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Abstract—Processing-in-memory (PIM) substrates can per-
form parallel computation directly within the memory array. As
a result, throughput performance and energy efficiency can reach
unprecedented levels, however, there are limitations. Typical PIM
architectures only support parallel computing in one dimension
of the memory array: Computation is performed along either
multiple rows or multiple columns (but not both). This restricts
data layout and makes intra-array intermediate data transfers
during computation inevitable - which require reads and writes,
even for short-distance data movement. Inter-array data transfers,
on the other hand, become a problem for larger scale algorithms
which use more than one PIM array. Such data transfers incur
large communication overheads and increase the complexity of
the peripheral circuitry and interconnection network between
arrays. Intermediate data transfers of any form limit scalability
and efficiency. To overcome this limitation, we introduce PimCity,
a new PIM substrate which can compute in both the rows
and the columns of the memory array. PimCity replaces intra-
array data transfer (memory) operations with lower overhead
logic operations inside the memory array. Further, PimCity can
perform logic operations directly across neighboring memory
arrays, which in turn enables low-cost inter-array data transfers.
PimCity hence represents a scalable PIM architecture suitable for
both HPC and embedded IoT style applications.

I. INTRODUCTION

The vast majority of modern applications from emerging
domains such as machine learning or genomics have to process
massive data quantities and hence are typically memory bound:
the performance is limited by the rate at which data can be
transferred between the processing logic and the supporting
memory hierarchy. Therefore, according to Amdahl’s Law no
further increase in logic performance can cause an increase
in the overall performance. Figure 1 showcases this problem,
using matrix-vector multiplication, the cornerstone of machine
learning inference and many other scientific applications, as
a case study. Processing-in-Memory (PIM) was introduced in
response to this problem. The idea is performing computation
directly within the memory, such that data do not have to
travel. In the ideal case, PIM enables weak scaling, where
larger problems can be solved by simply adding more mem-
ory. Numerous PIM designs have demonstrated significant
improvements for neural networks [12], [18], [30], pattern
matching [7], graph processing [2], [9], [10], covering a wide
range of applications [13], [21], [32], [37].

*Authors contributed equally. This work was supported in part with Cisco
fellowships.

Fig. 1. Latency of in-memory matrix-vector multiplication with different
data transfer capabilities. Communication becomes the limiting factor for
performance. Sequential access for memory read/writes is the default in PIM
systems supporting either row- or column-parallel computing but not both
– which we refer to as 1D(imensional) parallelism. Two Dimensional Logic
captures the proposed PimCity architecture enabling both row- and column-
parallel computing, with 2D(imensional) parallelism. For reference, we also
show the performance in the ideal case, under Infinite Bandwidth for read and
write operations.

It is often overlooked that such PIM based hardware ac-
celerators boil down to distributed systems with each node
representing a PIM array. This is mainly because PIM array
sizes cannot increase indefinitely (without hitting fundamental
physical limits which can compromise reliability) while typical
problem sizes tend to increase. As a result, there can be
significant data movement throughout the memory structure
as computation is in progress – not only within PIM arrays,
but also between arrays. This easily can incur a large overhead.
Fundamentally the requirement for data movement comes from
data layout restrictions of PIM architectures regarding where
inputs and outputs of a logic operation can reside in memory.

PIM architectures typically have either column parallelism
[1], [21], [29], [32] or row parallelism [6], [42], as shown
in Figure 2. With column (row) parallelism, logic operations
are performed within each column (row) where inputs and
outputs reside in separate rows (columns). Hence, data can be
communicated (i.e., moved or transferred) between different
rows (columns) but not between different columns (rows). As
a result, depending on the computation, a large number of
read and write operations may become necessary to move
data to the appropriate locations in order to complete each
logic operation. For larger scale algorithms distributed over
more than one PIM array, such read and write operations are
needed not only for moving data within the memory arrays
(intra-array), but also between different memory arrays (inter-
array), complicating the peripheral circuitry and interconnec-
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tion network between arrays. Be it intra- or inter- PIM array,
intermediate data movement of any form limits scalability and
efficiency.

To overcome this fundamental limitation, we introduce a
new PIM array architecture, PimCity, which can support par-
allelism in both dimensions (row and column). While PimCity
cannot use row and column parallelism simultaneously, it can
use one type of parallelism in one operation, and immediately
switch to the other type of parallelism in the following oper-
ation. Having both types of parallelism enables arbitrary data
communication (movement or transfer) within the memory
array via logic operations, circumventing the need for data
transfers via peripheral circuitry. For larger scale problems
where multiple PIM arrays participate in computation, this
renders a unique efficient tiled architecture. In this case, each
tile consists of a single memory array and the minimal digital
circuitry required to drive logic operations. Each tile has the
ability to directly connect to its nearest neighbors in the
cardinal directions. This allows logic operations to cross tiles,
enabling inter-array data transfers to also be performed via
logic operations. Most importantly, PimCity can handle such
transfers in a highly parallel fashion, leading to high bandwidth
communication without contending for a shared interconnec-
tion network. As a result, the complexity of PimCity scales
well with number of tiles on chip, as each tile only needs to
connect to its nearest neighbors.

Without loss of generality, in this paper, we focus on an
especially promising class of PIM with unprecedented energy
efficiency potential, which can perform universal (digital)
Boolean computation directly in nonvolatile memory (NVM)
[17], [19], [29]. This is in contrast to analog crossbar systems,
which primarily perform weighted-sum operations. We should
also note that there exist digital crossbar architectures [4],
[33], [34] which support 2D (both column and row) logic
operations, as well. However, a critical limitation of crossbar
architectures, be it digital or analog, is the existence of sneak
paths within the array [20]. Typically, the rows and columns
of such crossbars are electrically connected together over the
resistive memory devices in the array. Standard crossbars have
no additional hardware dedicated to isolating rows or columns
from each other. The large number of connections results
in many, unintended (sneak) paths for current. The inability
to completely isolate memory cells allows unwanted current
to travel between different rows and columns during logic
operations, which introduces noise and consumes additional
energy. This noise can lead to incorrect operation and make
the system unusable. To prevent excessive noise accumulation,
digital crossbars typically have small dimensions and rely
on RRAM devices, which are more resilient to noise due to
their large resistance [33]. Lower endurance [16] and slower
operation speed [24] of RRAM, however, when combined with
small array sizes, limit practical use. Being restricted to small
crossbars can make application mapping more challenging [4]
and adds complexity to the peripheral circuitry at the same
time. Many strategies have been proposed to mitigate sneak
paths [20], such as including a single transistor [23], diode

(a) Row Parallel (b) Column Parallel

Fig. 2. Depiction of two-input logic gate operations, such as (N)AND or
(N)OR, under (a) row and (b) column parallelism. Squares represent cells
within the PIM array. Inputs are highlighted in green (light); outputs, in blue
(dark). All rows in (a) and all columns in (b) perform the same computation
on different data.

[43], or selector [39] within each memory cell. However, none
of these strategies can eliminate the sneak path issue for both
dimensions of computation.

This paper is organized as follows: Section II covers the
motivation; Section III, PIM basics; Sections IV and V,
design specifics of PimCity; Section VI, a quantitative analysis
underlining the critical nature of data movement in PIM
architectures; Section VIII, related work; and Section IX, the
conclusion and a discussion of our findings.

II. MOTIVATION

A number of PIM architectures exist, which can perform
Boolean logic in the memory array, including Ambit [32] for
DRAM, X-SRAM [1] for SRAM, and Pinatubo [21] for NVM.
All such substrates support one dimension of parallelism,
either row parallelism or column parallelism1, as shown in
Figure 2. Architectures with row (column) parallelism can
perform logic within each row (column) in parallel, with all
inputs and outputs also residing in the same row (column).
Effectively, each row (column) acts like a bit serial architec-
ture, where each row (column) can compute in parallel with
other rows (columns). Such architectures can be highly energy-
efficient and capable of high performance. However, they have
significant limitations. Unfortunately, in a row (column) par-
allel architecture, data cannot be transferred directly between
rows (columns). Hence, data must be transferred with explicit
reads and writes to enable further progress. Otherwise, each
computation would be limited to data that can be stored in a
single row (column).

For example, PIMBALL [30] is a column parallel digital
PIM architecture which uses 1024×1024 memory arrays. This
means each column is limited to using 1024 bits of data.
As no realistically sized application requires only 1024 bits,
many individual columns of the PIM architecture must work
together – necessitating communication between them. This
limitation extends to the array level, as well. A 1024×1024

1There is an important distinction between these digital PIM architectures
and crossbars. Crossbars apply voltage along the rows and sense current in
each column, and typically rely on analog computation [15], [26]. In contrast,
digital PIM architectures perform digital computation, and each column is
entirely isolated. In the case of PimCity, the logic is performed in situ where
the inputs and outputs are cells in the memory array.
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PIM array can hold 128KB of data. As this is insufficient for
most purposes, inter-array data transfers are also required. As
a consequence, PIM architectures use many read and write
operations to move data within and between the memory
arrays.

Such memory transfers can be costly, and conceptually
break the motivating principle of PIM, hurting scalability. The
transfers put heavy resource requirements on the peripheral
circuitry and interconnection network. Worst of all, they can
incur long distance data movement, even if there is no need
for the data to travel far. For example, to shift data in a row by
1 bit (column) in a column-parallel architecture, the data must
be read using sense amplifiers, transferred via interconnection
network to external logic to perform the shift, transferred back
via interconnection network after external logic is done, and
finally written back to the original array. This is a large over-
head for a simple operation. To complicate the matter further,
if many such operations occur in many arrays simultaneously,
they will compete for the interconnection network. PimCity
is capable of both types of computational parallelism shown
in Figure 2, which, as we will demonstrate next, is critical in
eliminating complications due to intermediate data transfers.
Specifically, PimCity performs data transfers by simply using
logic operations, as opposed to ordinary memory reads and
writes.

III. BACKGROUND

We will next detail the design principles to enable 2D
computational parallelism, which broadly apply to any 1D
digital PIM performing Boolean logic directly in NVM such
as MAGIC [19] or CRAM [41]. As a representative example,
CRAM can support 1D column parallelism without using
sense amplifiers [30]. This makes adaptation to 2D easier;
we do not have to duplicate the sense amplifiers or re-route
connections to them, as would be required for other types of
1D architectures [1], [21], [32].

CRAM uses Magnetic Tunnel Junctions (MTJ). MTJs are
resistive memory devices that have two states, a low resistance
state (logic 0) and a high resistance state (logic 1). The MTJ
changes state when a sufficiently large current passes through
it; the state it changes to depends on the direction of the
current. MTJs provide higher density and higher endurance
relative to other resistive memory technologies such as RRAM
[40].

MTJs can perform logic efficiently when connected together
in electrical circuits [28], as shown in Figure 3a. A (logic-
gate) specific voltage is applied across the terminals V1 and
V2, and the output MTJ will either switch or not depending on
the states of the two input MTJs. For example, for a NAND
gate the output MTJ is preset to 0. When voltage is applied
and both of the input MTJs are 1 (high resistance), the high
resistance of the inputs keeps the current low enough such that
the output MTJ does not switch – it remains at 0. Otherwise,
if either of the input MTJs is 0 (low resistance), the current
becomes high enough to change the state of the output MTJ
– it switches to 1. Hence, the state of the output MTJ reflects

(a) (b)

Fig. 3. a) Circuit for performing logic with MTJs. Two input MTJs in parallel
are in series with an output MTJ. b) CRAM [30] can create equivalent logic
circuits within the memory array. V1 is applied to BLE (even bitline); and
V2, to BLO (odd bitline). LL (logic line) connects the input and output MTJs.
WL indicates word lines.

the logical NAND of the states of the two input MTJs: 0 if
both inputs are 1; and 1 otherwise. Other logic gates (NOT,
AND, NOR, OR) can be performed similarly.

CRAM enables universal logic by generating the circuit
in Figure 3a within the memory array [6], [30] as shown
in Figure 3b. CRAM is effectively a lightly modified STT-
MRAM array2. CRAM uses a single transistor per cell and
contains three bitlines in each column, bitline even (BLE),
bitline odd (BLO), and the logic line (LL). BLE (BLO)
connects to MTJs in even (odd) parity rows. The LL connects
to all MTJs through the access transistors. Activating multiple
wordlines and applying a voltage across BLE and BLO can
effectively perform logic in the memory, where the inputs and
outputs are MTJs in different cells [30]. If limited to two input
MTJs, such logic operations are robust [30], [42].

Sequences of such logic operations within the memory array
can perform more complex operations [6]. Integer addition can
be performed with sequences of full-adds on the individual
bits, each of which can be completed using 9 NAND gates
[30], [41]. Multiplication can be done with a dadda multiplier
[36], which requires bit-wise AND gates followed by half-
and full-adds [29]. Floating-point operations can likewise
be mapped onto PIM substrates using such logic gates [8],
although with less efficiency.

IV. ARCHITECTURE

PimCity extends the 1D compute capability of CRAM to
2D, enabling both row and column parallelism. The hardware
cost is one additional transistor per cell and two additional
rowlines per row. Like CRAM, PimCity performs the logic
entirely within the memory, not requiring the sense amplifiers
or any external logic circuitry. This section covers the archi-
tecture of the memory array and details how each type of
operation is performed within it.

Two-dimensional architectures can perform logic in both
rows and columns, where the locations of the inputs and
output are arbitrary. This enables them to perform all data

2CRAM could utilize RRAM cells as well, the only difference would be
the energy efficiency of the operations and endurance of the cells.
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(a) PimCity’s 2D logic without data duplication

(b) Necessary data duplication for 1D row logic [30]

Fig. 4. PimCity with 2D computing reduces data duplication requirements
for application mapping. Computation (convolution) requires temporary values
and multiple steps (not shown). N and f characterize neurons and filters; O, the
result of computation. Using a combination of row and column logic, PimCity
(b) operates on neurons and filters without duplication, requiring much less
space than its 1D counterpart (a).

transfers directly, without any need for explicit read and write
operations. Effectively, data movement and logic operations
are indistinguishable and use the exact same mechanisms,
improving efficiency. Additionally, as highlighted in Figure 4,
this effectively eliminates any need for data duplication (which
usually is required in 1D architectures for higher performance)
as the data can be directly operated on in-place.

A. Memory Array

Each cell in the memory array contains a resistive memory
element (MTJ), and two access transistors. Each column has
3 bitlines and each row has 3 wordlines. Two rows and two
columns of a PimCity array are shown in Figure 5.

Each row has a Wordline for Column activation (WLC),
Wordline for Row activation (WLR), and Row Logic Line
(RLL). WLR controls an access transistor which connects each
MTJ in the row to RLL. WLC controls an access transistor
which connects each MTJ in the row to the Column Logic
Line (CLL).

Each column has a Bitline Even (BLE), Bitline Odd (BLO),
and Column Logic Line (CLL). BLE and BLO are connected
directly to the MTJs, BLE in even parity rows and BLO in
odd parity rows. CLL connects to all MTJs in each column,
through the access transistor controlled by WLC. BLE and
BLO serve an analogous role to the standard bitline in STT-
MRAM, whereas the LL is analogous to the bitline bar.
Operations: Each memory cell must be capable of 5 different
modes: (i) Retention, (ii) Read, (iii) Write, (iv) Column Logic,
(v) Row Logic.

For Retention, no signals are applied. MTJs are non-volatile
and maintain their state. PimCity performs Read and Write
identical to standard STT-MRAM arrays. A single row can
be read or written in an array at one time. To either read or
write from row n, first WLCn is driven high. This connects
MTJs in row n to the CLL in each column. Then, the MTJs
can be accessed via the CLL and either BLE or BLO. If n

Fig. 5. Two rows and two columns of a PimCity array.

is even (odd), BLE (BLO) will be used. If the operation is a
read, a low voltage is applied on BLE (BLO) and the resulting
current can be sensed on the CLL. If the operation is a write,
a sufficiently high voltage is applied on BLE (BLO), and the
resulting current will overwrite the values stored in the MTJs.

To perform Column Logic, PimCity operates in an identical
manner as CRAM [30], except that LL is now CLL; and WL,
WLC (to differentiate them from RLL and WLR). For the
logic operation, both inputs and the output are in the same
column and on separate rows. Both inputs must be on the same
parity rows and the output must be on the opposite (inputs
on even rows and output on an odd row or inputs on odd
rows and output on an even row). Let the two inputs be on
rows a and b and the output be on row c. All we need is to
drive WLCa, WLCb, and WLCc high, connecting the MTJs to
CLL. Then, we need to apply a voltage differential across BLE
and BLO. Current will travel from BLE(BLO), through the
input MTJs, onto the CLL, through the output MTJ, and into
BLO(BLE). Depending on the input MTJ states, the current
will either be sufficient or not to change the output MTJ state.
Hence, both CRAM and PimCity use BLE and BLO to supply
the voltage. CRAM uses LL to connect the input and output
MTJs, PimCity uses CLL. One operation can occur in each
column at a time, but many columns can perform operations
simultaneously, if they share the same input and output rows.

When performing Row Logic, the inputs and output are
in the same row and in different columns. Let the inputs
be in columns a and b and the output in column c. For
a logic operation in row n, we first need to drive WLRn
high to connect MTJs in row n to RLLn. Then we need to
apply a voltage differential between BLE(BLO)a, BLE(BLO)b
and BLE(BLO)c if n is even (odd). We can achieve this by
setting both BLE(BLO)a and BLE(BLO)b to a gate specific
voltage, while BLE(BLO)c is grounded. Current will travel
from BLE(BLO)a,b through the input MTJs, onto RLLn,
through the output MTJ, and out to BLE(BLO)c if n is even
(odd). In this case, RLL connects the input and output MTJs
(serving the same purpose as CLL for column logic or LL on
CRAM). Again, only one operation can be performed in each
row at a time. However, operations can be performed in many
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rows simultaneously, but the input and output columns must
be the same. Logic can proceed in both even and odd parity
rows simultaneously, as the same voltage can be applied to
both BLE and BLO.

When performing logic, the line that connects MTJs to-
gether needs to be disconnected from the peripheral circuitry
(connected to high impedance) to avoid current leakage. For
column logic this applies to CLL; and for row logic, to RLL.
Additionally, the BLE and BLO of columns that do not contain
inputs or output are likewise disconnected.
Row and Column Activation: To perform computation in
the memory, either in rows or in columns, both a set of rows
and a set of columns have to be activated. One activation
determines the input and the output MTJs, specifying on which
rows (or columns) the inputs and the output reside. The other
activation determines the degree of parallelism, specifying in
which columns (or rows) the logic operation will occur. This
directly applies to 1D PIM architectures, as well. For example,
in a column-parallel architecture, the active rows determine the
inputs and the outputs, and the active columns determine the
degree of parallelism. PimCity as a 2D PIM substrate relies on
the exact same semantics, except that the rows and columns
can switch roles during computation according to algorithmic
needs.

The standard method for activating a row or column is
with a row or column decoder [21], [29]. A decoder takes
an input address and then drives high the corresponding word
or column line. We can activate multiple rows or columns
without significant modification to the decoder, by adding a
latching mechanism to each row or column and by supplying
addresses to the decoder sequentially [21]. For example, if
an operation has two inputs and one output, we can supply
the three addresses sequentially. We use this approach for
specifying the inputs and outputs. In order to activate many
rows or columns simultaneously, we rely on bulk addressing
[32], where a single (reserved) address corresponds to multiple
rows or columns. This can be all rows or columns in an array.
More reserved addresses can represent subsets of columns, for
example one for the first half and another for the second half.
Bulk addressing primarily serves setting the rows or columns
to perform computation in. Frequently computations require
activating all rows or columns in array. For computations
in Figure 2b, as an example, we need to activate 3 rows
(sequentially) and all columns (via bulk addressing).

B. Tiled Architecture

The PimCity array described in Section IV-A enables unique
2D compute capability. Here, we develop a tiled architecture
in order to further exploit this functionality at scale, where
large problem sizes necessitate distributing the computation
across multiple PIM arrays. A single tile contains a PIM array
and its corresponding row and column decoders. Each tile is
effectively a self-contained processing unit. Applications of
realistic sizes may easily require many tiles, which naturally
incurs data transfers between tiles.

Fig. 6. The tile architecture of PimCity. The column logic line (CLL) and row
logic line (RLL) of PIM arrays in neighboring tiles (in the cardinal directions)
are connected via transistors. R is the number of rows of tiles and C is the
number of columns of tiles.

Hardware Organization: The tile architecture expands the
capability of performing intra-array data transfers via logic op-
erations to inter-array data transfers. This is done by enabling
neighboring tiles to connect their corresponding column logic
lines and row logic lines together. The connection consists of
transistors, one transistor for each row or column logic line, as
shown in Figure 6. This connection enables a logic operation
to have the inputs and the output in different PIM arrays. The
2D compute capability of the PIM array combined with the
connection between tiles allows data to flow arbitrarily within
and between tiles. However, the maximum distance between
MTJs in a logic operation is limited by the parasitic resistance
and capacitance of the bitlines [42]. Hence, inter-tile logic
operations are limited to neighboring tiles.

As the tiles only need to be connected to their nearest neigh-
bors, the hardware cost of the connections increases linearly
with the number of tiles. Hence, this architecture can easily
scale to accommodate many such tiles, and can especially be
beneficial for applications featuring weak scaling. We consider
the case where all tiles are integrated on chip.
Instructions and Control: For the tiles to work together (by
transferring data between each other via logic operations), it is
a strict requirement that they operate synchronously. Hence,
all tiles are driven by a single controller. In this work, we
use a configuration similar to that in MOUSE [29], which
also has a tile-based PIM architecture, but 1D. In MOUSE, a
controller broadcasts customized PIM instructions to the tiles,
each specifying the logic operation (such as NOT, NAND,
NOR) and the row addresses to perform them on. We use
a nearly identical instruction set, except that we require an
additional bit specifying whether the operation should be row
or column parallel.
Trading Latency for Area Efficiency: Regarding system
integration, thus far, we highlighted PimCity as a PIM ar-
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chitecture, where, despite significant computational capability,
memory functionality remains intact. We can also design
PimCity more aggressively to operate purely as an accelerator
by removing read functionality from the majority of the tiles.
As write and logic operations do not require sense amplifiers,
they can be removed, along with any additional peripheral
circuitry required for reads. This saves area. Then, in order to
extract data from the tiles that do not have sense amplifiers,
we can use inter-tile logic operations to transfer the data to a
subset of tiles which do contain sense amplifiers. Once located
in tiles that have sense amplifiers, we can read out the data.

V. PUTTING IT ALL TOGETHER

We next provide two case studies to demonstrate the ef-
fectiveness of PimCity in reducing intra- and inter-array data
transfers, respectively. Without loss of generality, we use
a row parallel architecture (logic operations are performed
within individual rows of the memory array) as a baseline
for comparison.
Case Study I: We first illustrate how PimCity can reduce intra-
array communication overhead relative to 1D architectures.
Assume that we want to add two 4-bit integers, Y = y3y2y1y0
and X = x3x2x1x0. The data layout is provided in Figure 7.
In this case, in a row parallel (1D) PIM architecture we need
to read out either X or Y and then write it back to the same
row as the other operand, before we can perform the actual
computation. PimCity, on the other hand, featuring both row
and column parallelism, offers two alternatives: The first is
to simply perform the addition without any data movement,
with a combination of row and column logic operations. The
second, as depicted in Figure 7, is to transfer X to the same
row as Y via logic operations: We can use NOT gates to
generate X ′ in a spare set of columns. Then, a second round
of parallel NOT gates can place X into the same row as
Y . Computation can then proceed with exclusively row logic
operations, as in a row parallel architecture. This logic-based
method of transferring data takes b + 1 steps, where b is the
bit-precision of the numbers (4 in the example). Such intra-
array data transfers via logic operations in PimCity are highly
energy efficient as the underlying logic gates are highly energy
efficient and there is no need for the data to leave the array.
Significantly, we can trigger intra-array data transfers in each
array simultaneously.
Case Study II: We next cover matrix-vector multiplication as
a critical computational kernel for machine learning inference
and many other scientific applications, using two PimCity tiles
as shown in Figure 8. Without loss of generality, we assume
that the matrix (M) has 7 rows and 2 columns and already
resides in the memory. The matrix is to be multiplied with
a 2-element vector (V). First, we must write the elements of
V into the tiles as in Figure 8a. Each element of V is to be
multiplied with each column of M, hence we need to duplicate
the elements of V, one copy for each row of M. As PimCity
supports column logic, we can copy the elements to each row
with logic operations – without using additional write opera-
tions, as shown in Figure 8b. Multiplication of the matrix and

vector elements can then proceed in each row simultaneously
using row logic operations, as depicted by Figure 8c. Each
multiplication requires a sequence of bitwise ANDs and full-
adds, all of which can be implemented with simple NAND
operations. Multiplications produce partial sums (P), which
need to be added together. Row-logic operations, as shown in
Figure 8d, can copy partial sums to the same tile. Once in the
same tile, partial sums can be added together to form the final
sum (S), as in Figure 8e. Addition also requires full-adds,
which can be implemented with NAND gates (Section III).
Computation is then complete and the result is ready to be
read out.

VI. EVALUATION SETUP

Benchmarks: We evaluate PimCity on large scale matrix-
vector multiplication. This is an insightful benchmark, as
matrix-vector multiplications are at the core of the vast
majority of modern workloads and scientific applications,
including neural networks [22], [38], support vector machines
[5], [29], and quantum simulation [35]. For example, in
MOUSE, over 90% of the latency and over 99% of the energy
of support vector machine inference in PIM goes to matrix-
vector multiplication [29]. As another example, for YodaNN
[3], a hardware accelerator for neural networks, over 70% of
the energy goes to the weighted multiplication of neurons
and weights, a computation highly similar to matrix-vector
multiplication.

We perform multiplication of a matrix with 10 different
vectors. We use 32-bit precision fixed-point numbers and test
with matrix sizes from 256×256 up to 8,192×8,192. At the
start, the matrix must be written into the memory, from then on
it can be reused for further computations. This is representative
of most applications, where the matrix would typically be
stored in the memory prior and kept constant. This is the case
for weights for neural networks, and the support vectors for
support vector machines [30]. The vectors must be written in
and read out for each matrix-vector multiplication. We use
10 sequential matrix-vector multiplications (and consequently
10 vector write-ins and read-outs) to capture the overhead
associated with data movement required for input and output.
Technology Parameters, Modeling, Simulation: Our esti-
mates for MTJ write energy and latency come from [27],
[31], which provide the latency and required current for MTJ
writes from experimental demonstrations, as summarized in
Table I. Please refer to [25] for a detailed discussion on
projected parameters. To model peripheral circuitry overhead,
we take estimates of the relative latency and energy of memory
array access from NVSIM [11]. As we require multiple row
or column activation, we scale up the cost of the peripheral
circuitry accordingly as described in Section IV-A. If a logic
operation requires the activation of 3 rows (e.g., for a NAND
gate), we assume that the peripheral latency and energy costs
are both 3× the cost of a single access.
Baselines for Comparison: We compare PimCity with two
PIM architectures:
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(a) Initial layout (b) Row-wise NOTs to generate
X’ in the same row as X

(c) X’ obtained after 4 NOTs (d) Column-wise NOTs to copy X
to the same row as Y

Fig. 7. Case Study I: Moving two 4-bit integers, X and Y , onto the same row via logic operations. Once on the same row, row logic operations can be used
to work with both X and Y .

(a) Write In (b) Duplication via column logic (c) Multiplication with row logic

(d) Copy with inter-tile row logic (e) Sum with row logic

Fig. 8. Case Study II: Matrix-vector multiplication of a 7×2 Matrix (M) and 2-element vector (V) using two PimCity tiles. Multiplications, additions, and
copies are performed with sequences of simple logic operations in memory [6], [30], [41], as described in Section III. (a) Vector elements are written into a
single row. (b) Column logic is used to copy the vector elements to all rows. (c) Multiplication occurs in each tile simultaneously with row logic operations,
generating partial sums (P). (d) Inter-tile row logic gates copy partial sums to same tile. (e) Row logic is used to sum partial sums into final sum (S).

TABLE I
MTJ PARAMETERS

Parameter Value
RP 7 kΩ [14]
RAP 70 kΩ [14]

Iswitch 100 µA [27]
tswitch 3ns [31]

i. A highly optimized, 1D CRAM-based, representative and
practical design from [29], which we will refer to as
Entirely Sequential or Seq for short;

ii. A hypothetical 1D design reflecting the theoretical best
case for 1D PIM, which we will refer to as Entirely
Parallel or Par for short.

We use identical latency and energy estimates for MTJ
operations and peripheral circuitry accesses for all designs,
hence there are no differences due to technology parameters.
Differences in performance come strictly from the architecture.

Entirely Sequential or Seq from [29] was designed for
small, low-power applications and hence it has a modest
interconnection network. It is an MTJ (CRAM) based PIM
substrate which allows reads and writes to all memory arrays,
but only one at a time. It has a 1D PIM substrate, which uses
column-parallel logic (in contrast to PimCity which has both
column-parallel and row-parallel logic). As only one tile can
be accessed at a time, the reads and writes to transfer data
must be performed entirely sequentially. Hence, we refer to
this configuration as entirely sequential.

Entirely Parallel or Par is an ideal 1D PIM architecture
which uses reads and writes for data transfers. We take a 1D
row-parallel PIM architecture and assume that it can perform
reads and writes to all arrays simultaneously, without any
additional latency or energy cost. If there are X PIM tiles, a
row from each of the X tiles can be read in one cycle, and then
written to any other row of any of the X tiles in the next. We
also assume that the data can be arbitrarily permuted between
the reads and writes without any additional overhead. This
allows for arbitrary data movement (of up to one row in each
tile) in two cycles. Effectively, this represents the theoretical
best case for a 1D PIM architecture with an unlimited I/O
bandwidth (it does pay the same latency and energy cost per
memory access, but we do not impose any additional penalty
for the unlimited bandwidth or data rearrangement); hence the
name, entirely parallel.

In any given system, the maximum number of simultaneous
reads and writes depends on the interconnection network and
how effective latency masking techniques such as buffering
can get. The two configurations we consider, entirely se-
quential and entirely parallel, represent the extreme ends of
this design space. The performance of any practical PIM
architecture (which uses standard reads and writes for data
transfer) should fall between the two.
Hardware Configuration (Data Layout & Sizing): We
test with two tile sizes, 256×256 and 1024×1024. Due to
circuit-level restraints (as induced by bitline resistance and
capacitance), a reasonable assumption for the maximum size
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for an MTJ PIM array is 1024×1024 [42]. For other MTJ
(specifically, variants of CRAM [42]) based PIM architectures
which use two transistors per cell, the cell area can reach
0.044 µm2 [42]. The area overhead is based almost entirely
on the number of transistors per cell, as they are much
larger than the MTJs [42]. Using this cell area estimate, a
1024×1024 PIM array in PimCity would consume 0.046mm2.
The additional area overhead for the connections between tiles
is negligible, as each connection requires only 1024 transistors
(for a 1024×1024 array, which already requires 2,097,152
access transistors). Table II lists the area overhead for different
tile and problem sizes.

All of the architectures use the same data layout from [30].
The authors of [30] mapped neural networks (consisting of
mostly matrix-vector multiplication) to a CRAM-based 1D
PIM accelerator, using standard read and write operations
for data transfer. Hence, the data layout is optimized for
1D PIM architectures using standard reads and writes. This
gives an optimal configuration for the entirely parallel and
entirely sequential designs. The tile-based 2D PimCity does
not directly benefit from this customized data layout.

For each configuration, we use the minimum number of
tiles required to fit the matrix (M), a single vector (V), and
sufficient extra space for temporary values. The elements of
the matrix are placed row-wise into the rows of the tiles.
Assuming PIM tile dimensions are T×T , for an n×n matrix, a

total of n rows are needed, which requires
⌈

n
T

⌉
rows of tiles.

Each row of each tile needs sufficient space for the matrix
and vector elements, plus some extra space to hold temporary
values during computation. The number of elements that can
be placed in each row, t, depends on the tile size, T .

Figure 9 captures the data layout. The process is highly
similar to Case Study II from Figure 8. The matrix and
vector elements are placed into the array, using writes (and
column logic for PimCity). The matrix and vector elements
are element-wise multiplied within each row with row-parallel
logic operations. After multiplication, the elements within each
tile row are added together to form partial sums. Once addition
is complete within each row, inter-tile logic operations (for
PimCity) or reads and writes (for entirely sequential and
entirely parallel) transfer the partial sums between tiles to
be combined further. After log(n) additions, only a single
sum remains within each row, which is the output of the
computation.

VII. RESULTS

Figure 10 shows the latency for matrix-vector multiplication
for different input dimensions and different tile sizes. As
expected, the latency grows rapidly for the entirely sequential
configuration, Seq, due to drastically increasing communica-
tion overhead with problem size. On the other hand, overall,
PimCity’s performance comes very close to that of the entirely
parallel configuration, Par. Most importantly, with larger tile
sizes and smaller input matrices, PimCity can actually beat
the entirely parallel configuration Par. This is due to the

parallelism of the data transferring logic operations in PimCity.
While Par can read or write from every tile simultaneously, it
must access the rows sequentially. If a tile contains T rows,
it must perform T reads to access all data. If the tile is
relatively large, the large number of sequential reads and writes
result in considerable latency, regardless of the speed of the
interconnection network. In contrast, as PimCity can transfer
data with row-parallel logic operations, the data in each row
can be transferred to a neighboring tile in parallel. However, in
this case, the bits in each row must be transferred sequentially
(in contrast to Par which can read all bits in a row at once).

As the problem size gets larger, Par gains a significant
advantage. As the tile size cannot increase to match the
problem (due to circuit limitations), larger problems require
many more tiles. When there are many tiles, the limitation
becomes the bandwidth of long distance data transfers. PimC-
ity performs well, delivering good performance for very large
problems. However, long distance data movement involves
many tiles, hopping between neighboring tiles (again due to
circuit limitations). Hence, as the number of tiles increases
significantly, the latency of PimCity also increases. In contrast,
Par can move data in two steps, a read from the source tile
and a write to the destination tile. As the tile sizes cannot
grow indefinitely, the number of sequential reads and writes
to access data from a single tile does not increase with problem
size. Therefore, Par has a very minor increase in latency with
increasing problem size. We should also note that, due to
the idealized assumptions, Par represents weak scaling, where
hardware resources proportionally grow with the problem size.
This analysis accounts for the overhead of memory controllers.

We next quantify the relative share of computation and com-
munication. Computation refers to all operations performed
in memory to implement multiplications and additions, to
guarantee forward progress. Communication represents all
data movement operations required to enable computation.
This includes logic operations that transfer data between arrays
in PimCity and the intermediate reads and writes that are
used to transfer data between arrays in the entirely sequential
(Seq) and entirely parallel (Par) designs. For all designs,
communication also includes writes to store the input in the
memory and reads required to extract the results from memory.

The breakdown of latency for computation and communica-
tion for a practical tile size of 1024×1024 with an 1024×1024
input matrix is shown in Figure 11a. As all designs need to
perform the same computations, the latency for computation
is nearly identical. However, the latency for communication
varies considerably due to the differences in the interconnec-
tion network. Notably, Seq has a very large latency overhead,
and PimCity is able to achieve a similar latency to Par.

The corresponding breakdown of the energy consumption is
shown in Figure 11b. For all designs and array sizes, computa-
tion dominates the energy consumption. This is because many
computations take place between each data transfer. Computa-
tion is also highly-parallel, and thus consumes relatively higher
energy. If communication is highly-parallel as well, as it is
the case for Par and PimCity, it also has low latency and
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Fig. 9. The elements of a matrix (M) and a vector (V) laid out in memory. There are T rows in each tile. The number of elements that can be fit in each
row, t, is a function of the tile size. Many tiles may be required to hold all data. Mi,j is the matrix element in the ith row and jth column. Vi is the ith
element of the vector.

TABLE II
THE NUMBER OF TILES AND THE CORRESPONDING AREA IN MM2 FOR DIFFERENT INPUT MATRIX SIZES WHEN USING 256X256 AND 1024X1024 TILES.

Tile Size vs. Matrix Size 128 256 512 1024 2048 4096 8192
256 43 / 0.12 86 / 0.25 342 / 0.99 1368 / 3.94 5464 / 15.76 21856 / 63.02 87392 / 252.00

1024 9 / 0.42 18 / 0.83 35 / 1.61 69 / 3.18 274 / 12.64 1096 / 50.57 4376 / 201.90

Fig. 10. Latency of 10 matrix-vector multiplications for different matrix
dimensions. Shown are two different tile sizes, 256x256 and 1024x1024.

(a) Latency (b) Energy

Fig. 11. Latency and Energy breakdown for a practical tile size of 1024×1024
with input matrix dimension of 1024×1024. Communication accounts for a
larger percentage of the latency but less than 1% of the energy.

hence consumes relatively low energy (but high power). If
communication is highly sequential, as in Seq, data transfers
consume very low power but have a high latency.

VIII. RELATED WORK

Very energy efficient PIM based accelerators for matrix
multiplication [10], [26] and dot-products [15] exist. However,
these designs rely on analog computations with many inputs,

making them highly susceptible to noise. As a consequence,
such designs can only map small and low bit-precision compu-
tations onto the PIM hardware. Much of the computation must
be performed on external, digital circuitry. PimCity has digital
PIM operations, and hence can scale to significantly larger
problem sizes or bit precisions. Additionally, all computation
is performed in the memory.

IX. CONCLUSION

Due to data layout and array size limitations of PIM
substrates, ever growing data sizes of emerging applications
render intra- and inter-PIM array data transfers inevitable.
Unfortunately, such data transfers impair scalability. In this
work we presented PimCity, a PIM substrate which can
perform Boolean logic in both the rows and columns of its
memory arrays. Using this capability, PimCity can perform
intra- and inter-array data transfers by simple logic operations.
This is in stark contrast to ordinary PIM designs (which can
compute only in 1D, i.e., in either rows or columns) which
have to rely on explicit memory read and write operations
for any type of data transfer. As a result, since in-memory
logic operations are much more energy efficient than ordinary
memory read and writes, PimCity can cut the overhead of data
transfers significantly.
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