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Approximate computing has gained research attention recently as a way to increase energy efficiency and/or
performance by exploiting some applications’ intrinsic error resiliency. However, little attention has been
given to its potential for tackling the communication bottleneck that remains one of the looming challenges
to be tackled for efficient parallelism. This article explores the potential benefits of approximate computing for
communication reduction by surveying three promising techniques for approximate communication: com-
pression, relaxed synchronization, and value prediction. The techniques are compared based on an evaluation
framework composed of communication cost reduction, performance, energy reduction, applicability, over-
heads, and output degradation. Comparison results demonstrate that lossy link compression and approximate
value prediction show great promise for reducing the communication bottleneck in bandwidth-constrained
applications. Meanwhile, relaxed synchronization is found to provide large speedups for select error-tolerant
applications, but suffers from limited general applicability and unreliable output degradation guarantees.
Finally, this article concludes with several suggestions for future research on approximate communication
techniques.
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1 INTRODUCTION

As semiconductor technology scaling approaches fundamental physical limits, the performance
and energy efficiency of single-processor computing systems has reached a plateau. In light of
diminishing marginal returns in processor efficiency, technological, economical, and practical
considerations have converged to dictate that improved performance and energy efficiency in
computing systems will increasingly be sought through parallelism. As the traditional hardware-
software stack is primarily built around single-processor systems, the nearly universal shift to
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Fig. 1. Increase in communication overhead with processor count for representative exascale applications:
WREF (weather prediction), AVUS (computational fluid dynamics), AMR (adaptive mesh refinement), HY-
COM (ocean modeling) [17].

multiprocessor systems means that we may want to rethink, and subsequently redesign, several
elements in the traditional hardware-software stack.

As we increasingly seek to improve performance and energy efficiency through exploiting par-
allelism and scalability, one of the looming challenges that remains to be tackled is that scalable
and efficient parallelism appears to be incompatible with any nonnegligible amount of communi-
cation or synchronization between processing elements. Even for modest parallel scaling (e.g., on
the order of tens of cores), all but the most embarrassingly parallel applications achieve only mea-
ger improvements in performance and energy efficiency [17]. This is somewhat alarming, given
that current petascale machines house on the order of tens of thousands of processors and tens
of millions of cores. Indeed, highly parallel machines only reach their peak performance ratings
when running benchmarks with extremely high computation-to-communication ratios [44]. The
push toward exascale computing will stress parallelism bottlenecks, such as communication and
synchronization, even further.

For example, a recent study on exascale computing [17] provides results showing the fraction
of time spent in communication for several parallel applications as the number of processing ele-
ments varies (Figure 1). While the fraction of time spent in communication is approximately 10%
or less for all applications when running on 64 or fewer processors, the fraction of time spent in
communication balloons to consume the majority of runtime (over 50%) for most of the applica-
tions as the number of processors increases by a factor of 32. As dictated by Amdahl’s law [9],
even a small fraction of runtime spent in communication (e.g., 1%) can easily become the primary
bottleneck for an application that targets extreme (e.g., 100-1000X) parallelism. Clearly, even a rel-
atively small dependence on communication and synchronization can seriously inhibit efficiency
as we seek greater levels of parallelism. However, many (perhaps most) real parallel applications
require nontrivial amounts of communication and synchronization.

Communication is also costly in terms of power. It is estimated that interconnection networks
consume 10% to 20% of the power in current High-Performance Computing (HPC) systems [177]
and that the majority of this power is used in the network’s links [178]. As such, the same
exascale study mentioned above [17] conveyed “a real need for the development of architectures
and matching programming systems solutions that focus on reducing communications, and thus
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communication power,” admitting that “the toughest of the power problems is not ... computa-
tion, but communication.” Additionally, similar power constraints can also be found in the design
of Networks-on-Chip (NoCs) [80], where even low-power designs are found to account for as
much as one-third of a chip’s power consumption [74]. Finally, as increased parallel integration
stresses power and thermal budgets and we run up against the power wall [49, 155], every bit of
power spent on communication is power that cannot be spent to perform computation.

Clearly, efficient exploitation of parallelism and scalability requires solutions that target both the
latency and power of communication. Several works have proposed hardware and software tech-
niques for improving the efficiency of communication and synchronization operations in large-
scale multiprocessor systems [3, 7, 16, 27, 38, 54, 63, 78, 94, 109, 123, 147] and chip multiproces-
sors [136, 138, 142, 164, 183]. The most efficient of these techniques allow communication and
synchronization costs to scale proportional to log(cpu count). However, as demonstrated in [17],
communication latencies must improve at a rate better than log(cpu count) in order to achieve more
than one order of magnitude performance improvement from scaling out one of today’s machines
by 1000X. Thus, even the efficient communication and synchronization techniques proposed in the
past may not be suitable for exploiting parallelism and scalability in next-generation computing
systems.

Approximate computing is a recent research topic that is growing in popularity among re-
searchers and industry. It aims to increase power and/or performance by allowing computations to
be performed “approximately.” In other words, in approximate computing, inaccuracies are delib-
erately allowed or even introduced in order to reap efficiency gains. In a typical system, computer
architects must balance the trade-offs between energy efficiency and performance under certain
constraints, such as chip area and power. Approximate computing introduces a new trade-off be-
tween output quality and energy efficiency. As such, it allows the flexibility to introduce some
acceptable degradation in the output in order to improve the efficiency of the system. The main
motivation for approximate computing comes from the observation that many recent compute
and data-intensive applications are fairly tolerant to small inaccuracies in the results. Recognition,
Mining, and Synthesis (RMS) [47] applications are an example of computing tasks that do not
aim to reach an exact numerical answer; rather, they work with models from real-world data that
are intrinsically inaccurate. Applications in pattern-recognition, machine-learning, and physical-
simulation domains are a few examples of such applications with inherent output error resilience.
There are a variety of approaches to exploiting this application error resilience for approximate
computing. Recent papers have explored the design of approximate circuits, architectural modifi-
cations, and approximate software, as shown in Table 1.

We define approximate communication as the application of approximate computing techniques
to parallel systems with the goal of reducing the amount of communication between processing
elements. Previous research [95, 96, 99] has shown that scalability in parallel applications can
be improved significantly by relaxing the application’s communication and synchronization
patterns. With that in mind, this article presents a survey of three algorithmic and architec-
turally based techniques found in the literature that, if adapted to approximate communication,
would have the potential to reduce communication overhead and enable improved scalabil-
ity in future exascale systems. While the main focus is on parallel applications running on
massively parallel architectures, some ideas can also be applied to reducing communication
overhead on distributed systems and chip multiprocessors. We aim to answer the following set of
questions:

(1) Can we apply the ideas of approximate computing to target the communication scalability
challenge in massively parallel systems?
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Table 1. Approximate Computing Techniques Classified in Terms of Their Potential
for Communication Reduction
Potential for Target
Communication Communication
Reduction Cost References
Software
Loop Perforation Indirect Reduces N [14, 64, 100, 149]
Task Dropping / Indirect Reduces N [21, 26, 57, 95, 133, 158]
Skipping
Memory Access Direct Reduces N [133]
Skipping
Data Sampling Direct Reduces Q [13,57]
Thread Fusion Indirect Reduces N [133]
Pattern Reduction Direct Reduces N and Q [132]
(Paraprox)
Lossy Compression Direct Reduces Q [133]
Precision Scaling Direct Reduces Q [1, 11, 66, 129, 130, 157]
Relaxed Direct Reduces Sync [21, 96, 101, 126, 127]
Synchronization
Algorithm Selection Indirect Reduces N or Q [12, 14]
Parameter Adjustment Indirect Reduces N or Q [65]
Architecture
Approximate Storage None N/A [50, 125, 135, 172]
ISA Extensions Indirect Reduces N or Q [50, 134]
Approximate Indirect Reduces N or Q [45, 104, 151, 180]
Accelerators
Neural Accelerators Indirect Reduces N or Q [51, 59, 105, 161]
Approximate General None N/A [29-31, 46, 84, 160, 175, 176]
Purpose Processors
Stochastic Processors None N/A [32, 108]
Approximate Value Direct Reduces N [97, 154, 156]
Prediction
Fuzzy Memoization Direct Reduces N [8,72]
Reducing Divergence in | Direct Reduces N [59, 139]
GPU
Circuit
Imprecise Logic None N/A [25, 50, 98, 162, 174]
Voltage Overscaling Indirect Reduces Power [50, 103, 122]
DRAM Refresh Rate Indirect Reduces Power [33, 90, 134]
Reduction
Analog Computation None N/A [151]
HW Precision Scaling None N/A [157]
Soft Fault Tolerance None N/A [73, 114, 153]
Reduced Precision FPU None N/A [179]
Approximate Adder None N/A [60, 70]
Approximate Multiplier | None N/A [76]
Unreliable Memory Indirect Reduces Power [53, 55, 71, 125, 148]

Note: N = Number of communication messages. Q = Size of communication messages.
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(2) What are some existing approximate techniques that could be used for communication
reduction?

(3) How do these techniques compare and how can they be applied to approximate
communication?

This article is organized as follows. Section 2 has an overview of the existing research on three
promising communication reduction techniques: compression, relaxed synchronization, and value
prediction. Section 3 provides a comparative analysis of the techniques using a common evaluation
framework. Then, based on the analysis results, Section 4 presents several suggestions for future
research. Section 5 contains our conclusions.

2 AN OVERVIEW OF PROMISING TECHNIQUES FOR APPROXIMATE
COMMUNICATION

Approximate communication is a subsection of the larger approximate computing field. Table 1
shows a list of current approximate computing techniques outlined in recent survey papers [102,
159, 171]. We classify the techniques in terms of their target computing stack layer (software, ar-
chitecture, or circuit) and in terms of their potential to reduce communication overhead either di-
rectly or indirectly. For those techniques with communication reduction potential, we also classify
them in terms of the main target communication cost that is likely to be reduced by the technique.
The communication cost, as further explained in Section 3.1, is divided into two main compo-
nents: the number of messages transmitted (N) and the size of each message (Q). We also identify
those techniques that target synchronization and power overheads directly. The table shows that
several current approximate computing techniques have the potential to improve communication
efficiency, either directly or indirectly. In this article, however, we concentrate on those techniques
that most directly target communication and synchronization overheads in parallel systems. For
synchronization overheads, we chose relaxed synchronization as the most promising technique.
For communication overhead, on the other hand, we chose load value prediction and lossy com-
pression as the most promising techniques to target the number and size of communication mes-
sages, respectively. Other techniques in the list are likely to also yield significant communication
efficiency improvements and are worth exploring in further research. However, by concentrating
on only the selected techniques, this article is able to explore each technique in greater depth and
present a comparative analysis of their potential, as found in Section 3.2. In this section, we present
a survey on each technique individually. First, we provide a broader background on each technique
and then discuss its benefits and challenges for approximate communication.

2.1 Compression

Compression is a commonly used technique to reduce bandwidth utilization and improve energy
efficiency when transmitting data over a communication channel. The premise of data compression
is the removal of redundant data, effectively increasing the density of data to be communicated. An
approach to achieving compression of data is the representation of data using codes, which capture
the information to be transmitted at a shorter length. Compression techniques can be divided into
two categories based on the output fidelity: lossless and lossy compression. Lossless compression
enables a faithful reconstruction of the data at the receiver. Lossy compression achieves better com-
pression by compromising on the accuracy of the information [24]. Lelewer and Hirschberg [85]
present a survey of data compression techniques, classifying them into domain-specific techniques
and general-purpose techniques. Domain-specific techniques are coding techniques specific to the
data of interest, whereas general-purpose techniques do not require a prior knowledge of the data
to be compressed.
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Fig. 2. Simple example of a Huffman encoding tree for the character string “AAAAABBBBCCD.”

2.1.1 Lossless Compression. General-purpose lossless data compression techniques can be clas-
sified into statistical data compression and dictionary-based compression techniques. Statistical
data compression methods make use of the probability of occurrence of the symbols to assign
codes. Entropy encoding techniques, such as Huffman and Arithmetic encoding, assign shorter
codes to frequently occurring symbols and longer codes to rarely occurring symbols. Entropy en-
coding is preceded by a modeling element to model the probability of occurrences of the symbols
from the source. In the case of Huffman coding, the encoding can be represented as a Huffman
tree. Figure 2 shows a Huffman tree encoding of four characters with different probabilities. In
this example, the average bit length is reduced from two with a simple encoding (e.g., A = 00, B =
01, C = 10, D = 11) to 1.83 with Huffman coding. Huffman coding has found many applications,
including commercial ones, such as JPEG image compression [165]. Another example of statisti-
cal data compression is Predictive Coding [48], which emerged in 1955 as a solution for efficient
coding for systems that have an inherent predictability of data. In this compression method, the
knowledge of the past symbols transmitted by the source is used to predict the current symbol.
The coding schemes transmit the error between the original and the predicted symbol when the
predicted symbol is within a threshold of the original symbol. With the same prediction made at
the receiver based on the incoming stream and the error information in the encoded stream, the
original symbol is recovered.

Dictionary-based compression [131] uses a dictionary that holds strings of symbols. They read
strings of symbols from the input and try to match the strings with those present in the dictionary.
If there is a match, the string is replaced with a reference to the dictionary, called a token, instead
of a code for the symbol. Longer repeated strings provide a better compression ratio. If a match
with the dictionary is not found, the uncompressed data are written. For better compression, the
stream of tokens and uncompressed data may be further compressed using entropy encoders, such
as Huffman or Arithmetic encoders. The Lempel Ziv Welch (LZW) [168] compression algorithm
is good example of a simple and efficient implementation of dictionary-based compression found
in commercial products, such as the GIF file format.

2.1.2 Lossy Compression. The working of lossy compression algorithms is based on the
approximation of the input stream to remove redundant and irrelevant data. Lossy compression
algorithms are domain specific, since the improvement in the compression over lossless algo-
rithms arises due to their ability to weed out irrelevant data. Lossy compression methods are
applicable only for applications in which perceptual inaccuracies in the output are permissible.
Typical applications of lossy compression include image, video, and audio compression [77, 110,
116]. The loss of output fidelity is either imperceptible to the user or has been accepted by the user
for the application and, hence, can be traded for a higher compression ratio. Lossy compression
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of scientific datasets has also been attempted from earth-observing system instruments, ocean
science acoustic sonar data, synthetic aperture radar, and so on [58, 68, 92].

Determining the extent to which quality can be traded for improvement in compression ratio
may be challenging, as the decision may often depend on user preferences and may differ based on
the application. Different metrics exist for evaluating the output quality depending on the applica-
tion: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), Multiscale SSIM (MS-SSIM)
and so on [86, 167]. Lossy compression algorithms allow fluid trade-offs between quality and com-
pression ratio, enabling a user to select a desired point in the trade-off space depending on desired
quality and/or compression. The difference between the input stream to be compressed and the
reconstructed stream after decompression is called distortion. The goal of lossy compression is to
maximize the compression, i.e., minimize the average number of bits to encode the input stream,
within the given distortion limits.

Lossy compression algorithms may be categorized as either predictive coding or transform cod-
ing. Predictive coding provides a prediction of the current sample from the previous decoded sam-
ple. For example, in Linear Predictive Coding (LPC), a linear combination of past samples is used
to approximate or predict the current time domain sample [43]. One of its primary uses is in digital
audio compression, such as in the GSM Codecs [106]. Transform coding provides a better represen-
tation of the dataset in a different domain, which helps portray information as it will be perceived.
This helps to identify information that can be quantized with little impact on perceived qual-
ity. Transforms such as Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), and
Discrete Wavelet Transform (DWT) [131] represent the source signal in terms of its spectral infor-
mation, which can be approximated with minimal effect on output quality. In the domain of image
compression, DFT and DCT represent the pixels of an image by the transform coefficients that
correspond to different spatial frequencies. A segment of the image with small details and sharp
edges contains high spatial frequencies. The principle behind quantization of the coefficients to
obtain compression is that the human eye is more sensitive to variations in the lower-frequency re-
gions than in the higher-frequency regions. DWT captures both spatial and temporal information.
There has been significant research on introducing approximations to these transforms to reduce
the complexity of implementation, thus trading accuracy for complexity [36, 113]. Integer approx-
imations to Fourier Transforms have also been attempted; the approximated transformation has
been shown to reconstruct the input perfectly [35]. A methodology to approximate Discrete Si-
nusoidal transforms resulting in integer coefficients has been applied to Discrete Fourier, Hartley,
and Cosine transforms [82]. The benefits of the integer approximations to transforms are in the
lower multiplicative complexity of the computations compared to traditional approaches.

2.1.3  Applications of Compression. One of the most common applications of compression is
in reducing the storage requirements of data. File compression applications—such as Gzip, Bzip2,
and LZMA—are well known and widely used for reducing the size of files in a file system. Mem-
ory compression [2] seeks to improve the effective system memory capacity by compressing the
data in main memory. Compressor and decompressor hardware engines help limit the additional
latency incurred from compression and decompression. It has also been shown [145] that memory
compression not only improves storage capacity but also reduces memory link bandwidth utiliza-
tion and power. Other research efforts have also investigated the design of cache compression [5,
61, 79] for reducing the miss rate in on-chip caches at the cost of an increase in hit latency.

2.1.4 Link Compression. Compression may also be applied on-the-fly on data that is to be
transferred over a bandwidth-constrained network. Compression of data to be communicated
practically increases the bandwidth available for communication [23, 37, 42] and can be optimized
by exploitation of knowledge about the data. Link compression is commonly used in many fields,
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from telephony to video streaming. However, many computer networks have high variability in
network bandwidth and congestion. If compression is online and makes use of a CPU, its utiliza-
tion decides the efficiency of compression. Adaptive online compression techniques [75, 121, 170]
allow compression to be selectively applied based on network and system usage as well as the
type of data being transmitted. Since different compression algorithms have different computation
overheads and compression ratios, adaptive online compression techniques also dynamically
change the compression algorithm that is applied. This allows for the most efficient compression
algorithm to be used given the current system conditions and predicted compression ratios.

Link compression has also been applied to parallel architectures in order to reduce the commu-
nication overheads in parallel systems. Bui et al. [20] showed how the parallel performance of the
BlueGene/Q supercomputer can be improved with a combination of compression, topology-aware
data aggregation, and subfiling. Their results showed that compression added an extra 40% per-
formance improvement over data aggregation and subfiling alone. Welton et al. [169] presented a
design of a data compression service that is implemented in the I/O forwarding layer of supercom-
puters, and Bicer et al. [18] demonstrated the use of a domain-specific lossy compression algorithm
to reduce I/O time and improve performance of parallel scientific applications.

In addition to supercomputers, some studies [10, 41, 69, 112, 150] have investigated compressing
the data traffic in an NoC. Just as in supercomputers, interconnect network traffic is becoming a
major bottleneck and the main power drain in chip multiprocessors [15, 19, 40, 74, 80]. These stud-
ies show that it is possible to design efficient compression algorithms and architectures that reduce
packet latency and energy, even in high-performance interconnects such as those found in NoCs.
The studies also demonstrate that compression can be applied to a wide range of architectures to
significantly reduce the communication overheads in parallel systems.

2.1.5 Compression and GPUs. Several research papers have also investigated the benefits of
compression for graphics processing units (GPUs). Sathish et al. [140] investigated the use of link
compression to improve the effective bandwidth between the GPU and its off-chip memory. Their
research is based on the observation that “state-of-the-art graphic processing units (GPUs) pro-
vide very high memory bandwidth, but the performance of many general-purpose GPU (GPGPU)
workloads is still bounded by memory bandwidth.” They propose a new memory controller (MC)
architecture capable of performing lossy and lossless compression on blocks of data written to
main memory. Vijaykumar et al. [163] propose using assist warps that make use of idle GPU com-
puting resources to alleviate the memory bandwidth bottleneck in memory-bound applications.
The assist warps may be used to perform data compression on cached data before being written to
main memory and decompression after reading from main memory. Thus, their framework is able
to reduce the compute versus memory resource imbalances in memory-bound applications. It was
shown to provide an average of 41.7% performance improvement on a set of bandwidth-sensitive
GPU applications. Modern GPUs are, in fact, already making use of compression to increase the
effective memory bandwidth. One example is the Delta Color Compression used by the GeForce
GTX 980 GPU [111].

In addition to performance and bandwidth improvements, compression has also been shown
to be useful in reducing GPU power consumption. For example, Warped-compression [83] com-
presses the register values within a warp, allowing fewer register file bank accesses and thus sav-
ing power. Pekhimenko et al. [117] proposes two toggle-aware compression techniques (Energy
Control and Metadata Consolidation), which are shown to reduce the GPU’s DRAM bus energy
consumption by 8.3%, on average, despite the fact that in some cases GPU data compression may in-
crease memory energy consumption by increasing the number of bit toggles on the interconnects.
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2.1.6  Compression and Energy Consumption. Compression has a direct impact on the energy
consumption of the system. While compression and decompression incur additional computation
and thus additional energy consumption, it also decreases the amount of data that needs to be
transmitted over the communication channel. If the energy required to perform compression and
decompression is lower than the energy required to transmit the extra bits, then compression
will save energy. Thus, analysis of energy consumption of compression is dependent on the
compression ratio and the transmission link energy. One notable example in which compression
is particularly effective in reducing energy consumption is in a wireless environment. The study
performed in [82] on Intel i7 quad-core processors in a wireless environment supporting 11Mbps
with 11W and wired environment with 15Mbps with 15W shows that sending uncompressed
data can consume more energy than performing compression on a multicore processor. For
example, JPEG and H.264 in a wireless environment consumes an average of 1/5th of the energy
and JPEG2000 in wired environment consumes half of the energy compared to transmitting
uncompressed data, on average.

The use of approximate hardware to trade off accuracy and power consumption has been inves-
tigated through the design of approximate circuit blocks. For example, the authors in [67] propose
the design of imprecise adders by impacting the number of transistors in an adder block and their
load capacitance. Using approximate addition for the least significant bits for the computations
involved in DCT and inverse DCT blocks for image/audio/video compression reveals savings in
power and area without an appreciable loss of quality.

2.1.7 Compression and Parallel Systems. The emergence and ubiquity of mobile computing,
sensor networks, parallel computing, cloud computing, and so on have increased the stress on the
communication bandwidth. While compression is fairly common in systems that transmit data
over long distances (e.g., the Internet, telephony, and so forth) it may begin to see widespread use
in large-scale datacenters and other parallel computing domains as systems move toward increas-
ing levels of parallelism, and communication becomes increasingly expensive relative to computa-
tion. Even though there is a lot of existing research in the applications of compression, there is still
a need for additional research in the application of compression to parallel systems. In particular,
aggressive lossy compression algorithms could be applied to recognition, mining, and synthesis
applications by exploiting these applications’ resilience to data inaccuracies. Approximating com-
munication in interconnect networks through lossy compression may provide improved scalability
for these parallel applications.

2.1.8 Benefits and Challenges of Compression for Approximate Communication. Several papers
have shown the benefits of link compression in reducing the amount of data that needs to be
transferred over a communication channel. For example, in [6], link compression alone was
shown to reduce bandwidth between 23% and 41%. Das et al. [41] showed that compression in the
network interface controller of an NoC is able to reduce network latency by 20%, on average. Link
compression is a technique that has been used for many years not only in computer networks but
also in telephony and video broadcasting. Moreover, link compression techniques borrow from
years of research on compression from industry and academia. Compression techniques have a
long history of successful implementations in commercial products and a diverse set of ongoing
research. Thus, compression is a technique that is well understood, widely used in practice, and
trusted by system designers. Another benefit from compression is that it can be optimized for
certain applications and implemented in either software or hardware. Thus, it provides ample
design choices to fit any system and application.

While link compression alone may deliver improved bandwidth and latency, lossy link com-
pression is likely to result in even greater benefits. Lossy compression can be thought of as an
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approximation technique allowing the fluid trade-off of output accuracy and improved bandwidth.
Most current research on lossy compression has focused on domain-specific implementations,
such as lossy compression algorithms for video or images, or for specific scientific datasets.
However, if applied to recognition, mining, and synthesis applications, lossy link compression
could take advantage of these applications’ error resilience for even greater bandwidth, scalability,
and energy efficiency gains.

One of the greatest challenges of link compression is that it does not always result in improved
performance or energy efficiency. Since link compression introduces the additional computational
overhead of compression and decompression of the data, its benefits are tightly coupled to the
CPU and network state, the type of communication channel, and the compressibility of the data.
Link compression is likely to be beneficial in cases in which there is a high communication-to-
computation ratio, the data needs to be transferred over a long or high power channel (e.g., wire-
lesss), and the data is sparse or with high value locality and not already compressed. As discussed
in the compression overview (Section 2.1), adaptive compression techniques are able to selectively
apply compression only when it is beneficial. Thus, any application of compression for approxi-
mate communication is likely to require such adaptive techniques.

2.2 Relaxed Synchronization

Accesses to shared data should be synchronized to guarantee correct execution of parallel pro-
grams. Both the type and the frequency of synchronization strongly depend on the underlying
algorithm. Synchronization mainly serves to establish producer—consumer semantics and mu-
tual exclusion. While producer—consumer synchronization enforces dependencies among paral-
lel tasks of execution, mutual exclusion restricts accesses to data objects to one parallel task
at a time. A typical parallel program consists of multiple synchronization points (possibly each
conforming to a different category) which can be interleaved in numerous ways. Independent
of the frequency, category, or interleaving, synchronization dictates a total or partial order on
parallel tasks. Hence, each synchronization point represents a point of serialization; accordingly,
synchronization-incurred overheads can easily hurt scalability of parallel programs.

To improve scalability in the face of inevitable synchronization, recent studies [101, 126, 128]
proposed to relax a subset of the synchronization points and to exploit the implicit noise tolerance
of an important class of future parallel applications—(R)ecognition, (M)ining, and (S)ynthesis [28]
in mitigating relaxation-induced atomicity/ordering violations or data races. By relaxing synchro-
nization points contributing to data flow (not control flow), relaxation-induced errors manifest as
degradation in the application output quality. Hence, relaxed synchronization can be used to trade
off output quality for improved scalability until the point at which output degradation becomes
unacceptable.

2.2.1 Relaxed Speculative Synchronization. Relaxation idea is not limited to classic synchroniza-
tion. Under speculative synchronization [62], parallel tasks of execution (threads or transactions)
proceed speculatively without waiting at synchronization—i.e., serialization—points. Until spec-
ulation gets resolved, the speculative state should not become visible, i.e., committed; hence, the
speculative state should be buffered. These systems require not only extra storage for the specula-
tive state but also a framework to detect conflicts among parallel tasks and to orchestrate rollback
to a safe state in the case of misspeculation. Once speculation is deemed safe, coordination in
committing speculative state per task is also necessary. Relaxation techniques can be regarded
as lightweight speculative synchronization techniques in which the overhead of storage, conflict
detection, rollback, or commitment is notably reduced (if not eliminated) by exploiting inherent
noise tolerance of RMS applications. Aggressive relaxation can cut off these overheads as long as
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the degradation in the output quality remains at acceptable levels. Alternatively, depending on pre-
set thresholds of criticality, only a critical subset of tasks can be tracked for speculative buffering,
conflict detection, recovery, and commitment.

2.2.2 Relaxed Shared Data Access. Recent studies [126, 128] investigated the idea of eliminating
the synchronization points of error-tolerant applications to gain speed-up, while keeping output
accuracy at an acceptable level. Rinard [128] focuses on a common case in which different threads
want to access (update) the same data structure in parallel. Usually, mutual exclusion is deployed in
such cases to protect conflicting accesses to the shared data. Otherwise, it is very likely to observe
out-of-bounds accesses, resulting in early application termination without generating the output.
This study introduces a data structure in which unprotected conflicting insert of elements would
not cause any such catastrophic scenarios. In the proposed array structure, conflicting accesses
may lead to dropped elements, which degrade output quality rather than causing address space
violation. Using this data structure, eliminating mutual exclusion generates performance benefits,
while output quality may be degraded due to elements being dropped. In addition, Rinard looks
at another case—barrier relaxation. Barrier synchronization is used to make sure that all threads
are at the same computation phase. Due to workload imbalance, some threads may need to wait
for other threads (stalled), reducing parallelism. In the relaxed scenario, a thread simply passes the
barrier without waiting for other threads to get to the barrier. As a result, performance is improved,
although data dependencies may cause lower output quality.

2.2.3 Relaxed Protected Code Sections. Renganarayana et al. [126] analyze how relaxing mutual
exclusion may affect different applications’ performance and output quality. They consider both
classic (blocking) mutual exclusion and speculative (nonblocking) locks as case studies. In the
study, synchronization points are eliminated completely, leading to conflicting accesses to shared
resources. Hence, output accuracy may be affected. They also propose a mechanism called Relax
and Check (RaC) that allows control over the quality of the output. In RaC, both the original
version of the algorithm and the relaxed version are compiled with the application. At the end of
the relaxed portion, a check is performed to determine the quality of the output. If the quality is
not acceptable, then the original version with full synchronization is executed. This is a simple
scheme that can guarantee that the final output meets a certain quality goal. However, it may
degrade performance in some cases since it may require more than twice as much work when
the relaxed version produces an unacceptable result. Moreover, some applications may not have a
method to verify the results’ acceptability.

2.24 Benefits and Challenges of Relaxed Synchronization for Approximate Communication. Re-
laxed synchronization is an attempt to extend approximate computing concepts to tackle the high
impact that synchronization has on the scalability of parallel applications. While the idea of opti-
mizing synchronization points has always been a major concern of parallel application developers,
relaxed synchronization takes a more aggressive approach by removing as many synchronization
points as possible while keeping output degradation within acceptable limits. Relaxed synchro-
nization was included as a possible approximate communication technique due to the possibility
of reducing synchronization overheads.

The main benefit of relaxed synchronization is in reducing serialization points. Renganarayana
et al. [126] showed that synchronization overhead is a significant portion of the execution time
in a parallel k-means benchmark. The fraction of the execution time spent on synchronization in-
creases with thread count, which severely limits scalability. This may happen even in applications
with a high level of data parallelism, if, for example, these applications have a high degree of in-
terthread dependencies and poor load balancing. In the k-means benchmark example, it was shown
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that synchronization overhead increases from approximately 70% for 2 threads to about 90% for 8
threads. Thus, relaxed synchronization can be a potential solution for the effect of synchroniza-
tion in diminishing returns of higher thread counts. Another benefit of relaxed synchronization is
that it is completely implemented in software by modifying existing applications, making it easier
to implement and control by the application developer. As mentioned in [126], this can also be
automated using autotuners or iterative compilers.

However, relaxed synchronization has many challenges that make it difficult to apply beyond a
very restricted set of applications. Since relaxing synchronization allows the possibility of many
different interweavings of thread executions, it introduces nondeterminism in the solutions. An-
other issue is the choice of which synchronization points to relax. Some synchronization points are
essential for proper program execution while others are safe to approximate. Moreover, the safe-
to-approximate synchronization points may have different impacts on output degradation. Good
candidates for approximation are synchronization points with high impact on execution time or
power and low impact on output quality. However, the selection of this ideal set of synchronization
points may be complicated by the fact that the ideal set may be dependent on the input.

2.3 Value Prediction

Value prediction is based on the observation that many applications exhibit significant data value
locality [88]. Value prediction seeks to exploit this predictability of data values to break true data
dependencies in a processor’s pipeline. A value predictor, perhaps similar in design to the pervasive
branch predictors, may be used to predict instruction inputs that are dependent on long-latency
operations. The processor may then use the predicted value to continue execution speculatively
while waiting for the long-latency operation to finish.

Sazeides and Smith [141] demonstrated one of the first designs of value predictors that could
achieve between 56% and 92% value prediction accuracy. They divided value predictors into two
types: computational predictors, such as last-value predictors and stride predictors, and context-
based predictors. Lipasti et al. [88] showed the benefits of load value prediction for collapsing
true data dependencies and reducing average memory latency and bandwidth requirements. It
was shown that many load instructions have high value locality—as much as 80%, on average—
in some applications. Their work also included a constant verification unit that identifies load
instructions that always retrieve constant data and skips memory accesses for these loads. Calder
et al. [22] analyzed value prediction in light of predictor capacity constraints and misprediction
penalties. It was shown that accurate value confidence prediction is key to obtaining speedups from
value prediction. Follow-up work aimed at improving predictor accuracy includes global context
predictors [107], difference value predictors [56], and several other hybrid designs [166].

2.3.1 Challenges in Value Predictor Design. Most of these early research efforts in value pre-
diction focused primarily on the accuracy and coverage of their predictor designs. However, they
mostly ignored the high performance loss associated with misprediction recovery. A real imple-
mentation of value prediction must include not only a high-accuracy value predictor but also a
rollback mechanism that can recover the processor’s execution state in case of a misprediction. Im-
plementing a rollback mechanism requires modifications to the out-of-order pipeline to support
data checkpointing, data validation, and recovery logic. This leads to increased complexity and
power consumption. Moreover, the average performance benefit per accurate prediction is quite
small, on the order of half a cycle per successfully predicted instruction [118, 119]. Meanwhile,
the misprediction penalty may be quite high, typically on the order of tens of cycles depending
on the recovery mechanism used. One common mechanism is called pipeline squashing, which is
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the same mechanism used to recover from branch mispredictions. While it is relatively simple to
implement, especially if data validation is done at the commit stage, it is very costly in terms of
wasted cycles on misprediction. Selective reissue, on the other hand, allows only the mispredicted
instruction and its dependency chain to be replayed. While this allows for a smaller, albeit still
significant, misprediction recovery penalty, it comes at a much higher cost in design complexity.

Finally, in addition to the rollback overhead, other implementation issues with value prediction
include the high cost of predictor tables, prediction latency, complexity of data checkpoint logic,
increased power consumption, and difficulties predicting back-to-back loads and floating-point
numbers [120].

Despite all these challenges, recent work is revisiting value prediction as single-core perfor-
mance regains research attention. Perais and Seznec [119] have shown that by using a high-
accuracy confidence predictor, they can offset the high misprediction costs associated with pipeline
squashing recovery. Their design achieves high prediction accuracy (>99.5%) with low coverage by
using probabilistic saturating confidence counters. It also reduces misprediction resolution com-
plexity by employing pipeline squashing at the commit stage and adds a latency-tolerant predictor
based on global branch history. Follow-up work also addressed issues with Physical Register File
access [118] and multiple predictions per cycle [120]. Reported speedups ranged from 5% to 65%
on select benchmarks.

2.3.2  Value Prediction and Parallel Systems. In the context of parallel computer architectures,
value prediction may be particularly attractive as a method for reducing communication over-
heads. Conventionally, data values produced in one core but consumed at a different core require
that the data be transferred to the consumer core, typically over an interconnection network, be-
fore they can be used. With value prediction, however, the consumer core may proceed with ex-
ecution while it waits for the requested value to arrive. It may also allow the parallelization of
certain sequences of code by breaking data dependencies or allowing cores to speculatively move
ahead of synchronization points. The potential benefits of value prediction for parallel computing
were shown in [89]. This paper presents a reformulation of Amdahl’s law, which factors in the
parallelization effect from value prediction. Their formula provides an upper bound on the max-
imum speedup attainable based on prediction accuracy. They also developed a theoretical model
based on information theory for the maximum achievable prediction accuracy. Their experimen-
tal results showed that value prediction can improve performance by as much as 267% based on
simulations with the PARSEC and SPLASH-2 benchmarks.

Another potential use of value prediction is in improving the performance of thread-level
speculation (TLS). The basic premise of TLS is to implement either compiler or hardware mecha-
nisms that automatically parallelize sequences of code that may not actually be independent. The
selected sequences of code (epochs) are executed speculatively in parallel. At the end of an epoch,
if data dependence violations are detected, a recovery mechanism is run; otherwise, the epoch’s
data are committed. One key design issue for TLS is handling these data dependencies between
concurrent epochs. In principle, value prediction could be used to reduce data dependency
violations by predicting the dependent values. Steffan et al. [152] compared three main value
communication mechanisms for TLS: speculation, synchronization, and prediction. However,
their results showed that while value prediction can be effective, other techniques—such as
silent stores—yield similar results at a lower cost. Cintra and Torrellas [34] also evaluated using
value prediction as part of their learning-based TLS framework but also found no real benefits
to value prediction. Nevertheless, software-only value predictors [124], which avoid the high
costs associated with hardware value predictors, have been shown to be an effective technique,
suggesting a promising direction for value prediction in the context of TLS.
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It is worth noting that additional challenges exist for value prediction when applied in a multi-
threaded environment. Most previous works on value predictors have assumed a single-threaded
uniprocessor environment and have mostly neglected issues related to value prediction in multi-
threaded architectures, such as simultaneous multithreading (SMT), coarse-grained multithread-
ing (CMT), single-chip multiprocessing (CMP), and traditional multiprocessing (MP). Martin et al.
[93] demonstrated that naive implementations of value prediction may inadvertently violate a pro-
cessor’s memory consistency model by allowing “a processor to relax the ordering between data
dependent operations.” They have shown that this issue may be remedied by borrowing techniques
from aggressive implementations of sequential consistency, but these come at a performance cost.
Finally, another little-researched topic is the effect of context switches on a predictor’s accuracy.
This issue is not unique to value prediction, though. Lee et al. [81], for example, showed the ef-
fects of context switching on branch predictors. Hybrid predictors [52, 144], which combine fast-
learning predictors with slower but more accurate predictors, is a common mitigation technique
for branch predictors that may also be applied to value predictors.

2.3.3  Value Prediction and Approximate Computing. As the previous sections have shown, de-
spite considerable research, there are many challenges to traditional value prediction that have
prevented its widespread adoption. However, new research has looked at applying approximate
computing techniques to value prediction as a way to reap the benefits of value prediction with-
out the associated costs. Load Value Approximation (LVA) [97] and Rollback Free Value Prediction
(RFVP) [173] are similar works that explore the idea of using predicted load values as approximate
data values. Thus, these approximate load value predictors do not verify the predicted values and
do not require rollbacks. The main idea is to trade the performance benefit of an RFVP for the
introduction of errors in the output.

Below are a few of the benefits of approximate value prediction:

(1) Approximate value prediction does not require a recovery mechanism for mispredictions,
thus avoiding the need for complex rollback hardware, one of the main drawbacks of
traditional value prediction.

(2) Removing the requirement of precise prediction helps to overcome the difficulty in
floating-point prediction.

(3) While traditional predictors avoid costly rollbacks by making a prediction only if confi-
dence is high, an approximate predictor can relax the confidence requirement, leading to
higher predictor usage and better performance gains.

(4) Previously mentioned memory consistency issues with traditional value predictors may
be ignored with approximate value prediction.

(5) Most important, in an approximate load value predictor, it is not necessary to always
fetch a block from memory on a cache miss. Unlike traditional value predictors that must
fetch blocks to validate the predicted values, in this approximate design, blocks need only
be fetched in order to update the predictors. Thus, in a shared memory system, we may
achieve communication reduction by predicting the shared values that would need to be
transmitted between cores. Hence, the frequency by which the value predictors are up-
dated becomes a tunable parameter for the trade-off between the amount of communica-
tion reduction and the output error.

2.3.4 Trade-offs of Approximate Value Prediction. While LVA and RFVP have several potential
benefits over traditional value prediction, they do come with some trade-offs. For example, as men-
tioned earlier, one benefit of LVA and RFVP over traditional value prediction is that they require no
mechanism to rollback in case of a misprediction. Rollback hardware incurs a high overhead due to
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all the logic required to keep track of the speculative state changes, the value verification logic, and
the rollback logic itself. This is not only a high hardware overhead, but also a high development
cost since all the complex logic needs to be thoroughly validated. Approximate value prediction
does not require any recovery hardware, making its implementation simpler and cheaper. More-
over, since it does not modify the main execution pipeline, it can be designed as an independent
performance module that can be programmatically enabled or disabled. However, while traditional
value prediction is completely transparent to the programmer, since the correctness of execution
is guaranteed by the recovery hardware, approximate value prediction requires significant pro-
grammer involvement in identifying load values to approximate. This can be done using code
annotations, as in LVA, or with the help of profiling tools, as in RFVP. In either case, assuming
that value prediction is an optional CPU performance feature, programmers may be reluctant to
use it if it is too difficult or time-consuming.

Perhaps approximate value prediction techniques such as LVA and RFVP may find the greatest
benefits in the context of high-performance computing, which utilizes massively parallel archi-
tectures with long-latency interconnects. As [89] showed, value prediction has great potential
to increase an application’s data parallelism and its potential maximum speedup from proces-
sor scaling, as per Amdahl’s law. Moreover, several value prediction papers [87, 88, 97, 137, 156,
173, 181] have shown that the main benefit of value prediction comes from its memory latency
overhead reduction. Since communication latencies in massively parallel architectures are pre-
sumably much higher, it is expected to yield greater benefits from value prediction. Finally, as the
RFVP paper [173] showed, approximate value prediction not only reduces communication latency
but also communication bandwidth, which again can be a bottleneck in many massively parallel
architectures.

2.3.5 Benefits and Challenges of Value Prediction for Approximate Communication. In this sec-
tion, we present two papers that explored the concept of approximate value prediction: LVA [97]
and RFVP [173]. Both papers show the benefits of approximate value prediction over traditional
value prediction. Instead of requiring data to be fetched from memory on every cache miss in
order to validate the value prediction, both papers implement mechanisms that allow memory
fetches to be performed less often, as they are used only for updating the value predictors. The
result is that, in addition to the reduced average memory latency from traditional value pre-
diction, approximation also reduces the memory bandwidth requirement. The same technique
could also be easily applied to reduce communication in parallel computers since the value
predictors could also be used for predicting remote data, thus requiring fewer communication
messages.

Approximate value prediction helps overcome many of the shortcomings that have kept tradi-
tional value prediction from reaching commercial application. However, it is still somewhat of a
complex architectural feature to implement and there is a large design space for predictor designs
that need to be explored. Another issue is that, if we assume that an approximate value predictor
would be implemented as an extra feature in a microprocessor, it is unclear if it would be used
often enough to justify the area, power, and design costs associated with it. Nevertheless, it does
hold the promise of significantly reducing interconnect and memory bandwidth requirements, as
was shown in the LVA and RFVP papers.

3 PUTTING IT ALL TOGETHER

Section 2 provided an overview of three promising techniques for approximate communication.
In this section, the three techniques are brought together and compared side by side based on a
common evaluation framework. While the comparison is mostly qualitative in nature, we present
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some evaluation results from relevant papers in order to support conclusions on each technique’s
potential for reducing communication on massively parallel systems.

3.1 Evaluation Framework

Approximate computing is a relatively new research field; there are still many opportunities for
research, especially in the area of approximate communication techniques. However, it is impor-
tant that new ideas and techniques in this area be evaluated in a consistent manner, taking into
consideration the most important aspects and goals of approximate communication. In addition to
the speedup and energy consumption normally reported, approximate techniques require careful
consideration of output degradation and how it varies based on the application. Many techniques
only apply to certain applications or only have benefits when applied to a certain communica-
tion and/or computation pattern. Additionally, many techniques give programmers the flexibility
to specify the application’s output quality goals that, in turn, affect the performance, power, or
bandwidth gains achievable from the technique. Therefore, a proper evaluation should carefully
consider these trade-offs when drawing conclusions about a technique.

We have selected what we believe are the six most important evaluation parameters that must be
considered when determining the feasibility and merits of an approximate communication tech-
nique. They include metrics that are commonly reported on system papers (i.e., performance, en-
ergy, overheads) and those specific to approximation techniques (i.e., output degradation). The
goal is to consider all these metrics together in order to provide a fair evaluation of each technique.
Here, we give a background on each evaluation parameter and an explanation of their importance
for approximate communication. In the next section, we use this framework for a comparative
analysis of the surveyed techniques.

Communication Cost Reduction. The main purpose of approximate communication is to re-
duce the communication cost of a parallel application. Culler et al. [39] have defined the following
communication cost model for a message-passing system:

Length

C=F Overhead + Del —
requency * | Overhead + eay+Bandwidth

+ Contention — Overlap) (1)

where

Frequency is the frequency of communication messages in the program.

Overhead is the combined overhead of handling initiation and reception of a message on the
sending and receiving processors, assuming no contention with other activities.

Delay is the nonoverhead delay for the first bit of the message to reach the destination pro-
Cessor Or memory.

Length is the average length of a communication message, which can be further broken down
as the total amount of data communicated by the program divided by the number of
messages.

Bandwidth is the point-to-point bandwidth of communication afforded for the transfer by
the communication path, excluding the processor overhead.

Contention is the time induced by contention for resources with other activities.

Overlap is the amount of the communication cost that can be overlapped with computation
or other communication.

From this model, it becomes clear that there are many different approaches to reducing com-
munication costs in a parallel system. While there is a lot of research looking to improve over-
head, delay, contention, and overlap, approximate communication techniques target primarily
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the number and size of messages. Thus, if we ignore the overhead, delay, contention, and over-

lap components in the above equation, we can approximate the communication cost to C =

Length _ _ . _
Frequency * (a * g—<-"=) or Commpeq = & * N x Q, where a = scaling factor, N = the num-

ber of messages, and Q = average size of communication messages. Techniques that aim to maximize
information content, minimize the data footprint, or communicate only approximate values, such
as lossy compression, aim to reduce Q. On the other hand, techniques that aim to minimize the
frequency of communication or the number of times required to communicate, such as value pre-
diction or relaxed synchronization, aim to reduce N.

Performance Improvement. Performance, as measured by the application’s execution time
and/or speedup over a baseline, is a common metric for evaluating and comparing the benefits
of different techniques. Approximate communication techniques can impact performance either
directly or indirectly. Some techniques may improve performance directly by, for example, skip-
ping or approximating certain time-consuming computations. Communication reduction may also
impact performance indirectly, however. Generally speaking, communication-bound applications
will typically experience the greatest performance benefits from approximate communication
techniques, while compute-bound applications will see more modest improvements. Moreover, in
some cases, the technique’s overhead may overcome its benefits, which may lead to performance
degradation. Therefore, in addition to communication cost reduction, we must also evaluate an
approximate communication technique’s performance impact.

Energy Reduction. This metric is becoming ever more important in modern systems. Previ-
ous studies [146] have shown that communication power is already one of the main power draws
and its share of the total system power budget is expected to increase as CPU core efficiency im-
provements outpace improvements in interconnect efficiency. It is important to differentiate power
versus energy efficiency, however. Energy is the product of power and time. Thus, any technique
that improves the execution time of a benchmark without increasing system power considerably
will see an energy consumption improvement. While most research papers report their energy
consumption savings, peak power is actually a greater concern for parallel systems. One of the
biggest challenges in scaling up massively parallel systems is heat dissipation, and the ability of a
cooling system to maintain a safe operating temperature is directly related to the system’s peak
power. On the other hand, energy efficiency is also important but for a different reason. Energy
efficiency translates into savings in electricity consumption for large systems. Energy efficiency
is also of great importance for battery-operated devices in order to extend their battery lives. We
will consider both power and energy efficiency improvements in our evaluation of the techniques
in this article.

Applicability. Not all approximate communication techniques yield the same benefits on all
applications. Some techniques target applications with high memory bandwidth requirements or
with a lot of interprocessor synchronization and will sometimes have significant slowdowns if ap-
plied outside their scope. The benefits of certain techniques can vary drastically depending on the
application to which they are applied. Moreover, some techniques are application aware, meaning
that they are able to dynamically adapt to the running application. Thus, it is important to under-
stand if a given technique is generally applicable or if it is optimized for a certain application.

Overhead. This blanket evaluation parameter includes a diverse set of implementation
specific costs, which include runtime setup overhead, chip area, design complexity, price, and
programming effort. For software-based techniques, setup time and programming effort might
be the main concerns, while for hardware-based techniques, chip area and power consumption
may be the major concerns. It is important to understand if and when a technique’s cost may
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overcome its benefits. Sometimes, techniques may look great in theory and have good speedups
on a simulator but fall short when implemented on a real system. It is important for system
researchers to carefully consider all different sources of overhead that may hinder the expected
performance of a given technique.

Output Degradation. The key aspect of approximate computing is the trade-off between
output quality and energy efficiency or performance improvement. Therefore, a proper evaluation
of a given approximate computing technique requires a measurement of the output degradation
that captures all user-relevant information. Unlike other metrics, such as speedup and energy
efficiency, output-degradation metrics are application dependent and not as straightforward to
evaluate. Akturk et al. [4] present an overview of some of the challenges and pitfalls in evaluating
accuracy loss in approximate computing. Some of the key points made in their work include:

(1) Accuracy versus validity: Some approximation techniques may lead to invalid outputs,
requiring validity checks and accuracy metrics.

(2) Accuracy versus acceptability: Different applications will be more or less resilient to the
amount of output degradation that is acceptable. Likewise, even the same application may
have different accuracy requirements depending on the usage scenario.

(3) Relative metrics: Metrics computed from the absolute values of the output may introduce a
bias in the output. For example, if the output values are coordinates, using absolute values
may give higher importance to points further from the origin. Thus, good metrics should
be relative to the range of the output.

(4) Averaging effects: Average metrics may hide differences between small, frequent errors in
the output versus large, infrequent ones, which may be more or less important to different
applications.

(5) Input data: A given approximation technique may have a different impact on output qual-
ity for different input sizes or values. Moreover, some inputs may produce invalid results
or even crash the application. It is thus essential to cover such cases when evaluating or
testing theses techniques.

(6) Nondeterminism: The best candidate applications for approximation are typically those of
a probabilistic nature, which will have inherent nondeterminism in the output. Moreover,
the approximation technique itself may introduce nondeterminism if, for example, the ap-
proximate technique relaxes serialization guarantees in a parallel application. Therefore,
accuracy metrics must be based on statistic guarantees of the output quality and must be
able to isolate inherent and approximation-induced nondeterminism.

A proper evaluation of output degradation from approximation techniques should carefully con-
sider the most appropriate metrics. Typically, it may be necessary to include more than one metric.
For example, in order to account for the averaging effects, it may be necessary to capture the aver-
age alongside the min-max values or an error distribution. One will typically also have to reason
about the validity and acceptability requirements of each benchmarked application. Finally, given
the probabilistic and nondeterministic nature of many approximation techniques, evaluation will
typically require a large number of runs in order to search the input space for possible invalid
cases, to gather statistical data on the relationship between input data and output degradation,
and to find the error distribution due to approximation-induced nondeterminism. Since approxi-
mate computing research is still in its early stages, many works have not been so rigorous in their
evaluations. As the field develops, such rigor will become necessary for properly comparing new
techniques.
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3.2 Comparison

This section compares the techniques in this article using our evaluation framework. Table 2 gives
a summary of the main points discussed in this section.

3.2.1  Communication Cost Reduction. Compression reduces communication cost mainly by a
reduction in the amount of data to be communicated (reduce Q). The amount of data that is re-
duced will be dependent on the compression ratio that, in turn, is dependent on the compression
algorithm and the entropy of the data. Lossy compression typically yields greater compression ra-
tios than lossless at the cost of some data degradation. The effect of reducing the amount of data is
an improvement in the available communication bandwidth. In a high-contention scenario, how-
ever, bandwidth improvement will also lead to an improvement in communication latency. In [6],
link compression using a Frequent Pattern Compression scheme was shown to reduce bandwidth
between 23% and 41%. In [41], compression in the network interface controller of an NoC was
able to reduce network latency by 20%, on average. Wiseman et al. [170] compare the compression
ratios between four different compression schemes (Burrows-Wheeler, Lempel-Ziv, Arithmetic,
Huffman), achieving between 10% and 50% compression. Bui et al. [20] include compression ratios
between Zlib and BloSC, resulting in an average compression ratio close to 2x. In comparison,
Iverson et al. [68] showed the benefit of lossy compression over lossless. In their evaluation, lossy
compression was able to reduce the dataset size to 2% to 5% of original size, while lossless com-
pression only achieved 40% to 80%, which is consistent with results from other works.

The relaxed synchronization technique is more limited in terms of its ability to reduce com-
munication cost. However, relaxed synchronization may reduce the number of synchronization
messages needed to be transmitted (reduce N). Depending on the synchronization protocol used,
this reduction in the number of messages can improve contention and interconnect energy even
if these messages are typically small.

Approximate value prediction reduces communication cost by skipping a fraction of data fetches
(called the drop rate or approximation degree). The result is an improvement in bandwidth re-
quirements. Value prediction also improves average memory latency to CPU through speculative
execution; however, the actual channel latency is not affected. The two main papers on approxi-
mate value prediction are LVA [97] and RFVP [173]. LVA reported an average 37.2% reduction of
interconnect traffic with an approximation degree of 16 (meaning that only 1 out 17 loads will trig-
ger a memory access) and over 39% reduction in the number of fetches from main memory. RFVP
reported GPU bandwidth reductions of 20% to 90% for quality degradations of less than 10%. These
results show the potential benefits of their techniques in reducing communication. Note that these
results vary depending on the application, output degradation level, and target architecture.

3.2.2  Performance. Compression has the most performance benefit for applications that are
bandwidth constrained [6]. Nevertheless, even applications that are not bandwidth constrained
may still see performance improvements due to compression since communication typically oc-
curs in bursts. Bui et al. [20] reported a 40% increase in performance from using lossless compres-
sion. Moreover, Bicer et al. [18] showed the performance benefits of using lossy compression. Their
lossy compression algorithm improved performance by over 2x compared to lossless compression.
However, compression may not be beneficial in cases in which the overhead of compression and
decompression is greater than the communication reduction. In [75], Krintz and Sucu developed
the ACE (Adaptive On-the-fly Compression) scheme to deal specifically with cases for which com-
pression may not be beneficial and show how speedups may change depending on network and
system. Their results show an average speedup of around 9% to 20%. Likewise, Alameldeen and
Wood [6] show modest average speedups for compression alone of 3% to 20%.
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Table 2. Comparison of the Surveyed Approximation Techniques in Terms of Evaluation Parameters

Relaxed
Compression Synchronization Value Prediction
Reduces Q Reduces N Reduces N
Link compression Reduces number of Reduces number of
Communication | reduces bandwidth synchronization data fetches required
Cost Reduction | Better compression messages
ratios with lossy
compression
Performance Performance Performance
improvement improvement improvement from
dependent on dependent on speculative execution
bandwidth constraint | synchronization of long latency
Performance i
Performance overhead operations and
degradation possible | No performance bandwidth reduction
degradation No performance
degradation
Energy reduction Energy reduction Energy reduction
dependent on the dependent on the dependent on the
trade-off between reduction in approximation degree
Energy . N
Reduction compressmr} and execution time
decompression
overhead and
compression ratio
Typically, best Technique is Application agnostic
compression ratios applicable to any since this is a
will be application domain, but low-level hardware
specific. General implementation will feature. The
Applicability methods exist but be application application’s value
with lower specific. predictability will
compression ratios. influence
performance
improvements.
Compression and Little to no runtime Chip area and power
decompression time overhead associated overhead for
is main overhead. with this technique, prediction tables.
Overhead Hardware engines except if using May rec!uire program
and parallel runtime monitors. annotations for load
compression The main cost is in values to predict.
algorithms can help. programmer effort for
code annotations.
Controllable on most | Controllable by Controllable by
Output compression methods | selecting which changing the
. by selecting the synchronization approximation degree
Degradation . . .
compression ratio point to relax (LVA) or drop rate
(RFVP)
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Performance benefits under relaxation depend on the frequency of accessing a synchronization
point and the ratio of conflicting accesses in the original application. Hence, for the set of applica-
tions used in the study [126], we see a wide range of speedup benefits with respect to the original
execution. For instance, their results show a speedup of 13x to 15x for kmeans, 2.6x for ssca2, 1.5x
for labyrinth, 3.2x for BFS of Graph500, and negligible for yada.

In both LVA and RFVP, performance gains are related to the level of allowable output degra-
dation. LVA uses what they call the approximation degree to tune the level of output degradation.
Approximation degree is the number of main memory accesses that are skipped on cache misses.
LVA reported an average speedup of 8.5% for an approximation degree of 0 with about an addi-
tional 2% with approximation degree of 16. LVA performance benefits come primarily from L1
miss latency reduction (41%) due to lower misses per kilo instructions (MPKI). RFVP reported a
36% speedup with 10% quality loss on GPU benchmarks and an 8% speedup with 0.9% quality loss
on CPU. These results show that highly parallel architectures, such as GPUs, stand to gain the
most in terms of performance improvements while modest speedups with very low output errors
are possible on CPUs.

3.2.3 Energy Reduction. Compression improves energy efficiency by reducing the number of
bits that need to be transmitted over the communication channel. However, the compression and
decompression steps also consume energy; thus, as for performance, energy efficiency will be de-
pendent on this trade-off. [145] showed that memory energy is usually much higher than compres-
sion and decompression. In [41], it was shown that link compression can reduce network power in
an NoC by an average of 10%. Relaxed synchronization energy reduction comes primarily from the
reduced application execution time. The energy savings from approximate value prediction comes
from reduced runtime and fewer fetches from memory. The energy overhead includes primarily
the predictor logic and table. RFVP reported a 31% energy reduction with an 8.8% quality loss and
2x energy reduction with 10% quality loss on the GPU benchmarks. For the CPU benchmarks,
RFVP reported 6% energy reduction with 0.9% quality loss. LVA reported an average 12.6% energy
reduction with approximation degree 16.

3.24 Applicability. Compression has the widest applicability of all the techniques. However,
the benefits of compression will vary greatly between applications depending on the compress-
ibility of the application’s data. Lossless compression can be applied to any application, but lossy
compression should be applied only to error-tolerant applications. Relaxation is also applicable
to a wide range of applications, from data mining and machine learning to numerical optimiza-
tion, graph processing, financial modeling, mathematical programming, and design automation,
as shown in [126]. Applications with the greatest number of nonessential synchronization points
will have the greatest benefits. As a hardware feature, approximate value prediction is application
agnostic. However, the best results will depend on the predictability of the data.

3.25 Overhead. The main source of overhead for compression is in the compression and de-
compression. It is possible to reduce these overheads with the use of specialized hardware or more
efficient parallel compression algorithms. Relaxed synchronization, on the other hand, has no run-
time overhead. It does, however, require modifications to either binary or source code. Value pre-
diction increases the chip area and may require program modifications. Nevertheless, in many
cases, the chip area overhead can replace existing structures. For example, in the RFVP work, it
was shown that even simple and small predictors on the order of 10 to 20KB can achieve good pre-
diction rates and speedups that exceed a comparable increase in cache size. Additional programmer
effort can also be viewed as a type of overhead if value prediction requires code annotations for
identifying the load values to predict.
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3.26 Output Degradation. Compression incurs output degradation only in the case of lossy
compression. The level of output degradation can be controlled by the selection of compression
algorithm. Many algorithms may also allow some control over compression ratio. Most papers on
link compression have used lossless compression since it can be applied to any dataset, not only
to error-resilient datasets. Iverson et al. [68] demonstrated lossy compression of scientific datasets
of up to 1% of the original size with average PSNR of 43.00 and 3% of the original size with average
PSNR of 63.30. They also showed a mechanism to bound the compression error, which is important
for the technique to be useful for a wider range of applications.

Output degradation can be controlled in relaxed synchronization by the choice of which syn-
chronization points to relax. This will require a classification of the synchronization points in
terms of their impact on output quality and program safety either manually by the programmer
or through profiling tools. It is also possible to devise methods that choose whether to relax based
on runtime monitoring of the output degradation, even though such mechanisms may be difficult
to implement in practice.

For approximate value prediction, both LVA and RFVP implement mechanisms for controlling
the amount of output degradation. One method is to control how often data is fetched from mem-
ory on a cache miss. In traditional value predictors, cache misses still trigger a read to memory to
retrieve the data. The processor continues execution speculatively while waiting for the predicted
data to arrive so that its prediction can be verified. In the proposed approximate designs, however,
they can selectively decide not to fetch a block into the L1 cache, since no verification is required,
while still allowing a few fetches in order to update the value predictors. In LVA, this is called the
“approximation degree”; in RFVP, it is called the “drop rate.” Another method is to relax the confi-
dence windows. Value predictors often include a confidence estimator that determines whether a
prediction should be performed or not. Since the approximate design is more resilient to mispre-
dictions, the confidence threshold can be relaxed. Both methods allow fine runtime control over
the speedup versus quality trade-off and are a major advantage of this technique. In general, the
authors have shown that significant speedups are achievable for very—-low—-output degradation.

3.3 Discussion

The comparison above has shown some of the trade-offs with each of the three techniques (com-
pression, relaxed synchronization, and value prediction) as they relate to approximate commu-
nication. It is also worth noting that the metrics in our evaluation framework have a degree of
interdependency. For example, communication reduction will typically lead to performance im-
provement for most applications. However, the actual speedup will depend on the level of the sys-
tem’s communication bottleneck. Among the three techniques, compression and value prediction
were shown to provide significant bandwidth and latency improvements; however, only modest
speedups were seen on many systems. This points to the fact that most of the performance ben-
efit from communication reduction comes from improving the scalability of parallel applications
rather than single-core performance. Therefore, approximate communication techniques will find
the best applications on systems with a high core count.

The importance of considering the application’s characteristics was also demonstrated. Re-
laxed synchronization, for example, is most effective with the help of intimate knowledge of the
application. Even though compression and value prediction can be made fairly efficient using
general-purpose algorithms, there are unique characteristics of the application, such the sparsity
and entropy of the data, that significantly affect the scalability and/or performance benefits they
will yield for the given application. Therefore, the best approximate communication techniques
will be application aware, that is, they will be able to adapt to the running application’s unique
characteristics.
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Finally, the possibilities of combining these techniques is also worth mentioning. This is most
beneficial when the techniques are either complementary, meaning that they support each other,
or orthogonal, meaning that they target distinct bottlenecks in the system and are able to work
independently. An example of using the techniques in a complementary fashion would be using
value prediction to approximate the data values in critical code sections that have been relaxed
under relaxed synchronization. An example of an orthogonal combination would be using com-
pression and value prediction. It would be possible to design these techniques such that they would
have minimum interaction, thus allowing value prediction to simultaneously reduce the number
of communication messages while compression could reduce the size of those messages.

4 POTENTIAL RESEARCH DIRECTIONS

Based on the discussion above, this section includes some suggestions for future research. The goal
of these suggestions is to serve as a brainstorming of ideas on the most efficient ways to apply
these surveyed techniques as well as some ideas for other promising techniques for approximate
communication.

For compression, we see an opportunity for research into adaptive lossy link compression. Such
a technique could combine the high compression ratios of lossy compression with the commu-
nication cost reduction from link compression. Making compression adaptable would allow for a
fluid trade-off of performance and error degradation, as well as a dynamic response to the system
state. As shown in Section 2.1, this technique could be tailored for either NoC or high-performance
computing architectures.

For relaxed synchronization, there is a need to better understand the relationship between syn-
chronization points and output quality. Since most research on synchronization has been done
under the assumption that any error is unacceptable, there is not much research that considers the
exact effect of relaxing synchronization. In order for this technique to find greater use, there would
also need to be profiling tools and/or iterative compilers to aid in the selection of synchronization
points to relax.

For value prediction, it would be worth investigating the performance benefits of approximate
load value prediction on massively parallel architectures for which value prediction may have the
greatest benefits due to large communication overheads. There is also the need for improved pro-
gramming models and profiling tools to help in the development of applications for approximate
value prediction. Finally, there are opportunities for variations on hardware-centric design. For ar-
chitectures with very long communication latencies, software-based or hardware- assisted value
prediction may provide performance benefits and lower implementation costs.

There is also a plethora of available software optimizations similar to relaxed synchronization
that could be applied to existing applications. Approximate algorithms are commonly used for
the solution of NP-complete problems, but those are not the only applications in which only an
approximate solution is good enough. Similar concepts can also be applied to algorithms that have
an exact polynomial time solution but that could be optimized through approximation. This also
applies to the communication patterns within an application. In many cases, it may be faster or
more energy efficient to transmit only approximations of the data, such as a statistical distribution
or a max and min, rather than the entire dataset at the cost of only a small accuracy loss. Thus,
there is opportunity for developing tools that could aid developers in making these decisions. One
example of work in this area is Paraprox [132]. Paraprox is an automated tool for software-only
optimizations based on approximation of communication patterns in data parallel programs. It
is a compiler-based software system that automatically detects common communication patterns
in data-parallel programs and substitutes them with approximate versions. It specifically targets
common communication patterns such as map, scatter/gather, reduction, scan, stencil, and
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partition. Thus, it provides a software framework in which several techniques can be selectively
applied as appropriate.

Finally, additional research may explore employing accelerators or processors-in-memory
(PIM) [91, 115, 143, 182] to speed up certain approximation kernels. For example, one may conceive
of using the logic layer of a 3D stacked DRAM to implement an accelerator that performs efficient,
lossy compression on data to be transmitted over the memory channel. Accelerators could also
be designed to perform approximations or analysis on data in-memory so that only summarized
results need to be transmitted.

5 CONCLUSION

Approximate computing is a new paradigm that exploits an application’s inherent error resilience
and allows a trade-off between output inaccuracy and performance or energy efficiency. Nonethe-
less, communication is one of the biggest challenges to achieving scalable performance and energy
efficiency in parallel systems. This leads to an opportunity to extend the approximate computing
concepts to approximate communication, which would allow improved communication reduction
through approximation techniques. This article surveyed three promising techniques (compres-
sion, relaxed synchronization, and value prediction), providing an overview of existing research
on each and their applicability to approximate communication. The techniques were evaluated
using a common framework composed of six parameters: communication cost reduction, perfor-
mance, energy reduction, applicability, overhead, and output degradation. Finally, we presented
several ideas for future research into each technique and additional techniques worth exploring
for approximate communication.

The main contribution of this article was to demonstrate some of the opportunities available for
tackling the communication bottleneck issues on massively parallel systems by applying approx-
imate computing concepts to existing techniques found in the literature. The final results yielded
several suggestions for future research in this area. For example, we have found that lossy link com-
pression is a promising application of compression to approximate communication. This technique
would combine the bandwidth reduction from link compression with the higher compression ra-
tios and lower overheads from lossy compression. Likewise, approximate value prediction, when
applied to massively parallel systems, would have the potential for further exploiting the scalabil-
ity benefits from value prediction in parallel systems while avoiding the high costs from traditional
value prediction.
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