14, 20, 23].
The low power (LP) and high performance (HP) variants of current
MTJs – CLP, CHP, CHPA(ggressive) are considered to capture the
sensitivity of CAMeleon performance to device technology param-
eters. Similar variants are considered for future (projected) MTJ
(FLP and FHP), as well. All peripheral overheads (including RSL and
query register related), at 22nm technology node, are derived from
NVSIM [7] and HSPICE simulations, by accounting for parasitic
effects such as wire capacitance.
Dataset: As CAM key word dataset, 1024 128-bit words are ran-
domly generated and each is used to generate 1000 128-bit query
words with randomly placed (bit position has no impact on per-
formance or correctness of search output) wildcard bits– a large
enough dataset for average search performance characterization.
The (default) #wildcard bits is assumed to be 50% of the query length

Session 2A: Emerging Computing & Post-CMOS Technologies GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

61

(= 64). 128 key tiles (64 × 64) are required to store the key dataset.
Each key (and query) is divided into 8 (= 128/16) segments of 16-bit
length. For reduction, 16 (64× 64) reduction tiles are required (each
reduction tile reduces 64 key words). The total memory footprint
is ∼ 72 KB (∼ 57% is used during CAM operations) – the entirety
of which is available to be used as a regular CRAM array.
Logic gate configuration: The (default) #inputs to CRAM NOR
gates is 8 (corresponding to a good trade-off between overall per-
formance and reliability of logic operations), and each key tile
performs two such logic operations in sequence (since 16 key bits
are stored in each column of key tiles) before feeding a 2-input
CRAM AND gate.

Table 2: Technology Parameters.
Parameter CLP CHP CHPA FLP FHP
MTJ Type Interfacial PMTJ
MTJ Diameter (𝑛𝑚) 45 10
TMR (%) 133 500
RA Product (Ω`𝑚2) 5 1
𝐼𝑐𝑟𝑖𝑡 (`𝐴) 40 90 180 0.79 10
Switch. Latency (𝑛𝑠) 3 1 0.3 1 0.3
𝑅𝑃 , 𝑅𝑃 , 𝑅𝑇𝑟𝑎𝑛𝑠. (𝐾Ω) 3.15, 7.34, 1 12.7, 76.39, 1

Baselines for comparison: To quantify the performance improve-
ment of CAMeleon, 8 state-of-the-art baseline TCAM designs are
selected, with different device technologies, including SRAM, STT-
MTJ, ReRAM and PCM [3, 8, 9, 13, 19, 21, 30, 32]. The numbers
reported for the baselines and CAMeleon exclude encoder over-
head at the output.

5 EVALUATION
5.1 Performance analysis
Fig. 9 provides the energy/search/bit and latency/search characteri-
zation (normalized to [3]; the lower the better). Overall, CAMeleon
with CLP consumes less energy than STT-MTJ- [21], ReRAM- [13,
19] and PCM-based [9] designs.With future (projected)MTJ-variants
(FLP and FHP), the energy consumption reduces even further and
CAMeleon outperforms all baselines. The baselines with STT-MTJ,
ReRAM and PCM use the memory devices to only store CAM data,
unlike CAMeleon which also performs computation (i.e., CAM
search) with the memory devices – making CAMeleon more sensi-
tive to device technology parameters.

On the latency front, performance of CAMeleon is dominated
by the switching latency of the STT-MTJ devices. Due to longer
switching latency of CLP, CAMeleon-CLP suffers from the longest
search latency across the board. As MTJ variants (CHP, CHPA,
FLP and FHP) exhibit increasingly lower latency, CAMeleon recov-
ers latency significantly, e.g., by a decrease of 8.1× from CLP to
CHPA. Although the baselines outperform CAMeleon in terms of
search latency, it comes with a significant energy (e.g., [21] con-
sumes 5.5× more energy than CAMeleon-CLP) and area penalty
(e.g., [32] uses 5× more transistors/cell than CAMeleon). Table 3
compares all baselines and CAMeleon in terms of area overhead
(#Transistors/cell). The SRAM-based baseline [3], while consuming
less energy than most baselines, suffers from a high area overhead
(16T/cell) – making it difficult to fit in a tight area budget imposed
by embedded/edge hardware. CAMeleon, on the other hand, has
smaller area footprint than most baselines, except for [9], [19]
and [13] which have similar or slightly smaller footprint at the

expense of higher energy consumption, e.g., [13] consumes 25.8×
more energy than CAMeleon-CLP. Considering the finely tuned
dedicated sense amplifiers for CAM search – required by all these
baselines (in addition to read sense amplifiers), CAMeleon is even
more area efficient.

In summary, CAMeleon outperforms a wide-range of baselines,
in terms of area or energy (or both), while maintaining a comparable
search latency. CAMeleon, in BCAM mode, exhibits similar energy
(∼ 0.1% less than corresponding TCAM numbers) on average.

[3] [9] [30] [21] [32] [8] [19] [13] CLP CHP CHPA FLP FHP

V
al

ue
 (

no
rm

. t
o

[3
])

1e
−

02
1e

+
00

1e
+

02
1e

+
04

Energy/search/bit Latency

Figure 9: Energy and latency comparison (normalized
to [3]).

5.2 Sensitivity analysis
TCAM energy consumption is sensitive to the #wildcard bits in
the search query. Fig. 10 captures the relationship between en-
ergy/search/bit and % of Wildcard bits in varying lengths of query
word (normalized to 25% wildcard share). The energy consumption
decreases, although insignificantly (∼ 1%), with increasing #Wild-
card bits in query. More wildcard bits tend to yield more matches
between {query, key} segment pairs– resulting in lower energy con-
sumption due to AND gates with all logic 1 inputs, which doesn’t
incur switching.

30 40 50 60 700.
98

5
0.

99
0

0.
99

5
1.

00
0

%Wildcard bits in query word

E
ne

rg
y/

se
ar

ch
/b

it
(n

or
m

.)

●

●

●

●32−bit 64−bit 128−bit

Figure 10: Sensitivity of CAMeleon to #wildcard bits.

Query length: Energy consumption in CAMeleon depends on
the query length, as well, although insignificantly. Table 4 lists
the energy consumption in CAMeleon when the query length is
varied between 32 and 128 bits (normalized to 128-bit). The energy
consumption (per search per bit) tends to decrease as query length
increases – indicating good scalability. This is because the dominant
search energy component (gate energy; > 60% of total) does not
scale in proportion to the query length, e.g., gate energy with 64-bit
query is ∼ 1.72× of that with 32-bit query – resulting in lower
energy/search/bit (vs. 32-bit) for 64-bit query.
Process Variation: The reliability of CAMeleon operations depend
on the correct switching events in CRAM logic operations. High #in-
puts to logic operations could exhibit switching for incorrect input
data. To understand the impact of process variation on CAMeleon

Session 2A: Emerging Computing & Post-CMOS Technologies GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

62

Table 3: CAMeleon TCAM cell comparison against baselines.
Parameter [3] [9] [30] [21] [32] [8] [19] [13] CAMeleon
Device SRAM PCM STT-MTJ STT-MTJ STT-MTJ STT-MTJ ReRAM ReRAM STT-MTJ
Tech. node (nm) 40 22 40 40 40 22 14 45 22
Cell 16T 3T-3R 10T-4M 9T-2M 15-4M 6T-2M 3T-1R 2T-2R 3T-3M
Word Length (bits) 144 128 144 144 144 256 128 8 128
Logic-capable No Yes

Table 4: Sensitivity to query length.

Query length (#bits) 32 64 128
Energy/search/bit (norm.) 1.29 1.11 1.00

functionality, we considered variation in STT-MTJ and 𝑉𝑁𝑂𝑅 . For
MTJ low resistance (𝑅𝑃), we assume a 𝜎 of 10% with 0.1% variation
of TMR (which captures the variability in oxide thickness and sur-
face area), and a 5% standard deviation for𝑉𝑁𝑂𝑅 . Our Monte Carlo
analysis for an 8-input NOR gate, with 108 iterations, shows correct
switching behavior ∼ 100% of the time even under our conservative
assumptions. We also introduced incorrect switching behaviour
in this 8-bit NOR gate to output a logic 1 when 7 (instead of all
8) inputs are logic 0 (with default query and key configurations).
Since, in order to get an incorrect match between a {query,key} pair,
all corresponding segments have to yield erroneous match through
such a (faulty) gate (which is very unlikely), there was no erroneous
match in CAM output for the queries.
Gate Width: Higher #inputs results in lower overall CAMeleon la-
tency (more query bits are searched with each logic operation) and
lower energy (which decreases quadratically with #inputs), how-
ever, with increasing probability of incorrect switching behavior,
i.e., error in CAM search output. For example, with 16-input NOR
gate, the latency and energy consumption of CAMeleon reduce
by 1.95× and 3×, respectively, relative to the 8-input gate based
design. Such a rich trade-off space is attractive for approximate
CAM search, which we leave to future work.

6 CONCLUSION
The constrained execution environment in edge and embedded
computing domains, where CAM represents an ubiquitous func-
tional block, requires low-overhead reconfigurability to re-purpose
hardware resources, in order to stay within very tight area and
energy budgets. In this paper we present CAMeleon, a unique re-
configurable hardware solution which fuses spintronic PIM and
(B/T)CAM functionality in a seamless and effective fashion. We
show that CAMeleon can outperform a wide-range of CAM base-
lines, in terms of area or energy consumption (or both), while
maintaining comparable search latency – and unlike any of the
baselines, while also supporting PIM functionality.

7 ACKNOWLEDGMENTS
This work was supported in part by NSF grant no. SPX-1725420.

REFERENCES
[1] Gordon Brebner et al. 2014. High-speed packet processing using reconfigurable

computing. IEEE Micro 34, 1 (2014).
[2] Wei-Hao Chen et al. 2019. CMOS-integrated memristive non-volatile computing-

in-memory for AI edge processors. Nat. Electron. 2, 9 (2019).
[3] Woong Choi et al. 2018. Low cost ternary content addressable memory using

adaptive matchline discharging scheme. In ISCAS. IEEE.
[4] Zamshed Chowdhury et al. 2017. Efficient in-memory processing using spintron-

ics. IEEE CAL 17, 1 (2017).

[5] Zamshed I Chowdhury et al. 2019. Spintronic in-memory pattern matching. IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits 5, 2 (2019).

[6] Nazgul Dastanova et al. 2018. Bit-plane extracted moving-object detection using
memristive crossbar-cam arrays for edge computing image devices. IEEE Access
6 (2018).

[7] Xiangyu Dong et al. 2012. Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE TCAD 31, 7 (2012).

[8] Rekha Govindaraj et al. 2017. Design and analysis of STTRAM-based ternary
content addressable memory cell. ACM JETC 13, 4 (2017).

[9] Qing Guo et al. 2011. A resistive TCAM accelerator for data-intensive computing.
In MICRO. IEEE.

[10] Qing Guo et al. 2013. Ac-dimm: associative computing with stt-mram. In ISCA.
[11] Jhih-Yu Huang et al. 2018. TCAM-based IP address lookup using longest suffix

split. IEEE/ACM Trans. Netw. 26, 2 (2018).
[12] Li-Yue Huang et al. 2014. ReRAM-based 4T2R nonvolatile TCAM with 7x NVM-

stress reduction, and 4x improvement in speed-word length-capacity for normally-
off instant-on filter-based search engines used in big-data processing. In Sympo-
sium on VLSI Circuits Digest of Technical Papers. IEEE.

[13] Mohsen Imani et al. 2016. Resistive configurable associative memory for approx-
imate computing. In DATE. IEEE.

[14] Guenole Jan et al. 2014. Demonstration of fully functional 8Mb perpendicular
STT-MRAM chips with sub-5ns writing for non-volatile embedded memories. In
VLSI-Technology. IEEE.

[15] Roman Kaplan et al. 2017. A resistive cam processing-in-storage architecture for
dna sequence alignment. IEEE Micro 37, 4 (2017).

[16] Wei-Pau Kiat et al. 2020. An energy efficient FPGA partial reconfiguration
based micro-architectural technique for IoT applications. Microprocessors and
Microsystems 73 (2020).

[17] Olga Krestinskaya et al. 2018. Binary weighted memristive analog deep neural
network for near-sensor edge processing. In NANO. IEEE.

[18] Olga Krestinskaya et al. 2019. Neuromemristive circuits for edge computing: A
review. IEEE Trans. Neural Netw. Learn. Syst 31, 1 (2019).

[19] Shuangchen Li et al. 2016. Nvsim-cam: a circuit-level simulator for emerging
nonvolatile memory based content-addressable memory. In ICCAD. IEEE.

[20] Hiroki Maehara et al. 2011. Tunnel magnetoresistance above 170% and resistance–
area product of 1 Ω (`m) 2 attained by in situ annealing of ultra-thin MgO tunnel
barrier. Appl. Phys. Express 4, 3 (2011).

[21] Shoun Matsunaga et al. 2012. A 3.14 um 2 4T-2MTJ-cell fully parallel TCAM
based on nonvolatile logic-in-memory architecture. In VLSIC. IEEE.

[22] Xuan-Thuan Nguyen et al. 2018. An FPGA-based hardware accelerator for
energy-efficient bitmap index creation. IEEE Access 6 (2018).

[23] Hiroki Noguchi et al. 2015. 7.5 A 3.3 ns-access-time 71.2 `W/MHz 1Mb embedded
STT-MRAM using physically eliminated read-disturb scheme and normally-off
memory architecture. In ISSCC. IEEE.

[24] Naoya Onizawa et al. 2012. High-throughput low-energy content-addressable
memory based on self-timed overlapped search mechanism. In ASYNC. IEEE.

[25] Somnath Paul et al. 2008. Reconfigurable computing using content addressable
memory for improved performance and resource usage. In DAC.

[26] Yuriy V Pershin et al. 2011. Neuromorphic, digital, and quantum computation
with memory circuit elements. Proc. IEEE 100, 6 (2011).

[27] Bipin Rajendran et al. 2011. Demonstration of CAM and TCAM using phase
change devices. In IMW. IEEE.

[28] Salonik Resch et al. 2019. PIMBALL: Binary Neural Networks in Spintronic
Memory. 16, 4, Article 41 (Oct. 2019). https://doi.org/10.1145/3357250

[29] Salonik Resch et al. 2020. MOUSE: Inference In Non-volatile Memory for Energy
Harvesting Applications. In MICRO. IEEE.

[30] Byungkyu Song et al. 2016. A 10T-4MTJ nonvolatile ternary CAM cell for reliable
search operation and a compact area. IEEE Trans. Circuits Syst. II Express Briefs
64, 6 (2016).

[31] Hsiang-Jen Tsai et al. 2017. Energy-efficient TCAM search engine design using
priority-decision in memory technology. IEEE TVLSI 25, 3 (2017).

[32] Chengzhi Wang et al. 2018. A novel MTJ-based non-volatile ternary content-
addressable memory for high-speed, low-power, and high-reliable search opera-
tion. IEEE Trans Circuits Syst I Regul Pap 66, 4 (2018).

[33] Hasan Erdem Yantır et al. 2018. A Hybrid Approximate Computing Approach
for Associative In-Memory Processors. IEEE Trans. Emerg. Sel. Topics Circuits
Syst. 8, 4 (2018), 758–769. https://doi.org/10.1109/JETCAS.2018.2852701

Session 2A: Emerging Computing & Post-CMOS Technologies GLSVLSI '21, June 22–25, 2021, Virtual Event, USA

63

https://doi.org/10.1145/3357250
https://doi.org/10.1109/JETCAS.2018.2852701

	Abstract
	1 Introduction
	2 Basics
	2.1 CAM Architecture
	2.2 Computational RAM (CRAM) Basics

	3 CAMeleon Architecture
	3.1 Overview
	3.2 CAM operations in CRAM
	3.3 Hardware Organization

	4 Evaluation Setup
	5 Evaluation
	5.1 Performance analysis
	5.2 Sensitivity analysis

	6 Conclusion
	7 Acknowledgments
	References

