
Accuracy Bugs:
A New Class of Concurrency Bugs to Exploit

Algorithmic Noise Tolerance
Ismail Akturk1, Riad Akram2, Mohammad M. Islam2, Abdullah Muzahid2, Ulya R. Karpuzcu1

1 University of Minnesota, Twin Cities

2 University of Texas at San Antonio

01/25/2017

Outline

• Background
• Accuracy Bugs
• Methodology
• Evaluation

2 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Background

• Parallel programming is hard
• Correctness: error-free execution
• Concurrency bugs

• Applications having algorithmic error tolerance (Recognition, Mining and Synthesis)
• Massive data (noisy, redundant)
• Iterative/probabilistic algorithm
• More than one valid output set (no single golden/precise result)

• Can we exploit the error tolerance?
• Ease programming
• Utilize approximate hardware

3Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

Accuracy Bugs

• Concurrency Bugs
• data races
• ordering violations
• atomicity violations
• deadlocks

• A new class of Concurrency Bug: Accuracy bugs
• do not lead to program failures (Lu et al. 2008)
• manifest themselves as inaccuracy in outputs (do not give up correctness!)
• comprise the subset of concurrency bugs that mainly affect the dataflow

4Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

Accuracy Bugs: How they manifest themselves?

5Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

while (!open){

cond_wait()

}

barrier();

open = true;

cond_broadcast();

barrier();

open = false;

T1 T2

Accuracy Bugs: How they manifest themselves?

6Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

open = true;

cond_broadcast();

barrier();

open = false;

T1 T2

read open (open = false)

update open (open = true)

broadcast

update open (open = false)

wait on condition

wake up

read open (open = true)

while (!open){

cond_wait()

}

barrier();

update open (open = false)

wait on barrier

wait on barrier

tim
e

Accuracy Bugs: How they manifest themselves?

7Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

open = true;

cond_broadcast();

//barrier();

open = false;

T1 T2

while (!open){

cond_wait()

}

//barrier();

Accuracy Bugs: How they manifest themselves?

8Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

read open (open = false)

update open (open = true)

broadcast

update open (open = false)

wait on condition

wake up

read open (open = false)

open = true;

cond_broadcast();

//barrier();

open = false;

T1 T2

while (!open){

cond_wait()

}

//barrier();

tim
e

Accuracy Bugs: How they manifest themselves?

9Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

read open (open = false)

update open (open = true)

broadcast

update open (open = false)

wait on condition

wake up

read open (open = false)

open = true;

cond_broadcast();

//barrier();

open = false;

T1 T2

while (!open){

cond_wait()

}

//barrier();

tim
e

critical bug !

Accuracy Bugs: How they manifest themselves?

10Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

lock();

rng = new MTRand(seed++);

unlock();

T1 T2

lock();

rng = new MTRand(seed++);

unlock();

Accuracy Bugs: How they manifest themselves?

11Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

lock();

rng = new MTRand(seed++);

unlock();

T1 T2

lock();

rng = new MTRand(seed++);

unlock();

acquire lock
read seed

release lock

tim
e

update seed
create object

acquire lock
read seed

release lock

update seed
create object

Accuracy Bugs: How they manifest themselves?

12Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

T1 T2

//lock();

rng = new MTRand(seed++);

//unlock();

read seed

tim
e

update seed

create object

read seed

update seed

create object

//lock();

rng = new MTRand(seed++);

//unlock();

Accuracy Bugs: How they manifest themselves?

13Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

T1 T2

//lock();

rng = new MTRand(seed++);

//unlock();

read seed

tim
e

update seed

create object

read seed

update seed

create object

//lock();

rng = new MTRand(seed++);

//unlock();
accuracy bug !

Accuracy Bugs: Can we accept all of them?

• The amount of degradation (i.e. inaccuracy) in output determines acceptability
• It is domain specific
• The same amount of degradation may be acceptable in one domain, but not in

another

14Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

Accuracy Bugs: Is it only the accuracy?

• Performance may increase or decrease
• Convergence criteria in iterative refinement algorithms

• System complexity
• Coherence and consistency

15Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

Methodology

16Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance 01/25/2017

eliminate synchronization

program

terminates

valid

output

accuracy bug

critical bug

no

no

yes

yes

Evaluation: Setup

• Parsec and Splash benchmarks
• Microarchitectural simulation backed up with real system experimentation

• Snipersim
• Intel Xeon E5-4620 v2 processors (4 sockets, 8 cores/socket)

• Quality metrics
• Scalar: relative change
• Vector: sum of square difference (SSD)
• Image: peak signal-to-noise ratio (PSNR) / structural similarity (SSIM)
• Clustering/Similarity: difference of common elements

17 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Synchronization points

18 01/25/2017

Benchmark Total # of

synchronizations

Quality degradation bin

0% < 1% < 50% < 100% fault invalid

barnes 12 3 4 1 1 3 0

canneal 11 0 7 3 0 0 1

dedup 9 3 1 0 0 1 4

fluidanimate 16 9 1 0 0 4 2

streamcluster 27 5 0 1 5 16 0

ferret 3 1 0 0 0 2 0

bodytrack 31 22 0 0 0 9 0

vips 15 11 0 0 0 4 0

raytrace 8 5 0 0 0 3 0

x264 2 0 1 0 0 1 0

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Synchronization points

19 01/25/2017

accuracy bugs

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Benchmark Total # of

synchronizations

Quality degradation bin

0% < 1% < 50% < 100% fault invalid

barnes 12 3 4 1 1 3 0

canneal 11 0 7 3 0 0 1

dedup 9 3 1 0 0 1 4

fluidanimate 16 9 1 0 0 4 2

streamcluster 27 5 0 1 5 16 0

ferret 3 1 0 0 0 2 0

bodytrack 31 22 0 0 0 9 0

vips 15 11 0 0 0 4 0

raytrace 8 5 0 0 0 3 0

x264 2 0 1 0 0 1 0

Evaluation: Synchronization points

20 01/25/2017

accuracy bugs critical bugs

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Benchmark Total # of

synchronizations

Quality degradation bin

0% < 1% < 50% < 100% fault invalid

barnes 12 3 4 1 1 3 0

canneal 11 0 7 3 0 0 1

dedup 9 3 1 0 0 1 4

fluidanimate 16 9 1 0 0 4 2

streamcluster 27 5 0 1 5 16 0

ferret 3 1 0 0 0 2 0

bodytrack 31 22 0 0 0 9 0

vips 15 11 0 0 0 4 0

raytrace 8 5 0 0 0 3 0

x264 2 0 1 0 0 1 0

Evaluation: Synchronization points

21 01/25/2017

accuracy bugs critical bugs

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Benchmark Total # of

synchronizations

Quality degradation bin

0% < 1% < 50% < 100% fault invalid

barnes 12 3 4 1 1 3 0

canneal 11 0 7 3 0 0 1

dedup 9 3 1 0 0 1 4

fluidanimate 16 9 1 0 0 4 2

streamcluster 27 5 0 1 5 16 0

ferret 3 1 0 0 0 2 0

bodytrack 31 22 0 0 0 9 0

vips 15 11 0 0 0 4 0

raytrace 8 5 0 0 0 3 0

x264 2 0 1 0 0 1 0

84 out of 134 (62%) synchronizations lead to accuracy bugs

Evaluation: Output quality vs. Thread count

22 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Output quality vs. Thread count

23 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

the outcome is not sensitive to the number of threads

Evaluation: Time spent in synchronization

24 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Time spent in synchronization

25 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

synchronization overhead increases with the number of threads

Evaluation: Impact on performance - barnes

26 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Impact on performance - bodytrack

27 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Impact on performance - bodytrack

28 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Performance changes from 1.8% slowdown to 16.9% speedup

Evaluation: Bug categorization

29 01/25/2017

Bug Injection Data race Atomicity Violation Ordering Violation Other

critical accuracy critical accuracy critical accuracy critical accuracy

Lock Elimination 12 93 6 41 0 0 2 23

Barrier Elimination 30 52 4 19 0 0 3 15

Condition Elimination 0 0 0 0 7 7 4 2

Lock Splitting 0 0 60 144 0 0 0 1

Atomicity Elimination 0 0 0 0 0 0 1 7

Total 42 145 70 204 7 7 10 48

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Bug categorization

30 01/25/2017

Bug Injection Data race Atomicity Violation Ordering Violation Other

critical accuracy critical accuracy critical accuracy critical accuracy

Lock Elimination 12 93 6 41 0 0 2 23

Barrier Elimination 30 52 4 19 0 0 3 15

Condition Elimination 0 0 0 0 7 7 4 2

Lock Splitting 0 0 60 144 0 0 0 1

Atomicity Elimination 0 0 0 0 0 0 1 7

Total 42 145 70 204 7 7 10 48

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

404 out of 533 (76%) concurrency bugs are accuracy bugs

Summary

31 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Summary

• Most of the synchronizations are noncritical
• their relaxation introduces less than 10% inaccuracy
• most of the injected bugs are accuracy related

32 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Summary

• Most of the synchronizations are noncritical
• their relaxation introduces less than 10% inaccuracy
• most of the injected bugs are accuracy related

• Performance gain is not significant at a lower thread count
• potential gain increases significantly at a higher thread count: Amdahl’s Law

33 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Summary

• Most of the synchronizations are noncritical
• their relaxation introduces less than 10% inaccuracy
• most of the injected bugs are accuracy related

• Performance gain is not significant at a lower thread count
• potential gain increases significantly at a higher thread count: Amdahl’s Law

• Findings should be considered with set of applications (and alike) and the evaluation
methodology presented in this study

34 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Accuracy Bugs:
A New Class of Concurrency Bugs to Exploit

Algorithmic Noise Tolerance
Ismail Akturk1, Riad Akram2, Mohammad M. Islam2, Abdullah Muzahid2, Ulya R. Karpuzcu1

1 University of Minnesota, Twin Cities

2 University of Texas at San Antonio

01/25/2017

Case Study: streamcluster – critical bug

37 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8

if(pid == 0){
work_mem = (double *) malloc (...);
...

}
pthread_barrier_wait(barrier);
...
work_mem[pid*stride] = count;
...

Case Study: streamcluster – critical bug

38 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8

if(pid == 0){
work_mem = (double *) malloc (...);
...

}
pthread_barrier_wait(barrier);
...
work_mem[pid*stride] = count;
...

T0

Case Study: streamcluster – critical bug

39 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8

if(pid == 0){
work_mem = (double *) malloc (...);
...

}
pthread_barrier_wait(barrier);
...
work_mem[pid*stride] = count;
...

T1

T0

Case Study: streamcluster – critical bug

40 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8

if(pid == 0){
work_mem = (double *) malloc (...);
...

}
pthread_barrier_wait(barrier);
...
work_mem[pid*stride] = count;
...

T1

T0

Case Study: streamcluster – critical bug

41 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

segmentation fault

1
2
3
4
5
6
7
8

if(pid == 0){
work_mem = (double *) malloc (...);
...

}
pthread_barrier_wait(barrier);
...
work_mem[pid*stride] = count;
...

Case Study: streamcluster – accuracy bug

42 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8
9
10
11
12

while(change/cost > 1.0*e){
…
if(pid == 0){

intshuffle(feasible, numfeasible);
}
pthread_barrier_wait(barrier);
…
change += pgain(feasible[x], ...);
…
cost -= change;
…

}

Case Study: streamcluster – accuracy bug

43 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8
9
10
11
12

while(change/cost > 1.0*e){
…
if(pid == 0){

intshuffle(feasible, numfeasible);
}
pthread_barrier_wait(barrier);
…
change += pgain(feasible[x], ...);
…
cost -= change;
…

}

T0

Case Study: streamcluster – accuracy bug

44 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8
9
10
11
12

while(change/cost > 1.0*e){
…
if(pid == 0){

intshuffle(feasible, numfeasible);
}
pthread_barrier_wait(barrier);
…
change += pgain(feasible[x], ...);
…
cost -= change;
…

}

T1

T0

Case Study: streamcluster – accuracy bug

45 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8
9
10
11
12

while(change/cost > 1.0*e){
…
if(pid == 0){

intshuffle(feasible, numfeasible);
}
pthread_barrier_wait(barrier);
…
change += pgain(feasible[x], ...);
…
cost -= change;
…

}

T1

T0

Case Study: streamcluster – accuracy bug

46 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8
9
10
11
12

while(change/cost > 1.0*e){
…
if(pid == 0){

intshuffle(feasible, numfeasible);
}
pthread_barrier_wait(barrier);
…
change += pgain(feasible[x], ...);
…
cost -= change;
…

}

T1

Case Study: streamcluster – accuracy bug

47 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

1
2
3
4
5
6
7
8
9
10
11
12

while(change/cost > 1.0*e){
…
if(pid == 0){

intshuffle(feasible, numfeasible);
}
pthread_barrier_wait(barrier);
…
change += pgain(feasible[x], ...);
…
cost -= change;
…

}

Evaluation: Quality metrics - backup

48 01/25/2017

Benchmark Domain Quality Metric

barnes N-body simulation Difference in body positions

canneal Optimization Relative routing cost

dedup Compression Relative compression rate

fluidanimate N-body simulation Difference in particle positions

streamcluster Clustering Number of common clusters

ferret Similarity search Number of common images

bodytrack Computer vision SSD of output vectors

vips Image processing Peak-signal-to-noise ratio (PSNR)

raytrace Real time animation PSNR

x264 Video encoding Structural similarity

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Impact on output quality (canneal) -
backup

49 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Evaluation: Impact on output quality (barnes) -
backup

50 01/25/2017Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Case Study: streamcluster – critical bug

51 01/25/2017

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// streamcluster.cpp: barrier @ 991 in pgain()
...
if(pid == 0){

work_mem = (double *) malloc (...);
...

}
pthread_barrier_wait(barrier);
for(i = k1; i < k2 ; i++){

if(is_center[i]){
center_table[i] = count++;

}
}
work_mem[pid*stride] = count;
...

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

Case Study: streamcluster – accuracy bug

52 01/25/2017

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// streamcluster.cpp: barrier @ 1231 in pFL()
...
while(change/cost > 1.0*e){

change = 0;
numberOfPoints = points->num;
if(pid == 0){

intshuffle(feasible, numfeasible);
}
pthread_barrier_wait(barrier);
for(i = 0; i < iter; i++){

x = i % numfeasible;
change += pgain(feasible[x], ...);

}
cost -= change;
pthread_barrier_wait(barrier);

}
return cost;

Accuracy Bugs: A New Class of Concurrency Bugs to Exploit Algorithmic Noise Tolerance

