
ACR: Amnesic Checkpointing and Recovery

Ismail Akturk

Electrical Engineering and Computer Science

University of Missouri, Columbia

Columbia, MO 65211, USA

akturki@missouri.edu

Ulya R. Karpuzcu

Electrical and Computer Engineering

University of Minnesota, Twin Cities

Minneapolis, MN 55455, USA

ukarpuzc@umn.edu

Abstract—Systematic checkpointing of the machine state
makes restart of execution from a safe state possible upon
detection of an error. The time and energy overhead of check-
pointing, however, grows with the frequency of checkpointing.
Considering the growth of expected error rates, amortizing
this overhead becomes especially challenging, as checkpointing
frequency tends to increase with increasing error rates. Based
on the observation that due to imbalanced technology scaling,
recomputing a data value can be more energy efficient than
retrieving (i.e., loading) a stored copy, this paper explores how
recomputation of data values (which otherwise would be read
from a checkpoint from memory or secondary storage) can
reduce the machine state to be checkpointed, and thereby,
the checkpointing overhead. Even in a relatively small scale
system, recomputation-based checkpointing can reduce the
storage overhead by up to 23.91%; time overhead, by 11.92%;
and energy overhead, by 12.53%, respectively.

Keywords-checkpointing; recovery; recomputation;

I. INTRODUCTION

Scalable checkpointing is the key to enable many emerging

applications. Ready to expand their problem sizes as more

hardware resources (e.g., more cores under weak scaling)

become available, these applications challenge processing

capabilities. More hardware resources translate into more

components subject to errors, which, along with a higher

expected component error rate as an artifact of technology

scaling [1], [2], [3] (as Fig. 1 illustrates), results in a higher

probability of (system-wide) errors [4], [5], [6], [7], [8], [9].

Therefore, proper error detection and recovery becomes a

must for successful completion of any execution.

technology generation (nm)

R
e
la

ti
ve

 E
rr

o
r

R
a
te

0

50

100

150

180 130 90 65 45 32 22 16

Figure 1: Relative component error rate (8% degrada-

tion/bit/generation) [10].

Systematic (often, periodic) checkpointing of the machine

state enables backward error recovery (BER) upon detection

of an error, by rolling back to and restarting execution

from a safe (i.e., error-free and consistent) machine state.

Energy and time overhead of checkpointing the machine

state, however, grows with the frequency of checkpointing.

The expected increase in error rates makes amortization of

this overhead especially challenging, as a higher probability

of error necessitates more frequent checkpointing.

The overhead of BER spans the overhead of checkpointing

and the overhead of recovery (which entails roll-back +

restart). The time or energy overhead of checkpointing,

ochk, applies every time the system creates a checkpoint;

the time and energy overhead of recovery, orec, every time

the execution restarts from the most recent checkpointed

(safe) state after detection of an error. Depending on the

interaction among parallel tasks of execution during check-

pointing and recovery, BER schemes typically form two

major classes: coordinated and uncoordinated [11], [12].

Coordinated schemes enforce tight lock-step coordination

(i.e., synchronization) among all parallel tasks every time

the system creates a checkpoint or triggers recovery, and

hence, generally incur a higher overhead. Uncoordinated

schemes address this overhead by omitting coordination or

confining it only to tasks interacting with each other during

the given time window, which as a downside complicates

the establishment of a consistent error-free global state.

The checkpointing overhead, ochk is proportional to the

time or energy spent on storing the checkpointed state (to

memory or secondary storage), owr,chk, and the number

of checkpoints, #chk taken throughout execution (which

represents a proxy for the checkpointing frequency). Putting

it all together,

ochk = #chk × owr,chk (1)

applies. The recovery overhead, orec, on the other hand,

includes the time or energy (spent on useful work and

lost) since the most recent safe checkpoint, owaste, and the

time or energy spent on restoring the state captured by the

most recent safe checkpoint, oroll−back. If the number of

recoveries (as dictated by the expected error rate) throughout

30

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00013

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

execution is #rec, the total recovery overhead becomes:

orec = #rec × (owaste + oroll−back) (2)

Imbalances in technology scaling render the energy con-

sumption (and latency) of data storage and communica-

tion significantly higher than the energy consumption (and

latency) of actual data generation, i.e., computation [13],

[14]. As a result, whenever a data value is needed, re-

generating (i.e., recomputing) it may easily become more

energy-efficient than retrieving the stored copy from the

memory [15]. Briefly, a value can be recomputed if the

sequence of producer instructions are known and their input

operands are available at the expected time of recomputation

(more discussion and details are given in Section II-B).

In this paper, we introduce a novel BER framework

based on recomputation: Amnesic Checkpointing and Re-

covery, in short, ACR. The idea is opportunistically omitting

checkpointing of (recomputable) data, and thereby reducing

the machine state to be checkpointed, by relying on the

ability to recompute omitted data values during recovery

(i.e., when they are actually needed). Therefore, ACR by

definition cuts the overhead of checkpointing, but incurs an

additional overhead during recovery due to recomputation.

Recomputing each data value omitted from checkpointing is

usually less energy hungry and time consuming than reading

from a checkpoint in memory. However, each recomputed

value also needs to be written back to main memory to

establish a consistent recovery line. That said, while the main

benefit comes from reducing checkpointing overhead, ACR

can still cut the overall BER overhead significantly. This is

simply because the checkpointing frequency has to be much

higher than the (expected) recovery frequency to guarantee

forward progress. In the end, a recovery is only needed if

an error occurs.

Putting it all together, ACR can decrease the time or

energy spent on storing the checkpointed state, owr,chk, by

omitting a (recomputable) subset of the updated memory val-

ues from checkpointing. This in turn can decrease ochk, even

if #chk remains the same. However, the recovery overhead

orec now has to incorporate the overhead of recomputation

(of the values which were omitted from checkpointing),

orcmp, which also includes the overhead of write-back. Still,

the time or energy spent on restoring the state of the most

recent safe checkpoint, oroll−back, can decrease, since ACR

generally results in smaller checkpoints in size:

orec,ACR = #rec× (owaste+oroll−back,rcmp+orcmp) (3)

Therefore, for ACR to hold recovery overhead at bay,

orec,ACR ≤ orec should be the case, which implies:

oroll−back,rcmp + orcmp ≤ oroll−back (4)

In this paper, we explore how amnesic checkpointing

and recovery can help reduce the overhead of check-

pointing without compromising the overhead of recovery

in terms of time, energy, and storage. Without loss of

generality, ACR can build upon any BER baseline aug-

mented with support for recomputation. As a BER variant,

ACR is fundamentally different than deterministic record

and replay [16], [17], [18], [19], where the main goal is

debugging by trying to regenerate all events during execution

(until bug manifestation occurs) from a known state onward

step by step. For ACR, recomputation is strictly confined to

recalculation of each data value omitted from checkpointing.

This translates into re-executing only a short sequence of

arithmetic/logic instructions to generate the respective data

value, only during recovery upon error detection (if at all).

The sequence of these recomputing instructions form a

backward slice [20], and it does not include any memory

instructions (i.e., load/store), by construction. This, as well,

is in stark contrast with classic replay, where each and every

instruction gets re-executed, irrespective of the type, possibly

including system calls and I/O events.

In the following, Sec. II provides a background on BER,

and recomputation; Sec. III discusses ACR basics; Sec. IV

and V provide the evaluation of the ACR; Sect VI covers

the related work; and Sec. VII concludes the paper.

II. BACKGROUND

A. Backward Error Recovery (BER)

Checkpointing: Checkpointing serves establishment of a

safe (i.e., error-free and consistent) machine state to roll-

back to and recover from upon detection of an error,

thereby ensuring forward progress in the presence of errors.

Without loss of generality, ACR can build upon any BER

baseline augmented with support for recomputation, and

we consider shared memory many-cores featuring directory-

based cache coherence, unless explicitly stated otherwise.

We start our analysis with global coordinated checkpointing

and recovery [21], [22], [23], [24], and cover local coor-

dinated schemes [25], [26], as well. Under global (local)

checkpointing, all (communicating) cores periodically co-

operate to checkpoint the machine state. Specifically, at the

beginning of each checkpointing period, all (communicating)

cores pause the computation to participate in creating the

checkpoint.

We build ACR upon log-based incremental in-memory

checkpointing, similar to [27], [23], [24], which also rep-

resents a relatively lower-overhead baseline for comparison,

not to favor ACR. In this case, upon each memory update,

a record for the old value goes into a log stored in memory.

This log corresponds to the checkpoint. As opposed to

the entire machine state, the log constitutes a record of

values updated only within the time window between two

consecutive checkpointing events. Establishing a checkpoint

involves writing all dirty cache lines back to memory and

recording (the rest of) each core’s architectural state. For

dirty lines, the memory controller only updates the log with

the corresponding old value, if the update represents the very

31

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

first modification since the last checkpoint. Thus, similar

to [23], a modified cache line gets logged only once between

a pair of consecutive checkpoints. The directory controller

keeps an additional bit per memory line to keep track of

whether the line has already been logged for the current

checkpoint interval. The controller sets this bit upon logging

the line, and clears it upon establishing a new checkpoint.

In the following, we will refer to this bit as log.

In-memory checkpointing, by construction, incurs a lower

time and energy overhead compared to (more traditional)

checkpointing to a secondary storage. In-memory check-

pointing may correspond to a stand-alone checkpointing

scheme or represent the first level in a hierarchical check-

pointing framework, as well. Our observations generally

apply under both options.

Figure 2: Recovery from an error.

Error Detection and Recovery: In this work, we assume

a fail-stop error model, where data memory and checkpoint

logs do not suffer from any errors, similar to [27]. Vari-

ous protection mechanisms such as ECC [28] or memory

raiding [29] can achieve this. To detect errors, the system

can rely on modular redundancy [30] or error detection

codes (e.g., CRC). Error detection is not instantaneous,

therefore, a lag between the occurrence of an error and its

detection generally applies, which is referred to as error

detection latency. As a consequence, corrupted state may

get checkpointed, even if the error detection latency is no

longer than the checkpoint period. Figure 2 illustrates an

example, where an error occurs right before Ckpt2 gets

taken, and is detected only after Ckpt2 is established, thereby

corrupting the checkpointed state. In this particular case,

the time elapsed between the establishment of Ckpt2 and

the detection of the error is shorter than the error detection

latency, hence, there is no guarantee for Ckpt2 to be error-

free. To recover from the error, the system should roll-back

to the second most recent checkpoint at hand, i.e., Ckpt1,

instead of the most recent Ckpt2. Therefore, if the error

detection latency is no longer than the checkpoint period,

which applies throughout this study, keeping most recent

two checkpoints suffices.

B. Recomputation

Imbalances in technology scaling render the energy con-

sumption (and latency) of data storage and communication

significantly higher than the energy consumption (and la-

tency) of actual data generation, i.e., computation [13], [14].

As a result, whenever a data value is needed (i.e., has to

be loaded from memory), re-generating (i.e., recomputing)

the respective value can easily become more energy-efficient

than retrieving the stored copy from memory [15].

What makes data recomputable? The basic idea of

data recomputation is to eliminate energy-hungry memory

accesses (be it a read or a write) by relying on the ability to

recalculate the data values, when needed. To do so, the sys-

tem has to know the set and sequence of instructions which

produce the needed data values. Each such sequence can be

thought of as a backward slice [20], and is value-centric,

i.e., strictly contains only arithmetic/logic instructions and

no loads or stores. In the rest of the paper, we will refer to

these sequences of instructions as Slices, in short.

To perform recomputation using a Slice, both the Slice

itself and its input operands (i.e., the input operands of its

terminal instructions) have to be available at the expected

time of recomputation. A simple way to ensure this is

to record the input operands and their mappings to cor-

responding Slices. A small buffer would be sufficient to

keep the input operands since the lifetime of each input

operand is restricted with the scope of a Slice – a buffer

entry can be reclaimed once recomputation of a given Slice

finishes. Having low-cost access to input operands and Slices

(necessarily, without accessing memory) is the key in this

case. Slices themselves form short sequences of at most tens

of instructions. The length is limited. This is because recom-

putation overhead increases with each instruction added to

the sequence, and recomputation cannot deliver any benefit

if this overhead exceeds the overhead of actual memory

accesses (which would be performed if recomputation was

not the case).

Another requirement for correctness is to ensure that

the architectural state remains intact during recomputation

– specifically, that the contents of the registerfile are not

lost/altered. One way to achieve this is to checkpoint the

registerfile before recomputation starts (and restore it back at

the end of recomputation), however, this approach incurs an

overhead that may easily offset the benefit of recomputation.

A more efficient approach would be to deploy a scratchpad

(similar to the registerfile in nature) and to use the scratchpad

as the equivalent of the registerfile during recomputation,

while keeping the registerfile intact. To facilitate recomputa-

tion using such a scratchpad, the register references of Slice

instructions should be mapped to scratchpad entries. How-

ever, for ACR to work, this condition is not mandatory. This

is because, ACR performs recomputation only if an error

gets detected, which necessitates rollback and recovery. In

this case, the contents of the registerfile will be overwritten

by the most recent stable checkpoint anyways. This gives

an opportunity to carry out recomputation simply using the

registerfile, before the checkpoint is restored.

Our analysis so far sketches a minimal architectural

support to facilitate recomputation. The design space is

32

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

very rich, and there are many different ways to realize

this recomputation-based execution model. In the following,

we provide the details of ACR which is, without loss of

generality, based on this example implementation. Note that

ACR can use other realizations of the recomputation-based

execution model, as well. The only necessary condition for

ACR to work is to have the ability to recompute the data

values efficiently, at the time they are needed.

III. AMNESIC CHECKPOINTING AND RECOVERY (ACR)

Here, we cover the basics and execution semantics of ACR

under checkpointing and recovery upon the onset of an

error.

At the end of each checkpointing interval, ACR identifies

and omits the recomputable subset of data values (which

otherwise would be included in the checkpoint being taken)

from checkpointing. Thereby, ACR can reduce the check-

point size, which in turn reduces the owr,chk component of

the checkpointing overhead per Equation 1, i.e., the time or

energy spent on storing the checkpointed state to memory. At

the extreme, all values which otherwise would be included

in a checkpoint may be recomputable. If this is the case,

ACR would also be able to eliminate a subset of checkpoints

entirely, and thereby reduce the #chk component of the

checkpointing overhead per Equation 1, i.e., the number of

checkpoints.

Upon the onset of an error, ACR triggers the recom-

putation of any data value which was omitted from the

checkpoint being restored. Such recomputation incurs the

overhead captured by orcmp in Equation 3, but, at the same

time, can cut back on the time or energy spent on restoring

the checkpointed state from memory (i.e., oroll−back in

Equation 2).

By construction, ACR is more effective in cutting the

checkpointing overhead than the recovery overhead. This,

however, does not impair ACR’s overall effectiveness, as

checkpointing frequency typically is much higher than the

recovery frequency. In the evaluation, we will characterize

this trade-off.

A. Amnesic Checkpointing

The first question is how to identify recomputable data

values which can be omitted from checkpointing. Under

incremental in-memory checkpointing (Section II-A), only

a subset of the store instructions trigger checkpointing –

specifically, only the first updates to the same memory

address (within the given checkpointing interval). ACR

hence relies on a compiler pass to track store instructions.

Specifically, using data dependency graphs, the compiler

pass extracts Slices to produce the values corresponding to

store instructions. Recall that Slices are backward slices of

arithmetic/logic instructions and they do not contain any

memory instructions (i.e., load/stores) or branches.

Figure 3: Slice Example.

Fig. 3 illustrates a running example of how to derive

an ACR Slice following a basic backward slicing process.

Fig. 3(a) shows a pseudo-code excerpt, where we want to

create a backward slice for the stored value sumArr. Fig. 3(b)

highlights the instructions (in boxes) that are involved in

the calculation of sumArr. Fig. 3(c) shows the resulting

backward slice where the arrows indicate the control flow.

Although any ACR Slice is a backward slice, by definition,

it should not include any memory instructions 1. However,

in Fig. 3(c), the derived backward slice contains memory

instructions (at the top) including loads (for reading the

values of i and j, respectively), and a store (at the bottom)

to write sumArr to memory.

How can we build a Slice given a backward slice like in

Fig. 3(c)? This question boils down to how we can eliminate

costly memory operations from the backward slice. As we

pointed out in Section II-B, the input operands to a Slice

should reside close to the processor (e.g., in a buffer) to ex-

clude costly memory accesses. Assuming that such a buffer

exists, obtaining input operands translates into copying these

inputs from the dedicated buffer (instead of from memory) to

the designated registers. The result is the Slice for sumArr in

Fig. 3(d). Notice that in Fig. 3(d), the store instruction is not

part of the Slice – it is not required for recomputing sumArr,

but it should be executed (in the ACR context upon recovery)

to preserve the program semantics and to establish a global

consistent memory state upon recovery. Since a particular

Slice can be used to generate multiple values (not just one)

and can also exploit locality (once loaded in cache, no need

to access memory), recomputation can be more efficient than

simply buffering the corresponding (recomputed) values.

Once Slices are identified, they can be embedded into the

binary to facilitate recomputation at runtime. In selecting

Slices to embed into the binary, the compiler has a choice

– since not all of the Slices are likely to be cost-effective.

One option is, using probabilistic analysis, estimating the

anticipated cost of recomputation along each Slice when

1This is also true for branch instructions. The example includes a loop
to ease illustration, which would be unrolled in reality. Of course, there
is a practical limit on how aggressive we can unroll the loops to generate
slices (as the number of instructions increases in a slice as we unroll the
given loop, the total energy cost of a slice increases).

33

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

compared to reading, i.e., loading the respective data value

from a checkpoint in memory, and including the Slice only

if more cost-effective – where cost can be delay, energy

or a combination of both, without loss of generality. In

this study, we instead take a more greedy approach of

minimal complexity, and consider all Slices which have

a lower number of instructions than a preset threshold

(which typically remains less than 10, and in Section V

we quantify the impact). The insight is that the overhead

of recomputation along a Slice increases with its number

of instructions. Therefore, capping the instruction count can

effectively hold recomputation overhead under control (as

we will further demonstrate in Section V-D1). Slices are

confined to thread-local data.

The next question is how to embed Slices into the binary,

to trigger recomputation upon recovery. The only critical

piece of information is associating the start address of

each Slice (i.e., the address of the first instruction in the

backward slice) with the memory address of the respective

data value (which will be regenerated by recomputation

along the Slice). One way to communicate this information

to the runtime is introducing a special instruction to associate

these two effective addresses. We will refer to this in-

struction as ASSOC-ADDR, which gets atomically executed

with the corresponding store instruction. ACR tracks store

instructions to identify data values which can be omitted

from checkpointing. In this case, the corresponding store

instructions are always performed; what is omitted is the

inclusion of the respective (recomputable) data value into

the corresponding checkpoint.

ACR control logic that we call ACR handler (which

consists of a checkpoint handler and a recovery handler)

orchestrates checkpointing and recovery. ACR further keeps

a small size dedicated buffer called Address Map, AddrMap,

for bookkeeping. Each time an ASSOC-ADDR instruction

is encountered, ACR checkpoint handler records the corre-

sponding <memory address,Slice address> asso-

ciation into AddrMap. Next, the handler asks the memory

controller to exclude the corresponding (recomputable) value

from the next checkpoint. To this end, ACR leverages the

log bit of its underlying BER framework, as explained in

Section II-A. By definition, the log bit controls which mem-

ory addresses to exclude from checkpointing. Eventually, the

size of the next checkpoint reduces as more (recomputable)

values are excluded from checkpointing via ASSOC-ADDR

instructions.

Fig. 4a summarizes ACR checkpoint handler control dur-

ing checkpointing. Clearly, the number of values that can

be omitted from checkpointing cannot exceed the number of

records in AddrMap. Such <memory address,Slice

address> pairs have to remain in AddrMap as long as

the established checkpoint for the corresponding interval

remains in memory, such that upon detection of an error,

recomputation along Slices can restore the values omitted

(a) (b)

Figure 4: Control flow during (a) Checkpoint; (b) Recovery.

from checkpointing – in coordination with the established

checkpoint for roll-back. As covered in Section II-A, under

the assumption that the error detection latency does not

exceed the checkpointing period, retaining two most re-

cent checkpoints suffices. Therefore, AddrMap should only

record the mappings for the two most recent checkpoints.

AddrMap is an on-chip container similar to the registerfile,

and each AddrMap record is much smaller than a typical

checkpoint that makes it cheaper to keep AddrMap record

for recomputation, rather than the values (to be recomputed)

themselves.

B. Amnesic Recovery

Upon detection of an error, the ACR recovery handler

orchestrates roll-back to the most recent safe global recovery

line, by triggering recomputation along Slices for each

value excluded from checkpointing, in coordination with

the restoration of the most recent safe checkpoint. There

is no need for separate bookkeeping for the values missing

from the most recent safe checkpoint, since AddrMap

contains the necessary information to fire recomputation.

After recalculating the missing values and storing them back

to their destination addresses, the ACR recovery handler

restores the remaining states in the checkpoint, and resumes

execution from this point onward. Fig. 4b summarizes ACR

recovery handler control during recovery.

In this study, we confine recomputation to memory val-

ues only. Upon recomputation of a missing value from

the checkpoint, ACR accesses memory to write-back the

respective value, to establish a consistent recovery line. ACR

checkpoints register values, as well, as part of the architec-

tural state, but does not consider these for recomputation.

C. Microarchitecture Support

Fig. 5 shows the main microarchitectural components of

ACR and how they interact with the memory subsystem. The

highlighted (darker) portion captures the support for recom-

putation, following Section II-B without loss of generality.

In the end, the necessary condition for ACR to work is the

ability to recompute the data values at the time they are

needed, irrespective of how it is implemented. ACR would

work with different implementations of the recomputation

logic in Fig. 5, as well. On-chip components of ACR are

the AddrMap, the ACR checkpoint handler and the ACR

recovery handler. The ACR checkpoint handler and the ACR

34

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Overview of ACR microarchitecture.

recovery handler are hardware structures similar to on-chip

cache controllers.

For each write-back request, the memory controller has to

decide (i) whether the request corresponds to the first update

to the respective memory line since the last checkpoint was

taken, and (ii) whether the current value v of the respective

memory line (i.e., the value before the write-back takes

place) is recomputable. The memory controller uses the log

bit to manage both (i) and (ii), as explained in Sections II-A

and III-A. Specifically, as covered in Section III-A, upon

encountering a recomputable value v, the ACR checkpoint

handler lets the memory controller know that the value v

can be recomputed, and therefore, be omitted from check-

pointing. The memory controller in turn sets the log bit

accordingly.

The number of (stores corresponding to the) values that

can be excluded from checkpoint depends on the size of

AddrMap, specifically, on how many Slices AddrMap can

keep track of. Fortunately, we do not need an excessively

large AddrMap. Recall that we only need to checkpoint

the old values upon the very first write-backs (to unique

addresses) when a new checkpoint is established. Therefore,

the number of Slices is not a function of how many times an

address is updated, but how many unique memory addresses

are updated in a given checkpoint interval. Naturally, the

latter is bounded by the period of checkpointing. As the

period gets longer, the probability of having more unique

memory addresses updated increases. At the same time, as

the period gets longer, the amount of useful work lost (i.e.,

owaste) upon detection of an error increases. Therefore, the

checkpointing period cannot get too long, and puts an upper

bound on how many unique Slices ACR should keep track

at runtime.

D. Putting It All Together

ACR can reduce the size of each checkpoint, and thereby

the storage overhead, by cutting the number of values to

be checkpointed in each interval. A reduction in checkpoint

size can easily translate into energy savings, as well as

performance gain, due to the lower number of expensive

memory read (during recovery) and write operations (during

checkpointing), respectively.

Table I: Simulated architecture.

Technology node: 22nm

Freq: 1.09 GHz, 4-issue, in-order, 8 outstanding ld/st

L1-I (LRU): 32KB, 4-way, 3.66ns

L1-D (LRU, WB): 32KB, 8-way, 3.66ns

L2 (LRU, WB): 512KB, 8-way, 24.77ns

Main Memory 120ns, 7.6 GB/s/controller, 1 contr. per 4-cores

Recovery upon detection of an error involves recompu-

tation of missing values from the checkpoint and restoring

the rest of the state from the established checkpoint. Recom-

putation along each Slice incurs a performance and energy

overhead; however, it is not prohibitive since the number of

instructions in Slices are bounded. During recovery, ACR

introduces the extra overhead of recomputation, but at the

same time, it reduces the number of values to be read from

the checkpoint in memory for restoration. The benefit of

the latter may or may not be comparable to the overhead

of recomputation. Considering the anticipated frequency of

checkpointing and recovery, recovery clearly is a much less

frequent event when compared to checkpointing, thus ACR’s

gain under checkpointing outweighs its potential loss under

recovery.

IV. EVALUATION SETUP

To evaluate the impact of amnesic checkpointing and re-

covery on execution time and energy, we experimented

with eight benchmarks from the NAS [31] suite2. We ran

all the instructions of these benchmarks in the region-of-

interest (where main computation takes place) with 8/16/32

threads on a simulated 8/16/32-core system. We imple-

mented recomputation, checkpointing, and recovery under

ACR in Snipersim [32]. We extracted energy estimates from

McPAT [33] integrated with Snipersim. Table I summarizes

the configuration for the simulated system.

In the following, all of the reported statistics include

the overhead of any hardware structure required to support

amnesic checkpoint and recovery per Fig. 5. We model

access latency and energy for AddrMap and the buffer that

keeps the input operands to Slices after L1-D. Accordingly,

we model the ASSOC-ADDR instruction after a store to L1-

D; the checkpoint handler and the recovery handler, after a

cache controller.

We implemented ACR’s compiler pass to embed Slices

into the binary as a Pin [34] tool. As Snipersim relies on

a Pin-based front-end, a seamless integration was possi-

ble. We used a predetermined threshold for Slice length:

Slices exceeding threshold are excluded from the binary to

prohibit excessive recomputation overhead along Slices. In

Section V-D1, we will discuss the impact of the threshold

value on checkpointing overhead.

We consider the following configurations for comparison:

2with the exception of ep due to simulation complications

35

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

• NoCkpt: Error-free execution without any checkpointing

or recovery. This baseline does not incur any checkpoint-

ing or recovery overhead.
• CkptNE : Periodic coordinated global checkpointing un-

der error-free execution, which incurs no recovery over-

head. Only incurs checkpointing overhead.
• CkptE : Periodic coordinated global checkpointing in the

presence of errors, such that recovery overhead becomes

visible on top of checkpointing overhead.
• ReCkptNE : ACR incorporated into coordinated global

checkpointing, under error-free execution, which incurs no

recovery overhead. Only incurs checkpointing overhead.

ACR can reduce checkpoint size by omitting data values

from checkpointing.
• ReCkptE : ACR incorporated into coordinated global

checkpointing, in the presence of errors, such that re-

covery overhead becomes visible on top of checkpointing

overhead. ACR can reduce checkpoint size by omitting

data values, which can be recomputed upon recovery, from

checkpointing.
• CkptNE,Loc: Coordinated local checkpointing under

error-free execution, which incurs no recovery overhead.

Only incurs checkpointing overhead.
• CkptE,Loc: Coordinated local checkpointing in the pres-

ence of errors, such that recovery overhead becomes

visible on top of checkpointing overhead.
• ReCkptNE,Loc: ACR incorporated into coordinated local

checkpointing, under error-free execution, which incurs no

recovery overhead. Only incurs checkpointing overhead.

ACR can reduce checkpoint size by omitting data values

from checkpointing.
• ReCkptE,Loc: ACR incorporated into coordinated local

checkpointing, in the presence of errors, such that recov-

ery overhead becomes visible on top of checkpointing

overhead. ACR can reduce checkpoint size by omitting

data values, which can be recomputed upon recovery, from

checkpointing.

We adjust the checkpointing frequency based on expected

error rates and the execution times of the applications.

Without loss of generality, we distribute the checkpoints

uniformly over the execution time.

V. EVALUATION

A. Checkpointing Overhead

We start the evaluation with a characterization of the check-

pointing overhead under ACR. For a crisp comparison, we

use the configurations from Section IV under error-free

execution, which only incur the overhead of checkpointing.

Specifically, we use NoCkpt as a baseline for comparison,

where no checkpointing takes place. Fig. 6 shows the execu-

tion time overhead of checkpointing and recovery. The first

and third columns in each group show the execution time

overhead of checkpointing for the evaluated benchmarks

under CkptNE and ReCkptNE , respectively. As expected,

CkptNE and ReCkptNE perform consistently worse than

NoCkpt due to the checkpointing overhead. However, via

recomputation, ReCkptNE is very effective in reducing the

CkptNE’s time overhead due to checkpointing, by up to

28.81% (for is), and 11.92%, on average. The smallest

reduction is 2.12% for cg, where CkptNE’s time overhead is

already relatively low. This is because cg’s checkpoint size

per checkpointing interval is relatively small and the % of

time spent in checkpointing accounts for only ≈ 9% of the

total execution time.

Fig. 7 shows the corresponding energy overhead of check-

pointing and recovery, normalized to NoCkpt. The first and

third columns in each group show the energy overhead of

checkpointing for the evaluated benchmarks under CkptNE

and ReCkptNE , respectively. The general trend is similar to

the time overhead. ReCkptNE reduces the energy overhead

of CkptNE by up to 26.93% (for is), and 12.53%, on average.

Among the benchmarks, is is very amenable to recomputa-

tion: as the majority of the updated memory values can be

recomputed (in case of recovery), ReCkptNE can exclude

these from checkpoints, which leads to a higher reduction in

checkpointing overhead w.r.t. CkptNE . The smallest energy

reduction is 1.75% (for cg), in line with Fig. 6.

B. Recovery Overhead

In Sec. V-A, we characterized purely the overhead of check-

pointing (assuming error-free execution). In this section,

the goal is quantifying the overhead of recovery, in the

presence of errors. Recovery requires the establishment of

a globally consistent state among all cores. For CkptE ,

this translates into each core rolling back to restore the

machine state corresponding to the most recently established

checkpoint. This also applies to ReCkptE , but ReCkptE
needs to recompute the data values omitted from check-

pointing, on top. Such data values have the corresponding

Slices baked into the binary. Therefore, although ReCkptE
can reduce the checkpointing overhead, it incurs an extra

overhead due to recomputation during recovery. In Fig. 6, the

second and fourth columns in each group show the execution

time overhead of CkptE and ReCkptE , respectively (w.r.t.

NoCkpt). Notice that in CkptE and ReCkptE , we have an

error during execution. As expected, we observe higher time

overhead under CkptE and ReCkptE than under CkptNE and

ReCkptNE , respectively. CkptE and ReCkptE both incur the

recovery overhead on top of the checkpointing overhead,

as shown in the Fig. 6. Still, ReCkptE is very effective in

reducing the time overhead of CkptE : although ReCkptE
needs to recompute the omitted values (from checkpointing,

and thus incurs additional recovery overhead), reduction

of checkpointing overhead (due to the reduced checkpoint

size) and reduction of the restore overhead (again, due to

the reduced checkpoint size) outweigh the corresponding

overhead of recomputation. As a result, ReCkptE reduces

the time overhead of CkptE by up to 26.68% (for is), and

36

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

bt cg dc ft is lu mg sp

C
k
p

t N
E

C
k
p

t E

R
e

C
k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p

t E

R
e

C
k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p

t E

R
e

C
k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p

t E

R
e

C
k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p

t E

R
e

C
k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p

t E

R
e

C
k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p

t E

R
e

C
k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p

t E

R
e

C
k
p
t N

E

R
e
C

k
p

t E

0

25

50

75

E
xe

c
.

T
im

e
 O

ve
rh

e
a

d
 (

%
)

Recovery
Checkpoint

Figure 6: Time overhead of checkpointing and recovery.

bt cg dc ft is lu mg sp

C
k
p

t N
E

C
k
p
t E

R
e
C

k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p
t E

R
e
C

k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p
t E

R
e
C

k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p
t E

R
e
C

k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p
t E

R
e
C

k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p
t E

R
e
C

k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p
t E

R
e
C

k
p
t N

E

R
e
C

k
p

t E

C
k
p

t N
E

C
k
p
t E

R
e
C

k
p
t N

E

R
e
C

k
p

t E

0

25

50

75

E
n

e
rg

y
 O

ve
rh

e
a

d
 (

%
)

Recovery
Checkpoint

Figure 7: Energy overhead of checkpointing and recovery.

12.39%, on average. The smallest reduction is 1.9% for cg,

in line with our previous observations.

The second and fourth columns of each group in Fig. 7

show the percentage of the energy overhead of CkptE and

ReCkptE (w.r.t. NoCkpt). The energy overhead follows the

very same trend as the time overhead. ReCkptE reduces

the energy overhead of CkptE by up to 30% (for dc), and

13.47%, on average. The smallest energy reduction is 1.86%

(for cg).

Putting it all together, Fig. 8 shows the percentage re-

duction of energy-delay product (EDP) of ReCkptNE and

ReCkptE w.r.t. CkptNE and CkptE respectively, as a proxy

for energy efficiency. EDP provides a notion of balance

between the time overhead and the energy consumption. We

observe that ReCkptNE reduces EDP by up to 47.98% (for

is), and 22.47%, on average, when compared to CkptNE .

Similarly, ReCkptE reduces EDP by up to 48.07% (for

dc), and 23.41%, on average, when compared to CkptE .

Although is benefits more from ReCkptE in terms of perfor-

mance, dc has a higher energy reduction due to ReCkptE ,

which in turn leads to a higher EDP reduction.

bt cg dc ft is lu mg sp

0

10

20

30

40

50

E
D

P
 R

e
d
u
c
ti
o
n
 (

%
)

ReCkptE
ReCkptNE

Figure 8: EDP reduction under ReCkptNE and ReCkptE
w.r.t. CkptNE and CkptE respectively.

Overall, we observe that ACR can effectively reduce the

overhead of checkpointing, as well as, of recovery. The ef-

fectiveness highly depends on the overhead of recomputation

bt cg dc ft is lu mg sp

0

20

40

60

S
iz

e
 R

e
d
u
c
ti
o
n
 (

%
)

Overall
Max

Figure 9: Percentage reduction of ckpt. size under

ReCkptNE .

along Slices and on how many values can be omitted from

checkpointing. We will revisit the impact of Slice length on

checkpoint size reduction in Sec. V-D1.

C. Storage Complexity

The main benefit of ACR stems from the reduction of check-

point size, which has two critical implications: reducing the

data size to be (i) moved to (and retrieved from); (ii) stored

in the designated memory area for checkpointing. In addition

to (i), (ii) can also reduce the energy consumption, e.g., due

to less leakage or refresh in case of DRAM. At the same

time, a reduction in checkpoint sizes can lead to a reduction

in the memory footprint of checkpointing, reducing storage

complexity.

The Overall columns in Fig. 9 show % reduction in

the overall checkpoint size (i.e. total amount of data to

be checkpointed) under ReCkptNE w.r.t. CkptNE . Among

all benchmarks, is benefits the most from recomputation,

where the overall checkpoint size reduces by 75.74% under

ReCkptNE . On the other hand, cg is less responsive, and

the checkpoint size reduces by only 6.99%. The average

checkpoint size reduction over all benchmarks is 38.31%.

Recall that, per Section II-A, if the error detection la-

tency is no longer than the checkpoint period, which ap-

37

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

Table II: Total Checkpoint size reduction w.r.t. Slice length.

Benchmark

Checkpoint Size Reduction (%)

Threshold

10 20 30 40 50

bt 36.54 45.14 85.36 88.36 89.91

cg 6.99 67.06 89.71 89.82 89.82

ft 23.27 70.65 88.45 99.53 99.70

ft 23.27 70.65 88.45 99.53 99.70

is3 97.39 97.42 99.54 99.54 99.54

lu 42.69 46.65 64.43 74.69 81.11

mg 11.58 19.65 87.96 90.34 90.22

sp 37.43 47.93 71.83 93.83 96.08

plies throughout this study, keeping the most recent two

checkpoints suffices to recover the global state (in case

of errors in execution). Therefore, the size of the largest

checkpoint under ACR represents a more accurate proxy for

the anticipated memory footprint reduction than the total size

of all checkpoints (as Overall columns in Fig. 9 capture).

Accordingly, the Max columns in Fig. 9 show % reduction

in the size of the largest checkpoint under ReCkptNE w.r.t.

to CkptNE . If there is no value that can be recomputed

within the largest checkpoint, ACR cannot reduce the Max

footprint. Fig. 9 reveals such a case: is has very limited

Max reduction (2.04%) under ReCkptNE ; but the highest

Overall reduction. For the rest of the benchmarks, dc shows

the largest reduction in Max of 58.3%; and ft, the smallest

of 0.05%. For ft, ACR cannot reduce the size of the

largest checkpoint (as the Max column reveals), but the total

checkpoint size can still reduce by 23.27% (as the Overall

column reveals).

As explained in Section IV, CkptNE and ReCkptNE

exclude recovery due to error-free execution, hence cleanly

capture the overhead and size implications of checkpointing.

That said, the corresponding reductions under ReCkptE
would be exactly the same as under ReCkptNE , since the

presence of errors does not change the set of values that can

be omitted from checkpointing.

D. Sensitivity Analysis

1) Impact of Slice Length on Checkpoint Size: Slice

length dictates the overhead of recomputation. Longer Slices

incur a higher recomputation overhead. The overhead of

recomputation is invisible under error-free execution, as re-

computation becomes necessary only during recovery upon

detection of an error. Throughout the evaluation, we used

a threshold of 10 instructions4 to identify the Slices to be

embedded into the binary.

A higher threshold usually translates into being able to

include more Slices into the binary, and therefore, a higher

likelihood for more values to find a corresponding Slice in

the binary (and thereby to get omitted from checkpointing).

As a result, the checkpoint sizes tend to reduce.

375.74% for threshold of 5. Not shown in the table to keep it simple.
4Except is, where we conservatively reduced the threshold to 5 to prevent

almost all (i.e., 97.39%) values to be recomputed, as Table II reveals. The
size overhead due to embedded slices remains <2%.

Table II shows the impact of Slice length on the overall

checkpoint size under ReCkptNE . As an example, for bt,

we observe that the total checkpoint size reduces by up to

89.91% when the threshold for Slice length grows up to

50 instructions; and 36.54%, when the threshold for Slice

length remains less than or equal to 10. Threshold is a

critical design parameter which dictates the overhead of

recomputation (during recovery in case of an error), and

the storage complexity of the microarchitectural support for

ACR (as larger buffers are necessary to keep track of larger

Slices).

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●20

40

60

80

100

execution timeC
k
p
t.
 S

iz
e
 R

e
d
u
c
ti
o
n
 (

%
)

● 10

20

30

40

50

Figure 10: Impact of Slice length on checkpoint size over

time for bt.

At the same time, data values that have the corresponding

Slices baked into the binary (and hence are recomputable)

are not necessarily uniformly distributed over the checkpoint

intervals. Therefore, for each checkpoint interval, the impact

of recomputation may vary (if recomputation is possible

at all). Fig. 10 shows this effect for bt, by capturing how

% reduction in checkpoint size changes over the execution

time, considering different threshold values. We observe that

ReCkptNE reduces checkpoint size more in certain check-

point intervals when compared to others. Such temporal

variation points to more optimization opportunities for ACR:

for example, instead of checkpointing periodically, adjusting

the time to checkpoint to exploit more recomputation oppor-

tunities. We leave the exploration of this to future work. We

observe a similar trend across all benchmarks.

2) Impact of Error Rate: The expected (system-wide)

error rate dictates the rollback and recovery overhead, as

captured by Equations 2 and 3. Our discussion so far char-

acterized the recovery overhead under CkptE and ReCkptE
assuming a single error within the course of execution. In

this section, we expand the analysis to execution under more

frequent onset of errors.

With increasing error rates, the expected number of er-

rors within the course of execution increases, which in

turn increases the recovery overhead due to more frequent

recoveries. Fig. 11 shows the % execution time overhead

of CkptE and ReCkptE w.r.t. NoCkpt, considering different

numbers of (up to 5) errors within the course of execu-

tion. Without loss of generality, we assume that the errors

in each case are uniformly distributed over the execution

(of region-of-interest). Not surprisingly, the execution time

overhead increases with increasing number of errors. Some

benchmarks experience very high time overhead as the error

rate increases. This is mainly because the execution time

under NoCkpt is relatively small – accordingly, the overhead

38

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

bt cg dc ft is lu mg sp

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0

25

50

75

100
E

xe
c
.

T
im

e
 O

ve
rh

e
a

d
 (

%
)

CkptE
ReCkptE

Figure 11: Time overhead of CkptE and ReCkptE considering different error rates.

bt cg dc ft is lu mg sp

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100
0

50

100

150

200

E
xe

c
.

T
im

e
 O

ve
rh

e
a

d
 (

%
)

CkptNE
ReCkptNE

Figure 12: Time overhead of CkptNE and ReCkptNE considering different numbers of checkpoints.

of rollback and recovery becomes proportionally higher.

Among the benchmarks, ft suffers the most as its overhead

for each recovery is relatively high.

While the execution time overhead patterns are very

similar for CkptE and ReCkptE , the overheads are lower in

ReCkptE since overall recovery overhead (including restor-

ing the checkpointed values and recomputing missing values

on top) is considerably lower in ReCkptE . Specifically, the

time overhead reduces by up to 26.68% (for is) for a single

error, 25.35% (for dc) for two errors, 26.87% (for dc) for

three errors, 21.58% (for dc) for four errors, and 19.92%

(for is) for five errors, respectively, in ReCkptE w.r.t. CkptE .

On average, execution time overhead reduction ranges from

≈9% up to 12% for different error rates under ReCkptE .

EDP also increases with increasing error rates. The

general trend is similar to the time overhead, but more

pronounced. Under ReCkptE EDP reduces by up to 48.07%

(for is) for a single error, 47.77% (for dc) for two errors,

50.04% (for dc) for three errors, 42.99% (for dc) for four

errors, 34.99% (for is) for five errors. On average, EDP

reduction ranges from ≈18% up to 24% for different error

rates under ReCkptE .

3) Impact of Checkpointing Frequency: As captured by

Equation 1, the time or energy overhead of checkpointing

is a function of the frequency of checkpointing, as well

as the amount of machine state being updated during each

checkpointing interval. In Section V-D2, we evaluated the

impact of the error rate on recovery overhead under a fixed

checkpointing frequency. In this section, we evaluate the

impact of the checkpointing frequency on checkpointing

overhead under a fixed error rate. To do so, we vary the

checkpointing frequency for each benchmark to yield 25,

50, 75 and 100 checkpoints within the course of execution.

These checkpoints are uniformly distributed over the execu-

tion time.

Fig. 12 shows the execution time overhead of CkptNE and

ReCkptNE (w.r.t. NoCkpt), considering different number of

checkpoints. Naturally, the time overhead of checkpointing

increases with the number of checkpoints. Among all the

benchmarks, ft experiences the largest time overhead.

The general trend for ReCkptNE is very similar to

CkptNE , however, ReCkptNE considerably reduces the time

overhead of checkpointing. An interesting point in Fig. 12

is the lower overhead of 75-checkpointed runs when com-

pared to 50-checkpointed. Although it seems unintuitive at

first, there is a catch: when we change the checkpointing

frequency, the start time of each checkpoint interval becomes

different (since we uniformly distribute the checkpoints

over the execution time). The ability of recomputation to

reduce the checkpoint size (and thereby the checkpoint

overhead) depends on whether the corresponding Slices in

a given checkpoint interval exist (i.e., were baked into

the binary). If the checkpoints fall into the intervals of

execution with a small number of recomputable values,

ACR cannot reduce the checkpointing overhead significantly.

This, as well, motivates adjusting the time to checkpoint to

exploit more recomputation opportunities, instead of blindly

checkpointing in uniformly distributed intervals.

Such a corner case is is, where the 50-checkpointed run

has very limited Slice coverage w.r.t. the 75-checkpointed.

As the data size that can be recomputed (i.e., excluded from

checkpointing) is smaller, the time overhead is higher for

the 50-checkpointed run. The time overhead reduces by up

to 28.81% (for is) for 25; 25.3% (for dc) for 50; 50.86%

(for is) for 75; and 43.52% (for is) for 100 checkpoints

in ReCkptNE w.r.t. CkptNE . On average, the time overhead

reduction ranges from ≈10% up to 14% for different check-

point counts in ReCkptNE . A similar trend holds for EDP.

ReCkptNE reduces the EDP (w.r.t. CkptNE) by up to 47.98%

(for is) for 25; 47.74% (for dc) for 50; 74.19% (for is) for

75; and 63.45% (for is) for 100 checkpoints, respectively.

On average, EDP reduction ranges from ≈20% up to 26%

39

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

for different checkpoint counts under ReCkptNE .

4) Scalability: The number of threads involved in exe-

cution affect the overhead of checkpointing, due to both an

increase in the cost of coordination (among threads) and a

potential increase in the machine state to be checkpointed.

As a consequence, the memory bandwidth requirement tends

to increase, as well. We next look into the scalability of ACR

with increasing thread count. We experiment with 8-, 16-,

and 32-threaded executions where each thread is pinned to

a separate core.

We observe that the checkpointing overhead always ex-

ceeds 9% for any thread count. On average, the check-

pointing overhead is ≈ 45%, 55%, and 60% for 8-, 16-

, and 32-threaded executions, respectively, under CkptNE .

We also observe that ReCkptNE can reduce the check-

pointing overhead by up to 28.81% (for is), 17.78% (for

is), and 19.12% (for mg) when running with 8-, 16-, and

32-threads, respectively. The corresponding EDP reduction

under ReCkptNE reaches up to 47.98% (for is), 31.81% (for

dc), and 33.8% (for mg) when running with 8-, 16-, and

32-threads, respectively. The corresponding reductions under

ReCkptE closely follow the trends for ReCkptNE .

E. Coordinated Local Checkpointing

In our discussion so far, we covered coordinated global

checkpointing. As explained in Section II-A, a viable alter-

native is coordinated local checkpointing [25], [26]. In this

case, non-communicating cores can take their checkpoints

without coordinating with the rest of the cores – they can

do their checkpointing independently, such that they don’t

need to roll back farther in case of an error, to match

a global recovery line. Coordinated local checkpointing is

generally more scalable as the overhead of checkpointing

and recovery evolves with the number of communicating

cores (as opposed to all cores under coordinated global

checkpointing). Identifying communicating cores in a check-

pointing interval, however, necessitates a mechanism to track

inter-core data dependencies, which usually translates into

continuous and dynamic monitoring and recording of inter-

core interactions that may challenge scalability. We next

investigate recomputation-enabled coordinated local check-

pointing. In the following, we use the global coordinated

checkpointing correspondent for each configuration as a

baseline for normalization.

Fig. 13 shows the normalized execution time under

coordinated local checkpointing, specifically, CkptNE,Loc,

CkptE,Loc, ReCkptNE,Loc and ReCkptE,Loc w.r.t. their

global checkpointing counterparts (i.e., CkptNE , CkptE ,

ReCkptNE and ReCkptE , respectively). We observe that

coordinated local checkpointing results in a lower time

overhead for CkptNE,Loc as indicated by a y-intercept < 1

for the majority of the benchmarks. The lower overhead is

due to the lower number of cores checkpointing together.

However, this is not the case for bt, cg and sp, where

practically all cores communicate with one another each

checkpointing interval. For the rest of the benchmarks the

time overhead of CkptNE,Loc reduces by up to ≈42% for ft,

17% for dc, 36% for is, 32% for mg, and 10% for lu w.r.t.

CkptNE .

ACR incorporated into coordinated local checkpointing

remains as effective as in global checkpointing. For all of

the benchmarks, the checkpointing (time) overhead under

ReCkptNE,Loc remains below (or at most the same as)

the overhead under the global checkpointing correspondent

ReCkptNE . The reductions under ReCkptNE,Loc are not

as pronounced as under CkptNE,Loc, mainly because the

potential for recomputation does not change considerably

under local schemes w.r.t global.

Specifically, bt, cg, lu, and sp do not observe any

sizable reduction (≈≤ 1%) of the time overhead under

ReCkptNE,Loc w.r.t. the global checkpointing counterpart

ReCkptNE . For the rest of the benchmarks, the time over-

head of ReCkptNE,Loc reduces by up to ≈8% for dc,

33% for ft, 15% for is, and 26% for mg w.r.t. the global

checkpointing counterpart ReCkptNE .

We observe similar trends for CkptE,Loc and ReCkptE,Loc.

One difference is that the gap in the time overhead w.r.t.

the global checkpointing counterparts shrinks. We do not

observe any sizable reduction in the time overhead of bt, cg,

lu and sp under CkptE,Loc. For the rest of the benchmarks

the time overhead of CkptE,Loc reduces by up to ≈14% for

ft, 6% for dc, 31% for is, and 2% for mg w.r.t. the global

checkpointing counterpart CkptE . On the other hand, the

time overhead of ReCkptE,Loc reduces up to ≈8% for dc,

10% for ft, 9% for is, and 26% for mg w.r.t. the global

checkpointing counterpart ReCkptE .

The reduction of execution time overhead under coordi-

nated local checkpointing is followed by the EDP reduction.

EDP reduces under CkptNE,Loc by up to 35.68% for dc,

67.15% for ft, 58.26% for is, 19.99% for lu, and 57.92% for

mg w.r.t. the global checkpointing counterpart CkptNE . On

the other hand, EDP reduces under ReCkptNE,Loc by up to

15.85% for dc, 55.68% for ft, 26.24% for is, and 49.75%

for mg w.r.t. ReCkptNE . Similarly, EDP reduces under

CkptE,Loc by up to 18.33% for dc, 33.24% for ft, 51.46%

for is, and 11.29% for mg w.r.t. the global checkpointing

counterpart CkptE . On the other hand, EDP reduces under

ReCkptE,Loc by up to 15.80% for dc, 23.81% for ft, 17.99%

for is, and 47.32% for mg w.r.t. ReCkptE .

We can conclude that amnesic checkpointing and recovery

incorporated into coordinated local checkpointing is at least

as effective as its global checkpointing counterpart.

VI. RELATED WORK

For computer systems, checkpointing and recovery solutions

are extensively studied over the decades. Without loss of

generality, ACR can build on any checkpointing and recov-

ery scheme, as long as recomputation support is provided.

40

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

bt cg dc ft is lu mg sp

C
k
p

t N
E

.L
o
c

C
k
p

t E
.L

o
c

R
e
C

k
p

t N
E

.L
o

c

R
e
C

k
p
t E

.L
o

c

C
k
p

t N
E

.L
o
c

C
k
p

t E
.L

o
c

R
e
C

k
p

t N
E

.L
o

c

R
e
C

k
p
t E

.L
o

c

C
k
p

t N
E

.L
o
c

C
k
p

t E
.L

o
c

R
e
C

k
p

t N
E

.L
o

c

R
e
C

k
p
t E

.L
o

c

C
k
p

t N
E

.L
o
c

C
k
p

t E
.L

o
c

R
e
C

k
p

t N
E

.L
o

c

R
e
C

k
p
t E

.L
o

c

C
k
p

t N
E

.L
o
c

C
k
p

t E
.L

o
c

R
e
C

k
p

t N
E

.L
o

c

R
e
C

k
p
t E

.L
o

c

C
k
p

t N
E

.L
o
c

C
k
p

t E
.L

o
c

R
e
C

k
p

t N
E

.L
o

c

R
e
C

k
p
t E

.L
o

c

C
k
p

t N
E

.L
o
c

C
k
p

t E
.L

o
c

R
e
C

k
p

t N
E

.L
o

c

R
e
C

k
p
t E

.L
o

c

C
k
p

t N
E

.L
o
c

C
k
p

t E
.L

o
c

R
e
C

k
p

t N
E

.L
o

c

R
e
C

k
p
t E

.L
o

c

0.00

0.25

0.50

0.75

1.00

N
o
rm

a
liz

e
d
 E

xe
c
u
ti
o
n
 T

im
e

Figure 13: Normalized execution time of CkptNE,Loc, CkptE,Loc, ReCkptNE,Loc and ReCkptE,Loc.

In this study, we use incremental in-memory checkpointing

as an effective and representative baseline.

Hardware-based solutions [27], [23], [24] are generally

very effective in reducing the checkpoint and restart penal-

ties, but can increase design complexity. For example, in

Rebound [27] when a core is checkpointing, the LLC

controller writes dirty lines back to main memory while

keeping clean copies in LLC, and the memory controller

logs the old values of the updated memory addresses. In

addition, between checkpoint times, when a dirty cache line

is written back to memory, the memory controller has to

log the old value, as well. This is done for the first write-

back and consecutive writes to the same memory address

can be excluded from being logged. SafetyNet [24], on

the other hand, explicitly checkpoints the registerfile, and

incrementally checkpoints the memory state by logging the

old values.

Both of these solutions rely on incremental checkpoint-

ing, where memory updates are monitored and are omitted

from checkpointing if a particular memory location has

not been modified between two adjacent checkpoints. This

can reduce checkpoint sizes significantly, and therefore is

widely used. Software-based solutions such as compiler-

assisted checkpointing [35] can be effective in reducing

checkpointing overhead and footprint, as well. Instead of

using runtime mechanisms (such as exploiting the cache

coherence protocol to identify updates to memory locations),

in [35], the authors rely on compiler analysis to track the

memory updates that can be excluded from checkpoints. To

facilitate the compiler analysis, the source code should be

manually annotated, to indicate the starting point of each

checkpoint. This work has limited applicability in practice,

since it may not be always feasible to obtain and/or annotate

the source code.

A relevant work presented in [36], introduces the notion of

idempotent execution that does not need explicit checkpoints

to recover from errors. Instead, in case of an error, re-

executing the idempotent region suffices for recovery. Such

idempotent regions are constructed by the compiler. As

the name suggests, idempotent regions regenerate the same

output regardless of how many times they are executed with

the given program state. Generally, idempotent regions are

larger, and therefore tend to incur higher overhead during

recovery, while we employ fine-grained data recomputation

(along a short, independent Slice for each value), where each

Slice contains only the necessary instructions to generate a

single value. Accordingly, Slices may provide more flexibil-

ity.

A recent work demonstrates the applicability of recompu-

tation to loop-based code [37] to reduce the checkpointing

overhead. The whole loop is (re)executed during recovery,

where only the initial states of the loop are required to be

checkpointed. Notice that loops may contain instructions that

are not related to the production of the value to be recom-

puted. In our approach, each Slice consists of only necessary

instructions to produce a value to be recomputed (no extra

work). Also, Slices do not contain any load instruction (this

is the promise of amnesic execution: not to access memory),

which is not the case for [37]. “Recomputation” idea applies

outside of loops, which we explore in this paper. Therefore,

ACR has wider applicability.

Similar to [37], the authors of [38] exploit the regular-

ity of workloads such as matrix-vector multiplication and

iterative linear solvers to reduce the performance overhead

of checkpointing by relying on partial recomputation. Their

fundamental observation is that although errors occur in

computation, most of the results are still correct for those

types of workloads. So, instead of simply rolling back and

repeating the entire segment of computation, they employ

algorithmic error localization and partial recomputation to

efficiently correct the erroneous results.

In [39], the authors evaluate a wide-range of checkpoint-

ing policies to understand their respective energy, perfor-

mance and I/O trade-offs. They provide detailed insights into

the energy overhead, as well as the performance impact, in

line with our observations.

The use of backward slices has been explored in reduc-

ing the overhead of redundant multithreading (RMT) that

detects faults by comparing the results of master and slave

threads [40]. In this case, only instructions, that compute

the value to be compared against master thread’s result, are

executed. Despite usage of backward slices, this breed of

work is totally distinct from ACR, since ACR uses slices

to regenerate values that are omitted from checkpoint when

41

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

recovery is needed (not to generate the value for comparison

to detect a fault). Another RMT work was proposed to detect

a fault [41] where they incorporated checkpointing to allow

recovery upon detecting a fault. However, they have neither

exploit slices nor minimize the checkpointing overhead.

In [42], the authors proposed a proof-of-concept mi-

croarchitecture that support amnesic execution to facilitate

data recomputation to improve the energy efficiency of the

system. Without loss of generality, such microarchitectural

support can be used to implement recomputation logic

discussed in Section III-C, although it could be overkill

due to extra resources needed in [42], but not necessary for

amnesic checkpointing introduced in this paper. Besides that,

there is a semantic difference between [42] and our our work

that reveals itself in Slice generation and its usage. The goal

in [42] is swapping each energy-hungry load with a Slice to

recompute the respective data value (which otherwise would

be loaded from the memory hierarchy). In such case, the

swapped load instructions are never performed (i.e., Slices

in [42] are for values corresponding to loads). However,

as opposed to [42], the loads are performed as usual in

ACR. The ACR Slices are for values corresponding to stores

(rather than loads) which are omitted from checkpoint, and

recomputation is performed only when there is an error

that requires a rollback and recovery. In such case, the

data corresponding to the values of stores are recomputed

(which otherwise would be checkpointed and restored from

the checkpoint).

VII. CONCLUSION

In the presence of errors, systematic checkpointing of the

machine state makes recovery of execution from a safe state

possible. The performance and energy overhead, however,

can become overwhelming with increasing frequency of

checkpointing and recovery, as dictated by the growth in

the frequency of anticipated errors. In this paper, we discuss

how recomputation of data values which otherwise would be

read from a checkpoint (from main memory or secondary

storage) can help reduce these overheads. We observe that

recomputation can reduce the memory footprint by up to

23.91%, which is accompanied by a reduction in time,

energy and EDP overhead by up to 11.92%, 12.53%, and

23.41%, respectively, even considering a relatively small-

scale system. We expect the reduction to become much

higher and more visible in larger scale systems, where

checkpointing overhead becomes more prominent.

ACKNOWLEDGEMENTS

This work was supported by NSF CAREER CCF-1553042.

REFERENCES

[1] M. Riera, R. Canal, J. Abella, and A. Gonzalez, “A detailed
methodology to compute Soft Error Rates in advanced tech-
nologies,” in Proceedings of the Design, Automation & Test
in Europe (DATE), pp. 217–222, Mar. 2016.

[2] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi, “Modeling the effect of technology trends on the
soft error rate of combinational logic,” in IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), pp. 389–398, 2002.

[3] A. Dixit and A. Wood, “The impact of new technology on soft
error rates,” in International Reliability Physics Symposium,
pp. 5B.4.1–5B.4.7, Apr. 2011.

[4] R. Baumann, “Soft errors in advanced computer systems,”
IEEE Design Test of Computers, vol. 22, pp. 258–266, May
2005.

[5] S. Mukherjee, J. Emer, and S. Reinhardt, “The Soft Error
Problem: An Architectural Perspective,” in IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), pp. 243–247, 2005.

[6] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Charac-
terizing the effects of transient faults on a high-performance
processor pipeline,” in IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 61–70, June
2004.

[7] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures
in large scale systems: long-term measurement, analysis, and
implications,” in Supercomputing Conference (SC), (Denver,
Colorado), pp. 1–12, ACM Press, 2017.

[8] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy Check-
pointing: Exploiting Temporal Locality in Failures to Mitigate
Checkpointing Overheads on Extreme-Scale Systems,” in
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 25–36, June 2014.

[9] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell,
“Understanding and Exploiting Spatial Properties of System
Failures on Extreme-Scale HPC Systems,” in IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks
(DSN), pp. 37–44, June 2015.

[10] S. Borkar, “Designing reliable systems from unreliable com-
ponents: the challenges of transistor variability and degrada-
tion,” IEEE Micro, vol. 25, pp. 10–16, Nov. 2005.

[11] B. W. Johnson, ed., Design & Analysis of Fault Tolerant
Digital Systems. Addison-Wesley Longman Publishing Co.,
Inc., 1988.

[12] P. A. Lee and T. Anderson, Fault Tolerance: Principles and
Practice. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2nd ed., 1990.

[13] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller,
S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams,
and K. Yelick, “Exascale computing study: Technology chal-
lenges in achieving exascale systems,” Defense Advanced
Research Projects Agency Information Processing Techniques
Office, Tech. Rep., vol. 15, 2008.

[14] M. Horowitz, “Computing’s Energy Problem (and what we
can do about it),” Keynote at International Conference on
Solid State Circuits, April 2014.

[15] I. Akturk and U. R. Karpuzcu, “Trading computation for com-
munication: A taxonomy of data recomputation techniques,”
IEEE Transactions on Emerging Topics in Computing, 2018.

42

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

[16] S. Narayanasamy, G. Pokam, and B. Calder, “Bugnet: contin-
uously recording program execution for deterministic replay
debugging,” in ACM/IEEE International Symposium on Com-
puter Architecture (ISCA), June 2005.

[17] M. Xu, R. Bodik, and M. D. Hill, “A ”flight data recorder”
for enabling full-system multiprocessor deterministic replay,”
in ACM/IEEE International Symposium on Computer Archi-
tecture (ISCA), June 2003.

[18] A. Basu, J. Bobba, and M. D. Hill, “Karma: Scalable Deter-
ministic Record-replay,” in Supercomputing Conference (SC),
pp. 359–368, 2011.

[19] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas, “Capo:
A Software-hardware Interface for Practical Deterministic
Multiprocessor Replay,” in ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 73–84, ACM, 2009.

[20] M. Weiser, “Program slicing,” IEEE Transactions on Software
Engineering, vol. 10, pp. 352–357, July 1984.

[21] Y. Tamir and C. H. Sequin, “Error recovery in multicomputers
using global checkpoints,” in Proceedings of the International
Conference on Parallel Processing, 1984.

[22] C. Morin, A. Gefflaut, M. Banâtre, and A.-M. Kermarrec,
“Coma: An opportunity for building fault-tolerant scalable
shared memory multiprocessors,” in ACM/IEEE International
Symposium on Computer Architecture (ISCA), 1996.

[23] M. Prvulovic, Z. Zhang, and J. Torrellas, “Revive: Cost-
effective architectural support for rollback recovery in shared-
memory multiprocessors,” in ACM/IEEE International Sym-
posium on Computer Architecture (ISCA), 2002.

[24] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood,
“Safetynet: Improving the availability of shared memory mul-
tiprocessors with global checkpoint/recovery,” in ACM/IEEE
International Symposium on Computer Architecture (ISCA),
2002.

[25] R. Koo and S. Toueg, “Checkpointing and rollback-recovery
for distributed systems,” IEEE Transactions on Software
Engineering, vol. 13, no. 1, 1987.

[26] P. J. Leu and B. Bhargava, “Concurrent robust checkpoint-
ing and recovery in distributed systems,” in Proceedings of
International Conference on Data Engineering, 1988.

[27] R. Agarwal, P. Garg, and J. Torrellas, “Rebound: Scalable
checkpointing for coherent shared memory,” in ACM/IEEE
International Symposium on Computer Architecture (ISCA),
2011.

[28] S.-L. Gong, M. Rhu, J. Kim, J. Chung, and M. Erez, “Clean-
ecc: High reliability ecc for adaptive granularity memory sys-
tem,” in IEEE International Symposium on Microarchitecture
(MICRO), 2015.

[29] T. J. Dell, “A white paper on the benefits of chipkill- correct
ecc for pc server main memory,” 1997.

[30] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju,
M. de Kruijf, and K. Sankaralingam, “Sampling + dmr:
Practical and low-overhead permanent fault detection,” in
ACM/IEEE International Symposium on Computer Architec-
ture (ISCA), 2011.

[31] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.

Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, “The NAS Parallel Benchmarks:
Summary and Preliminary Results,” in Supercomputing Con-
ference (SC), 1991.

[32] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Explor-
ing the level of abstraction for scalable and accurate parallel
multi-core simulation,” in Supercomputing Conference (SC),
November 2011.

[33] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore and
Manycore Architectures,” in IEEE International Symposium
on Microarchitecture (MICRO), December 2009.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
Building Customized Program Analysis Tools with Dynamic
Instrumentation,” in ACM SIGPLAN Programming Language
Design and Implementation (PLDI), 2005.

[35] G. Bronevetsky, D. J. Marques, K. K. Pingali, R. Rugina, and
S. A. McKee, “Compiler-enhanced incremental checkpoint-
ing for openmp applications,” in Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2008.

[36] M. de Kruijf and K. Sankaralingam, “Idempotent Processor
Architecture,” in IEEE International Symposium on Microar-
chitecture (MICRO), 2011.

[37] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient
checkpointing of loop-based codes for non-volatile main
memory,” in International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), Sept 2017.

[38] J. Sloan, R. Kumar, and G. Bronevetsky, “An algorithmic
approach to error localization and partial recomputation for
low-overhead fault tolerance,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN),
June 2013.

[39] N. El-Sayed and B. Schroeder, “To checkpoint or not to
checkpoint: Understanding energy-performance-i/o tradeoffs
in hpc checkpointing,” in Proceedings of International Con-
ference on Cluster Computing (CLUSTER), Sept 2014.

[40] A. Parashar, A. Sivasubramaniam, and S. Gurumurthi, “SlicK:
Slice-based locality exploitation for efficient redundant multi-
threading,” in ACM International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pp. 95–105, 2006.

[41] J. Yin and J. Jiang, “An Asynchronous Checkpoint-Based Re-
dundant Multithreading Architecture,” in 2010 IEEE Pacific
Rim International Symposium on Dependable Computing,
pp. 243–244, Dec. 2010.

[42] I. Akturk and U. R. Karpuzcu, “AMNESIAC: Amnesic Auto-
matic Computer - Trading Computation for Communication
for Energy Efficiency,” in ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

43

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:35:01 UTC from IEEE Xplore. Restrictions apply.

