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Abstract—DNA sequencing is the physical/biochemical process of identifying the location of the four bases (Adenine, Guanine, Cytosine,
Thymine) in a DNA strand. As semiconductor technology revolutionized computing, modern DNA sequencing technology (termed Next
Generation Sequencing, NGS) revolutionized genomic research. As a result, modern NGS platforms can sequence hundreds of millions of
short DNA fragments in parallel. The sequenced DNA fragments, representing the output of NGS platforms, are termed reads. Besides
genomic variations, NGS imperfections induce noise in reads. Mapping each readto (the most similar portion of) a reference genome of
the same species, i.e., read mapping, is a common critical first step in a diverse set of emerging bioinformatics applications. Mapping
represents a search-heavy memory-intensive similarity matching problem, therefore, can greatly benefit from near-memory processing.
Intuition suggests using fast associative search enabled by Ternary Content Addressable Memory (TCAM) by construction. However, the
excessive energy consumption and lack of support for similarity matching (under NGS and genomic variation induced noise) renders direct
application of TCAM infeasible, irrespective of volatility, where only non-volatile TCAM can accommodate the large memory footprintin an
area-efficient way. This paper introduces GeNVoM, a scalable, energy-efficient and high-throughput solution. Instead of optimizing an
algorithm developed for general-purpose computers or GPUs, GeNVoM rethinks the algorithm and non-volatile TCAM-based accelerator
design together from the ground up. Thereby GeNVoM can improve the throughput by up to 3.67 x; the energy consumption, by up to
1.36x, when compared to an ASIC baseline, which represents one of the highest-throughput implementations known.

Index Terms—Hardware accelerator, in-memory computing, content-addressable memory, bioinformatics, read mapping accelerator, DNA

sequencing in memory

1 INTRODUCTION

NA sequencing is the physical or biochemical process of
extracting the order of the four bases (Adenine, Guanine,
Cytosine, Thymine) in a DNA strand. As semiconductor tech-
nology revolutionized computing, DNA sequencing technol-
ogy, termed High-throughput Sequencing or Next Generation
Sequencing(NGS), revolutionized genomic research. As a
result, modern NGS platforms can sequence hundreds of mil-
lions of short DNA fragments in parallel. The sequenced frag-
ments (which represent the NGS output) are referred to as
short reads and typically contain 100-200 bases [1]. The focus
of this paper is read mapping, a common critical first step span-
ning a rich and diverse set of emerging bioinformatics appli-
cations: mapping each NGS read to (the most similar portion
of) a reference genome of the same species (which itself is a
full-fledged assembly of already processed reads).
As a representative example, modern NGS machines
from Illumina [1], a prominent NGS platform producer, can
sequence more than 600Giga-bases (Gba) per one run, 200x
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the length of a human genome of approximately 3Gba,
which translates into hundreds of millions of output reads.
Fig. 1 depicts the scaling trend in terms of the total number
of human genomes sequenced. The values until 2015 reflect
historical publication records, with milestones explicitly
marked. The values beyond 2015 reflect three different pro-
jections: the first, following the historical growth until 2015;
the second, a more conservative prediction from Illumina;
the third, Moore’s Law. Historically, the total quantity has
been doubling approx. every 7 months. Even the more con-
servative projections from Fig. 1 (i.e., 2x increase every 12
or 18 months) result in a very rapid growth, which chal-
lenges the throughput performance of read mapping.

The wildly increasing scale of the problem per Fig. 1 ren-
ders well-studied pair-wise similarity detection algorithms
inefficient [3]. Worse, reads are subject to noise due to imper-
fections in NGS platforms and genomic variations, which
adds to the complexity. Both algorithmic solutions and
hardware acceleration via GPUs [4], FPGAs [5], ASICs [6]
therefore have to trade mapping accuracy for throughput
performance. In other words, read mapping by definition is
after similarity matching. As optimizations are usually con-
fined to compute-intensive stages of mapping, considering
scaling projections from Fig. 1, most of these solutions are
fundamentally limited by data transfer overheads. In this
paper, we instead take a data-centric position to guide the
design. Specifically, instead of optimizing an algorithm
developed for general-purpose computers or GPUs, we
rethink the algorithm from the ground up along with the
accelerator design.
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Fig. 1. Scaling trend for DNA sequencing [2].

Read mapping represents a search-heavy memory inten-
sive operation and barely requires complex floating point
arithmetic, therefore, can greatly benefit from near-memory
processing. Intuition suggests using fast parallel associative
search, enabled by Ternary Content Addressable Memory
(TCAM) by construction, in matching short read patterns
with portions of the large reference genome (stored in
TCAM). As we will explain in Section 3, however, only non-
volatile TCAM can accommodate the large memory foot-
print in an area- and energy-efficient manner [7]. Even then,
brute-force non-volatile TCAM search over as large of a
search space as read mapping demands induces excessive
energy consumption, rendering (non-volatile) TCAM-based
acceleration infeasible. At the same time, by construction,
(non-volatile) TCAM cannot handle similarity matching
under NGS or genomic variation induced noise.

This paper provides an effective solution, GeNVoM, to
tap the potential of non-volatile TCAM for scalable, energy-
efficient high-throughput read mapping. GeNVoM

e Explores similarity matching for resistive non-vola-
tile TCAM (which can only handle exact matches by
construction), to trade mapping accuracy for
throughput and energy efficiency in a more scalable
manner than existing solutions;

e Features a novel genomic data representation for
similarity matching without compromising space
complexity;

e Tailors common search space pruning approaches to
its similarity matching mechanism in order to iden-
tify and discard unnecessary non-volatile TCAM
accesses (and thereby, to prevent excessive energy
consumption);

e Accounts for the most prevalent manifestations of
noise induced by NGS imperfections and genomic
variations during similarity matching, including
(base) gaps and insertions/deletions in reads;

e Employs multi-phase hierarchical similarity match-
ing to enhance mapping accuracy and scalability,
where each phase performs progressively more
sophisticated mapping, considering only the subset
of reads the previous phase fails to map.

In the following, Section 2 provides a compare and con-
trast to related work; Section 3 discusses basics; Section 4
covers implementation details; Sections 5 and 6 detail the
evaluation; and Section 7 summarizes our findings.
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2 RELATED WORK

(Short) Read Mapping. With no pre-processing of the reference,
the computational complexity scales (at least) linearly with
the reference length. Therefore, popular software such as
SOAP [8], Eland (part of the Illumina suite), and MAQ [9]
adapt hash-based pre-processing. SOAP2 [10], Bowtie
(2) [11],[12], BWA [13], [14], on the other hand, use the (more
memory efficient) Burrows-Wheeler Transformation (BWT).

One of the baselines, SOAP3-dp [15], is an open-source
GPU implementation of BWA, which can also handle noise
in reads, however, unlike GeNVoM, the computational com-
plexity depends on the tolerance. GenAx [6], the other base-
line for comparison, is an automata-based accelerator,
where, similar to SOAP3-dp, computational complexity
depends on the tolerance. GenAX also has two main units;
seeding equivalent to FilterU (Section 3.3), and scoring
equivalent to MatchU (Section 3.3), which can handle indels
directly. As we show in Section 6, GenAX, relying on a com-
plex, high-overhead alternative of GeNVoM’s MatchU, is
fundamentally slower than GeNVoM, which features a less
complex MatchU optimized for the common-case. [16]
shows a successful fabrication of GenAx in 55nm technology.
AIM [17], another accelerator for computational genomics,
only accelerates BWT kernel, which alone is not enough for
an end-to-end read mapping.

High-throughput FPGA implementations [18] also exist,
at the expense of orders of magnitude higher power con-
sumption than GeNVoM. The exotic race logic based
dynamic programming accelerator [19] can find the similar-
ity between two strings corresponding to the read and a part
of the reference in approx. 120ns while consuming 1n]J. This
is much slower than GeNVoM, and energy grows with the
third power of read length which can impair scalability. [20]
also presents an accelerator based on dynamic program-
ming. Recent work also includes a BWA-based hardware
accelerator featuring NVM [21] (which is significantly
slower than GeNVoM); and very effective hardware acceler-
ation for other significant bioinformatics algorithms [22].
Another recent accelerator features a down-stream applica-
tion, indel realignment, on FPGA at cloud-scale, leading to
81x speed-up [23].

Efficient filtering techniques for hash-based read mapping
using 3D-stacked memories [24] and FPGAs[25], and align-
ment verification techniques [26] (to avoid expensive align-
ments for too different reads) also exist. While the high cost
of quadratic-time dynamic programming algorithms for
string (i.e., query) matching motivated these works, GeN-
VoM relies on much faster and more energy-efficient string
matching enabled by resistive TCAM. Hence, GeNVoM
employs a simpler, low-latency filtering (incorporated in Fil-
terU), which is tailored to its more efficient string matching
(incorporated in MatchU). Another recent accelerator fea-
tures pre-alignment for longer reads employing a novel
resistive approximate similarity search mechanism[27].

Resistive CAM Accelerators. Guo et al. [28], [29] explore
TCAM for accelerating data-intensive applications. Yavits
et al. [30] propose an associative processor, which employs
resistive CAM based look-up tables to implement diverse
functions. Kaplan et al. [31] demonstrate how to efficiently
implement Smith-Waterman algorithm (which tries to align
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Fig. 2. Read mapping example.

strings of similar length) using resistive CAM based look-up
tables. Not being able to handle similarity matching under
noise, however, neither of these designs are directly applica-
ble to read mapping.

Approximate resistive CAM is also proposed, either
using exotic cells [32] (which complicates match detection,
and thereby restricts the row length to at most 8 bits) or lim-
iting the row length to 4 bits only [33]. While these show
great potential, restricted row length hinders applicability
to read mapping where longer (short) reads are emerging
with NGS improvements and where TCAM search happens
at row-granularity. GeNVoM feautures much less intrusive
support for approximate matches due to tunable matching
in a variation-aware manner, without restricting the row
size. At the same time, no CAM array capable of only
approximate matching would be sufficient to implement an
efficient read mapping accelerator by itself, as demonstrated
in Section 3.2.

Recent representative demonstrations of resistive TCAM
include a 1Mbit PCM-based CAM from IBM using IBM
90nm technology [7] with a measured search latency of
1.9ns, and two novel spintronic designs in 45nm [34], where
a search takes ~0.6ns in 256-wide rows. Fundamentally,
GeNVoM does not require any specific resistive technology,
therefore can adapt any resistive CAM array, including
these proposals or ReRAM based CAM [35].

Applications in Bioinformatics. DNA Methylation— a well-
known epigenetics marker that is responsible for modifying
gene expression, may cause cancer. [36] finds methylation-
disease path associations with diseases such as ovarian can-
cer through network-guided association mapping. [37] pro-
poses a novel supervised dimensionality reduction which is
useful to perform data visualization and pattern mining
(e.g., disease classification using gene expression). Transcrip-
tion factor binding site is an area in DNA sequence, responsi-
ble for controlling transmission of genetic information from
DNA to messenger RNA. [38] proposes using recurrent neu-
ral networks to identify transcription factor binding sites
from DNA sequence data. It is important to understand the
drug resistance of Mycobacterium tuberculosis bacteria (or,
MTB) against available TB drugs— in order to handle the
global epidemic effectively. [39] uses different classifiers on
DNA sequence data, and compares the performance with
existing baseline techniques. Identifying post translational
modification sites is important in understanding key biologi-
cal regulations. [40] identifies the modification sites with a
classifier that uses general Pseudo Amino Acid Composition
as features. [41] presents an ensemble of different types of
neural network algorithms to identify the post translational
modification sites which is applicable to different types of
modification sites. [42] and [43] employ a flexible neural tree
as a classification model to accurately identify the modifica-
tion types of lysine malonylation— a key protein post transla-
tional modification. A polynomial tree method, on top of the
flexible neural tree model, is used by [44] for identification of
Lysine Acetylation site. On the other hand, [45] utilizes a
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multi-layer neural network and support vector machine to
predict the potential modified sites.

3 GENVOM: MAcCRoscoPIC VIEW

Scope. Currently, short (i.e., 100-200 base long) reads from
modern Illumina NGS platforms [1] constitute more than
90% of all reads in the world. Accordingly, GeNVoM is
designed for short read mapping.

Terminology. Without loss of generality, we will refer to
each read as a query; and the reference genome, as the refer-
ence. Each query and the reference represent strings of charac-
ters from the alphabet {A, G, C, T} which stand for the bases
{Adenine, Guanine, Cytosine, Thymine}. The inputs to GeN-
VoM are a dataset of querys and the reference, where the refer-
ence is many orders of magnitude longer than each query.
For example, if the reference is the human genome, reference
length is approximately 3x10° bases. On the other hand,
technological capabilities of modern NGS platforms limit
the maximum query length.

3.1 Problem Definition: Read Mapping

Basics. Read mapping entails finding the most similar portions
of a given reference to each query from a dataset correspond-
ing to the same species, as output by an NGS machine.
Fig. 2 demonstrates an example, with different portions
from the same reference on top; two sample querys to be
mapped, at the bottom. The first (second) query results in
one (five) base-mismatch(es) when aligned to the ' (j")
base of the reference. The query length is not representative,
but simplifies demonstration.

GeNVoM’s input querys are subject to noise due to
imperfections in NGS platforms and potential genomic var-
iations. Therefore, read mapping by definition is after similar-
ity rather than an exact match. Hence, for each input query,
GeNVoM locates the most similar sub-sequence of the refer-
ence to the query, and returns the range of its indices.

Mapping Reverse Complement of Reads. It is not uncommon
for NGS platforms to sequence DNA strands in reverse direc-
tion. This happens when sequencing starts from the last base
of a DNA strand. In this case, the platform outputs the
reverse complement of a read by interchanging A with T, and
C with G. For example, the reverse complement of the
sequence ACCGCCTA is TAGGCGGT. NGS platforms typi-
cally sequence almost half of the DNA strands in reverse
order, hence, GeNVoM is designed to handle these reads.

Sources of Noise in Similarity Matching. In general, the
sequenced genome (where the reads are coming from) is
expected to be slightly different from the reference genome,
even though they represent the very same species. Genomic
variations induce such differences, which can lead to base-
mismatches between the querys and the reference, since the
querys come from the sequenced genome as opposed to the
reference. NGS platform imperfections, as well, can result in
false base-mismatches between the querys and the reference,
due to the so-called read errors during sequencing. We will
next discuss the most prevalent manifestations of genomic
variations and read errors.

Noise Manifestation. Most common genomic variations
and read errors manifest themselves in three ways: Random
insertion of a base, random deletion of a base, and random
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no read error/genomic variation > 65%

more complex < 0.02%

indels < 2%
only substitutions < 33%

Fig. 3. Manifestation of genomic variations & read errors.

substitution of a base with another. Insertions and deletions
are often referred to as indels. The expected rates of indels
and substitutions depend on the type of genomes (hence
species) and the NGS technology.

As a representative example, Fig. 3 demonstrates the typi-
cal share of reads having no read errors/genomic variations
(>65%), at least one substitution (and no indels) ( <33%), at
least one indel (<2%), and more complex manifestations
(<0.02%) [46], [47], [48], [49]. Mapping under rare complex
manifestations (such as long-indels, gaps, base duplications
or inversions) is a daunting task, and to date there is no
widely-accepted algorithm to cover all [48], [50]. As Fig. 3
shows, substitutions are dominant. Although indel rate is on
the lower side, detecting indels is critical for many down-
stream applications. Hence, GeNVoM is designed to cover
both substitutions and indels, but optimized for the common
case (no read error/genomic variation and only substitu-
tions), which covers more than 98% of the reads per Fig. 3. As
we will demonstrate in Section 4.4, straight-forward expan-
sion of GeNVoM to more complex manifestations such as
gaps is also possible.

3.2 Why Naive (Non-Volatile) TCAM-Based
Acceleration Does not Work

Read mapping essentially is a search-heavy memory inten-
sive pattern matching problem. This suggests TCAM-based
acceleration, which by construction can support fast parallel
in-memory search. TCAM is a special variant of associative
memory (which permits data retrieval by indexing by con-
tent rather than by address) that can store and search the
“don’t care” state X in addition to a logic 0 or 1. Considering
the scale of the problem, however, only non-volatile TCAM
can accommodate the large memory footprint in an area-
and energy-efficient manner [7].

We will next look into the energy consumption of read
mapping, comparing a non-volatile TCAM-based imple-
mentation with a highly optimized GPU-based solution
deploying one of the fastest known algorithms to date [15].
The non-volatile TCAM design from [7] features an array
size of 256 x256 = 64Kbits. For this design point, searching
for a pattern of length 256bits (which represents the maxi-
mum-possible length, i.e., the row length) in the entire
array takes approximately 0.9ns and consumes 15.3n]J. If
we simply encode each base from the alphabet {A, G, C, T}
using 2 bits, and if a human genome of approximately
3Giga-bases (=6Gbits) represents the reference, the reference
can fit into 91.6K TCAM arrays (of size 256 x 256bits =
64Kbits).

For each query of a typical length of 100 bases [1], i.e., 200
bits, the following naive procedure can then cover the entire
search space: By construction, each 256 x256bit TCAM array
can search for at most one 256bit pattern at a time, which
resides in a query register. We can align the most significant
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bit of the (200bit-long) query with the most significant bit
position of TCAM’s 256bit query register, and pad the
remaining (256-200) bits by Xs, for the very first search in
the array. We can then repeat the search by shifting the con-
tents of TCAM’s query register (i.e., the padded query) to
the right by one bit at a time, leaving the unused more sig-
nificant bit positions with Xs, until the least significant bit of
the query reaches the least significant bit position in the
query register. The total number of these bit-wise shifts
(and hence, searches) would be in the order of the row
length ~ 256. Putting it all together, mapping a given query
to the reference in this case would take around 256 searches
in each of the 91.6K arrays, with 15.3n] consumed per
search. The overall energy consumption therefore would
become 91.6K x 256 x 15.3n] &~ 358.8m].

The GPU solution from Luo et al. [15] on the other hand,
can process 133.3K querys per second. Hence, it takes 1/
133.3K seconds to map a single query. Even under the unre-
alistic assumption (favoring TCAM) that the entire peak
average power (TDP) goes to mapping a single query to the
reference, the energy consumption would become at most
235W x (1/133.3K)s ~ 1.8m].

The GPU and TCAM designs feature similar technology
nodes, however, even by favoring TCAM, the TCAM-based
naive implementation consumes approx. 2 orders of magni-
tude more energy than the GPU-based. This difference
stems from the gap in the size of the search spaces. While
the TCAM-based design considers the entire search space to
cover all possible alignments, the GPU-based design first
prunes the search space to eliminate infeasible alignments,
which in turn leads to orders of magnitude less number of
(search) operations. GeNVoM, while deploying non-volatile
TCAM arrays, adopts a similar pruning strategy to enable
more energy-efficient search.

Even if excessive energy consumption was not the case,
(non-volatile) TCAM has another fundamental limitation
which hinders applicability to read mapping. As we will
detail in Section 4.3, even in the presence of “don’t cares”,
TCAM cannot handle similarity matching considering vari-
ous manifestations of noise due to NGS errors and genomic
variations (Section 3.1).

To summarize, both, the excessive energy consumption and
lack of support for similarity matching render a direct adaption of
non-volatile TCAM-based search infeasible. The energy overhead
of conventional volatile TCAM would be even higher [7],
while the restriction on similarity matching directly applies
irrespective of volatility.

GeNVoM unlocks the throughput potential of non-vola-
tile TCAM in a scalable and energy-efficient manner through

e a non-volatile resistive TCAM design capable of simi-
larity matching (Section 4.3);

e a novel genomic data representation for similarity
matching without compromising storage complex-
ity (Section 4.2);

e a common filtering mechanism [51] for search space
pruning adapted to non-volatile similarity matching to
prevent excessive energy consumption (Section 4.1);

e hierarchical similarity matching to maximize map-
ping accuracy without compromising scalability
(Section 4.4).
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output queue

GeNVoM

Fig. 4. Structural organization.

Designed for similarity search (in the presence of NGS or
genomic variation triggered noise), GeNVoM’s non-volatile
TCAM arrays can directly handle substitutions, by con-
struction (Section 4.3). To cover indels and more complex
corruptions, on the other hand, GeNVoM adapts anchoring
within its multi-phase mapping hierarchy (Section 4.4). The
key insight is that complex corruptions that can lead to
failed mappings are much less likely to occur in all portions
of a read simultaneously. This makes anchoring very effec-
tive — a divide and conquer technique which entails chunk-
ing the read (at an anchored base position) to shorter
substrings and attempting mapping on each chunk simulta-
neously. Thereby, problematic chunk(s) (and hence the
entire read) simply follow the alignment dictated by the
less-corrupted chunks, which by construction renders the
most accurate mapping under noise. Numerous prevalent
read mapping algorithms [52] therefore use anchoring-based
techniques for complex corruptions.

3.3 Hardware Organization

Fig. 4 provides the structural organization. GeNVoM pipeline
comprises two major units: Filter Unit (FilterU) and Match
Unit MatchU). Each query from the dataset to be mapped
streams into the (first stage of the) GeNVoM pipeline (i.e., Fil-
terU) over the input queue. Once the mapping completes, the
outcome streams out of the (last stage of the) GeNVoM pipe-
line (i.e., MatchU) over the output queue. Non-volatile TCAM
arrays (featuring GeNVoM's novel similarity matching mech-
anism) within MatchU keep the entire reference.

Input and output queues handle the communication to
the outside world, by retrieving querys on the input end,
and upon completion of the mapping, by providing the
indices of the most similar sub-sequences of the reference to
each query, on the output end.

FilterU filters (indices of) sub-sequences of the reference
which are more likely to result in a match to the incoming
query, by examining sub-sequences of the incoming query
itself. We call these indices potentially matching indices, PMI.
FilterU feeds the MatchU with a stream of <PMI, query >
tuples over the search queue. MatchU in turn conducts the
search by only considering PMI of the reference. In this man-
ner, GeNVoM prunes the search space.

The input queue feeds the GeNVoM pipeline with the
querys to be mapped to the reference. The query dataset resides
in memory. GeNVoM initiates the streaming of the querys
into the memory-mapped input queue over a Direct Memory
Access (DMA) request. The input queue in turn sends the
querys to FilterU for search space pruning before the search
takes place. Finally, for each query, once the mapping com-
pletes, the output queue collects from MatchU the indices of
the sub-sequence of the reference featuring the most similar
match to the query. The output queue is memory-mapped,

too. GeNVoM writes back these indices to a dedicated mem-
ory location over DMA.

In the following, we will detail the steps for query proc-
essing in each unit, in case of a match. If no sub-sequence of
the reference matches the input gquery, no mapping takes
place, and GeNVoM updates a dedicated flag at the mem-
ory address to hold the result. GeNVoM can detect such
failed mapping attempts during processing at FilterU or at
MatchU.

Filter Unit. Fig. 5 provides the structural organization of
FilterU, which prunes the search space as follows: We will
refer to each sub-sequence of length seed as a prefix, where
seed represents a design parameter and typically assumes a
much lower value than the query length. As each prefix is a
string of characters from the 4-character alphabet {A, G, C,
T}, a prefix of length seed can take 45¢¢d different forms. Con-
sidering the size of the problem, the reference is likely to
occupy multiple TCAM arrays. FilterU relies on a pre-proc-
essing step which entails identifying each prefix of length
seed in the reference, and recording the TCAM array, column
and row number of the corresponding occurrence. Potential
Match Index Table PMIT keeps this information.

However, as the same prefix may occur multiple times
along the reference string, PMIT may contain multiple entries
for the very same prefix. Therefore, FilterU has another table
called PMIT Index Locator (PMITIL) for bookkeeping. PMI-
TIL serves as a dictionary of 4seed entries, considering all
possible 4°“¢ values of the (seed-long) prefix. Each PMITIL
entry corresponds to a specific prefix value, and keeps the
start address in PMIT where the TCAM indices for the cor-
responding occurrence of the prefix (along the reference)
reside. As PMIT is organized to keep multiple occurrences
(along the reference) of the same prefix consecutively, it suffi-
ces to keep per PMITIL entry just the start address (in the
PMIT) for the first occurrence. The end address in this case
simply is the start address stored in the next PMITIL entry.

FilterU Query Register (FilterUQR)

. seed

Potential Match
Index Table (PMIT)

prefix

PMIT Index
Locator (PMITIL)

Start Address in PMIT)|

array # | col # | row #

0x0000

0x0008

0x0000
0x000B

0xD4A3 0xD4A3

FilterU

Fig. 5. Filter Unit (FilterU).
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Fig. 6. Match Unit (MatchU).

PMIT and PMITIL generation constitutes a pre-process-
ing step which GeNVoM needs to perform only once, off-
line, for each reference, before read mapping starts. As read
mapping entails mapping a large number short reads to a
given reference of the same species, this overhead does not
apply to runtime, and is easy to amortize.

Upon receipt of a new query from the head of the input
queue, FilterU uses the first seed bases of the query as the pre-
fix to consult PMITIL, and subsequently, PMIT. FilterU
keeps the query being processed in the FilterU Query Register
(FilterUQR) as filtering is in progress. If there is a match in
the PMI tables, FilterU first broadcasts the query being proc-
essed to all TCAM arrays. Then, it sends the corresponding
TCAM array, column and row number (i.e., the Potential
Match Indices, PMIs) to MatchU, over the search queue. We
will refer to these TCAM coordinates as arrayy, coly, and
rowy, respectively.

Match Unit. Fig. 6 provides the structural organization of
MatchU, which orchestrates search. MatchU features the Dis-
patch Unit (DispatchU) and non-volatile TCAM arrays capa-
ble of similarity search under NGS or genomic variation
induced noise. DispatchU acts as a scheduler for TCAM
search. For each input query to be mapped to the reference,
DispatchU collects TCAM arrayy4, coly and rowy, extracted
from the PMIT in FilterU, to initiate the targeted search.

The input query stays in the Query Register (QR) of the
TCAM array arrays during TCAM access. Shift Logic (ShL)
in TCAM array arrayy in turn first aligns the prefix of length
seed of the query with the seed-long (matching) sub-sequence
of the reference residing (in array arrays) in row rowy, start-
ing from column col. To this end, ShL shifts query bits in QR
and inserts Xs accordingly. Match Unit Controller (MatchCtrl)
orchestrates this operation. Once alignment completes,
MatchCtrl activates the row rowy for search. Once the search
completes, MatchCtrl provides DispatchU with the indices
of the reference which demarcate the most similar sub-
sequence to the entire query. DispatchU then forwards these
indices to the output queue.
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Fig. 8 depicts two different match scenarios: In Fig. 8a,
the query (shown in dark shade within QR, white space cor-
responding to Xs for padding) matches a sub-sequence of
the reference which is entirely stored in a single row of the
array. We call this scenario a full match. On the other hand,
in Fig. 8b, the query matches a sub-sequence of the reference
which is stored in two consecutive rows of the array. We
call this scenario a fragmented match. Fragmentation can hap-
pen at both ends of the gquery. For example, in Fig. 8b, the
first portion of the query (shown in darker shade) matches
the end of row j, while the rest (shown in lighter shade)
matches the beginning of the next row, row j+1. MatchCtrl
needs to address such fragmentation as GeNVoM lays out
the character string representing the reference in each array
consecutively.

Conventional TCAM can only detect full match. Han-
dling fragmented match requires extra logic. By default, the
TCAM array would select the longest sub-sequence ! of the
reference matching the input query if a full match is not the
case, where | occupies an entire row. The darker-shade
region in Fig. 8b corresponds to such I. As I may be aligned
to either the beginning (Fig. 8b) or the end of the query,
MatchCtrl has to additionally check the next or the previous
row, respectively, for a match to the unmatched portion of
the query. We call the first case a fragmented tail match; the
second, a fragmented head match. In case of a fragmented
match, search in the TCAM array takes two steps. As a frag-
mented match may also happen at TCAM array boundaries,
each array’s last row duplicates the first row of the next
array in sequence.

Putting it All Together. Fig. 7 summarizes the 6 steps in
mapping a query to the reference: First, FilterU retrieves a
new query from the head of the input queue at step @. In
this case seed=7 (bases) with the corresponding 7-base prefix
of the guery underlined. Then, at step ®), FilterU locates the
entry for the 7-base prefix of ACCCTGA in PMITIL, and
extracts the corresponding PMIT address(es). Next, at step
®), FilterU retrieves TCAM array, column, and row numbers
(arrayy, coly, and rowy, for targeted search in MatchU) for
the sub-sequences of the reference which match the prefix
ACCCTGA, from the PMIT addresses collected at step @)
Finally, FilterU sends the query along with arrayy, coly, and
rowy to MatchU over the search queue at step @. At step ©,
DispatchU initiates search in TCAM array arrayy, at rowy
and coly, and collects the match outcome. At step ©,
MatchU sends the match outcome to the output queue.

4 GENVOM: MicroscoPIC VIEW

4.1 Search Space Pruning

In order to prune the search space, GeNVoM first locates
sub-sequences of the reference matching the seed-long prefix
of the query in FilterU (Section 3.3). seed represents a key

input queue @ @ search queue
Al
sl PMITIL PMIT
TIIT=¢ =Tl 19
Pe 3a1 s =
2 S
2= 0| [ output queue T -—)
5 @ @ g h TCAM arrays
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Fig. 7. Life-cycle of a query in GeNVoM.
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GeNVoM design parameter which dictates not only the
storage complexity, but also the degree of search space
pruning, which in turn determines GeNVoM’s throughput
performance and energy efficiency.

PMITIL grows with 45¢ed therefore, the larger the seed, the
higher becomes the storage complexity. However, a larger
seed is more likely to result in a lower number of prefix
matches in the PMI tables, and hence, a lower number of tar-
geted searches in the MatchU. In either case, the seed value
remains much less than the expected length of the query.

PMIT can have at most as many entries as the total num-
ber of seed long sub-sequences contained within the reference.
This practically translates into the length of the reference, as a
prefix can start from each base position of the reference
onward. As PMIT is organized to keep multiple occurrences
of the same prefix consecutively, each PMITIL entry just
keeps the start address in the PMIT for the first occurrence.
PMIT, on the other hand, has to keep the < TCAM array
number, column number, row number > tuple for each pre-
fix match. If the reference is the human genome, PMIT would
have approximately 3Giga entries. As we will detail in Sec-
tion 5.2, 32 bits suffice to store each < TCAM array number,
column number, row number > tuple per PMIT entry; and
32 bits, each < PMIT start address > per PMITIL entry.

PMIT keeps the entries corresponding to the very same
prefix always at consecutive addresses, and re-orders such
entries further to have all entries pointing to the same
TCAM array reside at consecutive addresses. GeNVoM pro-
cesses multiple PMIT matches per prefix in this order. Under
such re-ordering, communicating a list of PMIs and per-
forming search in the array happen in a pipelined fashion.
This masks communication latency and consequently, can
improve throughput performance significantly.

4.2 Data Representation

Each input query and the reference itself represent character
strings over the alphabet {A, G, C, T}. Conventional bioin-
formatics formats such as FASTA [53] encode each letter
from such alphabets of bases by single-letter ASCII codes.
However, TCAM arrays conduct the search at bit granular-
ity. Therefore, GeNVoM needs to translate base character
mismatches to bit mismatches. To this end, GeNVoM adopts
an encoding which renders the very same number of mis-
matched bits for a mismatch between any two base charac-
ters. This would not be the case, if we encoded each base
character in {A, G, C, T} by simply using 2 bits: a base-mis-
match would sometimes cause a 2-bit mismatch (e.g., when
comparing ‘01" to ‘10’); other times, a single-bit mismatch
(e.g., when comparing ‘00" to ‘10’). GeNVoM’s encoding
instead uses 3 bits per base character, where any two 3-bit
code-words differ by exactly 2 bits, such as {111, 100, 010,
001}. Thereby GeNVoM guarantees that exactly 2 bits would
mismatch for any base character mismatch.

4.3 Similarity Search

Conventional TCAM arrays, including non-volatile variants
such as [7], are designed to signal a (row-wise) match only
if all bits within a row match with all bits in the query regis-
ter. Therefore, under conventional operation semantics,
even a single bit mismatch between a row and the query
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renders a (row-wise) mismatch. This prevents a direct adap-
tion of conventional TCAM for similarity matching, as a
matching query may indeed have a few bases different from
the corresponding sub-sequence of the reference (residing in
a row) due to NGS or genomic variation induced noise
(Section 3.1).

To resolve this discrepancy, GeNVoM deploys non-vola-
tile TCAM arrays (based on [7]) capable of signaling a (row-
wise) match in the presence of a few number of bit-wise
mismatches. Specifically, we can tune these arrays to signal
a row-wise match when less than a given number ¢ of bits
mismatch. We will refer to f as the tolerance — the number of
acceptable base-wise mismatches, which represents an
adjustable design parameter.

By construction, as t increases, distinguishing a (row-
wise) match from a mismatch becomes more challenging [7].
GeNVoM'’s data encoding, which results in exactly 2-bit
mismatches per base mismatch (Section 4.2), helps in this
case: For instance, tolerating t= 1 base mismatch translates
into tolerating exactly tx2 = 2 bit mismatches in signaling a
row-wise match. In other words, only if 2 or more bases,
i.e., > 4 bits — and not 3 bits — mismatch, a row-wise mis-
match is the case. Differentiating a 2-bit mismatch from a 4-
bit mismatch is easier than differentiating a 2-bit mismatch
from a 3-bit mismatch.

In Section 6.2 we will characterize the resulting mapping
accuracy, considering all sources of noise, including the
impact of Process, Voltage, Temperature (PVT) variation
and fragmented matches (Fig. 8). A fragmented match of a
query may have 2 x t base mismatches (as a result of two
mapping steps, to cover both fragments), which can lead to
rare cases of false matches.

4.4 Hierarchical Multi-Phase Search

Our focus so far was on the very basics of GeNVoM’'s map-
ping mechanism. We will next look into the mapping accu-
racy, specifically, under what circumstances GeNVoM may
not be able to map a given guery to the respective reference,
which in fact was similar enough. In the following, we will
refer to such cases as missed mappings. NGS imperfections
(i.e., read errors) and genomic variations complicate map-
ping, and thereby can lead to misses.

As explained in Section 3.1, GeNVoM is designed to
operate under all prevalent manifestations of read errors
and genomic variations. To this end, GeNVoM employs
multi-phase hierarchical mapping. Fig. 9 provides an over-
view. Each phase acts as a filtering layer for the subsequent
phase, which in turn performs more complex mapping.
More complex mapping entails re-attempting by considering
more complex manifestations of read errors/genomic varia-
tions than the predecessor phase did. In this manner, each
phase re-attempts mapping only for the subset of gquerys
that the previous phase missed.
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Fig. 9. GeNVoM'’s hierarchical multi-phase search flow.

If the mapping in a phase fails, MatchU raises the Missed-
Map signal. GeNVoM in turn feeds Missed-Map back to Fil-
terU, to trigger more complex mapping attempts in the sub-
sequent phase(s).

Phase 1 attempts a basic mapping in the TCAM arrays,
assuming that a reverse complement (Section 3.1) is not the
case. In Phase 1, FilterU and MatchU closely follow the steps
detailed in Section 3.3. GeNVoM TCAM search, by con-
struction, can effectively identify similarity under base sub-
stitutions, which represent the common case per Fig. 3.
Phase 1 can miss a mapping under three cases:

(i)  Reverse complement: the query is a read sequenced in
reverse order. The probability for this case, P(i), is
approximately 50%.

(ii)  Prefix corruption: the query’s seed-long prefix (used for

search space pruning in FilterU) has substitutions or

indels. A corrupted prefix may lead to ill-addressed
search requests, i.e., FilterU sending incorrect PMIs
to MatchU. If the probability of having a corruption
in a given base location is P(loc), the probability for
this case, P(ii), becomes 1 — (1 — P(loc))***’. We can
estimate P(loc) by adding a typical read error rate of

0.1% [46] to an average genome variation rate of

0.1% [47], [48], [49]. Using this estimate, for a repre-

sentative seed value of 15 (Section 5), P(it) barely

reaches 3.0%.

Indels: the query contains indels, anywhere. The most

common indels are short indels induced by genome

variations. Let P(indel) be the probability of a short
indel, and len, the length of the query. Then, P(iii) =

1-(1- P(mdel))l(” applies. While there is no con-

sensus on P(indel), 0.01% represents a conservative

estimate [47], [54], which renders P(iii) ~ 1.5% for a

typical query length of 150 [1].

Phase 2 handles missed mappings due to reverse comple-
ments. After getting Missed-Map from MatchU (at the end of
Phase 1), FilterU immediately sends PMlIs corresponding to
the reverse complement of the query to MatchU. To accelerate

(iii)
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ATCGGGCCATTAGCCGATCTTAAACGGGGCTACT
X Phase 1: GGACATTAGCCGATCTTTAA

Phase 3: CGATCTTTAA

Fig. 10. An example of anchoring.

processing, MatchU employs an extra register inside the
Shift Logic, which keeps the reverse complement of the query
in addition to the original. MatchU copies the reverse com-
plement in this register at the time it gets the original query
(during Phase 1). Therefore, upon receipt of Missed-Map, Fil-
terU does not need to broadcast the reverse complement sep-
arately, but only the PMlIs for the reverse complement
(which FilterU simply extracts by consulting the PMI tables
with the seed-long prefix of the reverse complement.)

Phase 3 handles missed mappings due to prefix corruptions
and indels, by adapting anchoring [52]. This phase processes
all querys which Phase 2 was not able to map. Phase 3 first
anchors the guery in the middle to chunk the query uniformly
into two. Then, each chunk separately goes through Phase 1,
and if necessary, through Phase 2. Unless Phase 1 (or Phase 2,
as need be) manages to map at least one of the two chunks to
the reference, Phase 3 is considered to miss the mapping.

Fig. 10 depicts an example where Phase 3 maps a read
which Phase 1 fails to map due to prefix corruption. The top
row depicts the relevant portion of the reference. The second
and third rows show the corresponding read, with pointers
to the matching outcome at Phase 1 and 3, respectively. The
alignment of the read w.r.t. the reference reflects the ideal
alignment (which renders the most similar mapping). The
shaded portion corresponds to the prefix (of length 4 in this
case). The read and prefix lengths are not representative, but
ease illustration. Phase 1 fails to identify this alignment due
to the single base corruption (C—A) in the third base of the
prefix. Phase 2 is of not much help either, as a reverse com-
plement is not the case. Phase 3 comes to rescue, by chunk-
ing, i.e., anchoring the read in the middle, and attempting
mapping for each half. The mapping of the first half still
fails in this case, due to the very same corruption in the pre-
fix. The prefix of the second half (i.e., CGAT), however, is
not corrupted, and GeNVoM TCAM arrays can easily han-
dle the single base mismatch in this half, which renders the
correct alignment as a result — simply following the align-
ment dictated by the second half for the entire read.

Similar to this example, the evaluated GeNVoM design
adapts 2-way chunking for anchoring, where multi-way
(and not necessarily uniform) chunking can further help
reduce the number of missed mappings. Anchoring essen-
tially is a divide and conquer method. The key insight is that
corruptions to lead to missed mappings are much less likely
to occur in all of the shorter chunks simultaneously. In Sec-
tion 6.2, we will demonstrate how anchoring can improve
mapping accuracy significantly.

Phase 3 can miss a mapping under the very same two
conditions as Phase 1 (namely prefix corruptions and indels
anywhere; cases (ii) and (iii)), but only if these conditions
apply to both of the chunks under anchoring. Under uniform
two-way chunking, a typical query length of 150 bases ren-
ders a chunk length of 75, for which P(ii) and P(iii) become
3.0% and 1.0%, respectively. Hence, the probability to miss
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Fig. 11. Organization of a single GeNVoM card.

the mapping of a chunk would be approximately 4.0%. As
Phase 3 can miss a mapping only by missing both chunks,
the probability of missing a mapping in Phase 3 becomes
approximately (4.0%)” = 0.16%.

By construction, anchoring can also help with more com-
plex scenarios than indels or prefix corruptions, including
long-indels, gaps, base duplications or inversions, as long
as at least one chunk of the affected query is still “mapable”
by GeNVoM. While anchoring reduces the miss probability
significantly, Phase 3 may still miss mappings due to rare
complex variations. To map such problematic querys, GeN-
VoM can be paired with sophisticated software algorithms.

5 EVALUATION SETUP

5.1 System-Level Characterization

Without loss of generality, all components of the evaluated
GeNVoM design reside in a single card attached to the PCle
bus. The host loads the reference, PMIT, and PMITIL tables
to the GeNVoM card before starting mapping by sending
GeNVoM the range of addresses of reads inside the main
memory and a dedicated memory space to write back the
results, along with the read length. To explore GeNVoM'’s
design space, we experiment with different numbers (V) of
FilterUs and MatchUs under a fixed problem size. Fig. 11
provides the overview. In this case, each MatchU stores
1/N of the reference and the FilterU paired with it only cov-
ers the PMIs for that portion of the reference.

This translates into banking PMIT to assign the FilterU
only one bank covering the reference portion in the paired
MatchU. As the problem size (which is dictated by the refer-
ence length) is fixed, such distributed GeNVoM configura-
tions don’t result in larger TCAM arrays or PMIT. However,
each PMIT bank still needs a separate index locator, i.e.,
PMITL. As discussed in Section 3.3, PMITIL capacity
depends on the seed only, not the size of PMIT. Therefore, N
GeNVoM pipelines (with each processing only 1/N of the
reference) still require N full-size PMITILs (of 4°°“? entries).

In the rest of the evaluation, we characterize each GeN-
VoM configuration by four parameters: M, C, L, and N. A
total on-card DRAM space of MGB is required to store all
PMIT and PMITIL. This MGB of memory feeds the GeN-
VoM pipeline via C' channels. N represents the number of
FilterU+MatchU pairs, and L, the seed value.

GeNVoM relies on a GPU kernel (based on [55]) to re-for-
mat the match outcome of mapped querys (i.e., to find differ-
ent SAM format fields such as CIGAR and MAPQ). The
kernel processes mapped querys in a pipelined manner, peri-
odically. This significantly reduces the throughput overhead
of the GPU kernel, and we quantify its energy-efficiency
implications by real measurements (similar to Section 5.5).

TABLE 1
PMITIL Table Parameters as a Function of Seed
seed 10 11 12 13 14 15
Size (GB) 0.004 0.017 0.067 0.268 1.074 4.295

Avg. #searches 214K 128K 88K 65K 49K 38K

To quantify throughput and energy-efficiency, we use
Ramulator [56]. The default Ramulator can only model
accesses to the DRAM chips, so we implement intra-card
interactions during search, control and network related oper-
ations. We assume LPDDR4-4266 DRAM to store PMIT,
PMITIL, and the query dataset. We use DRAMPower [57] to
estimate the power consumption, which doesn’t support
LPDDR4. Therefore, we conservatively report DRAM power
based on DRAMPower’s LPDDR3 model.

5.2 PMI Table Generation

As explained in Section 4.1, PMIT keeps an entry for each
possible seed-long prefix contained within the reference.
Therefore, PMIT capacity becomes practically independent
of the seed for feasible seed values. A tight-enough upper
bound for PMIT capacity for the human genome used as the
reference for evaluation (Section 5.6) is approximately
11.4GB, independent of the seed.

On the other hand, PMITIL contains 4%¢? entries. We
evaluate GeNVoM considering different seed values. Table 1
captures PMITIL capacity and average number of locations
to search for practical seed values ranging from 10 to 15.
PMIT size and NxPMITIL size together, M, determine
the DRAM space requirement of the evaluated GeNVoM
implementation.

5.3 Circuit-Level Characterization

The evaluated GeNVoM implementation uses Phase Change
Memory (PCM) as the resistive memory technology for
TCAM arrays, which features a relatively high Ry, to Rigy
ratio: 11.5 on average [58]. In a TCAM array, a bitwise match
renders Ry;g; a bitwise mismatch, Rjo, on the match-line. A
higher Ry, to Ry, ratio therefore eases sensing, and enables
arrays with longer rows. We experiment with 1Kx1Kbit
TCAM arrays.

We synthesize logic circuits by Synopsys Design Com-
piler vH2013.12 using the FreePDK4S5 library [59]. To match
the technology of our baselines for comparison (Section 5.5),
we scale the outcome from 45nm to 28nm using ITRS projec-
tions [60]. GeNVoM's logic operates at 1IGHz. A single search
operation takes 0.9ns to complete, while consuming 0.1n] of
energy. We use ORION2.0 [61] to model the network. The H-
tree network connecting TCAM arrays operates at 1GHz,
while each hop (1 router + link) consumes 3.83mW.

5.4 Similarity Matching Specification

Without loss of generality, GeNVoM uses IBM'’s fabricated
TCAM arrays employing 2T-2R PCM-based cell [7], which
feature tunable matching, via a dedicated configuration row
to set the acceptable number of mismatching bits to render
a row-wise match. We simulate this matching mechanism
in HSPICE v2015.06 using the FreePDK45 [59] library, to
measure performance and accuracy under PVT variation.

Authorized licensed use limited to: University of Minnesota. Downloaded on October 09,2023 at 19:31:15 UTC from IEEE Xplore. Restrictions apply.



KHATAMIFARD ET AL.: GENVOM: READ MAPPING NEAR NON-VOLATILE MEMORY

Tunable Matching. In a TCAM array, a bitwise match ren-
ders a high resistance; a bitwise mismatch, a low resistance
on the match-line. In other words, each cell within each row
contributes to the effective resistance connected to the
match-line by Rygn (Riw) on a match (mismatch). Under
PVT variations, Rz and Ry, values may deviate from
their nominal values. We conduct a Monte Carlo analysis
using the (variation-afflicted) high and low resistance
distributions from [58], extracted from measured data:
,LL(RM”}L) = 2438KQ, O'(R]”‘gh) = 509KQ, M(Rlow) = 212KQ,
and o(Rj,) = 2.5KQ. u and o represent the mean and the
standard deviation. Considering a row size of 1Kbits, we
find the effective resistance of TCAM array’s match-line for
1M sample scenarios, each corresponding to a different num-
ber of base mismatches. Using the resulting distribution, and
capping the maximum number of base mismatches that are
permitted to pass as a match (i.e., the tolerance as explained
in Section 4.3), we configure each TCAM array in a variation-
aware manner, in order to prevent false negatives, i.e., sig-
naling a mismatch for a similar-enough query.

Matching Accuracy. Under PVT variations, potential shifts in
Ryigh and Ry, levels may trigger a (row-wide) match in case
of an actual (row-wide) mismatch. For each such case, the
number of base mismatches remains higher than the preset
tolerance value. In the following, we will refer to this difference
in the number of base mismatches with respect to the tolerance
as overshoot. These cases are not necessarily errors, and rather
translate into a query of less similarity than expected being
matched to a sub-sequence of the reference. Therefore, as long
as the overshoot (in terms of base mismatches) with respect to
the anticipated folerance remains bounded, each such case can
pass as a less similar match (which in fact can be an actual
match where the input query was significantly corrupted).
Monte Carlo analysis shows that under PVT variations, for dif-
ferent representative tolerance values used in Section 6, over-
shoot is usually less than 3, with probability of an overshoot
of size 3 or larger barely reaching 0.05%. We quantify the
impact of this on GeNVoM's overall accuracy in Section 6.2.

5.5 Baselines for Comparison

As comparison baselines, we pick a highly optimized GPU
implementation of the popular BWA algorithm, SOAP3-
dp [15], and a very efficient hardware accelerator for short
read alignment, GenAx [6]. A pure software-based imple-
mentation of GeNVoM is orders of magnitude slower than
SOAP3-dp. We evaluate the throughput performance and
power consumption of SOAP3-dp on an NVIDIA Tesla K40
GPU. We measure the power consumption of the GPU using
NVIDIA-SMI (System Management Interface) command.
We use the same reference and query dataset (Section 5.6) as
GeNVoM as inputs. We compare GeNVoM against two dif-
ferent configurations of SOAP3-dp: The first one, SOAPgsy 5,
only handles substitutions; the second one, SOAP 4.1, cap-
tures prevalent forms of read errors and genomic variations.

5.6 Input Dataset

We use a real human genome, glk_v37, from the 1000
genomes project [62] as the reference genome; and 20 million
100-base long real reads from NA12878 [63] as a query data-
set. For mapping accuracy analysis, we further generate 20
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Fig. 12. Evaluated GeNVoM configurations.

million more querys using 100-base long randomly picked
sub-sequences from this reference, which we corrupt consid-
ering a read error probability of 0.1% (to mimic modern Illu-
mina platforms), a single substitution' probability of 0.09%,
and a short indel probability of 0.009%. For a fair compari-
son (not to favor GeNVoM) we choose the number of guerys
to have the reference + querys fit into the main memory of the
GPU, such that the GPU does not suffer from extra energy-
hungry data communication. We also limit the evaluation
to a single GeNVoM card to keep the resource utilization
comparable to the baselines.

5.7 Design Space Exploration

We sweep M, C, L, N (Section 5.1) to extract the Pareto
fronts, and to identify the highest throughput (GeNVoMp.,f);
highest energy-efficiency (GeNVoMpyerqy); and highest
throughput and energy-efficiency (GeNVoMopim) GeNVoM
configurations. M ranges from 16GB to 128GB; L, from 10 to
15. For each L, we find the maximum N where PMIT size
and N xPMITIL size fits in the given M budget. Besides, we
cap N at 512, to limit C, number of LPDDR4-4266 channels
feeding PMIs to FilterUs, at 64. For reference, Fig. 12 depicts
the power versus area trade-off for each evaluated GeNVoM
configuration covering these ranges. The three marked
points reflect the three Pareto designs, explored in Section 6.

6 EVALUATION

6.1 Throughput Performance and Energy
Larger seed values (i.e.,, L) prune the search space more,
resulting in a progressively lower number of search opera-
tions in processing each query. For example, increasing L
from 10 to 15 decreases average number of search operations
per query from 21.4K to 3.8K. On the other hand, lower L leads
to smaller PMITIL tables. As the memory footprint increases
with N x PMITIL size, for a given memory budget M, lower
L makes higher N possible. And higher N translates into
more FilterU + MatchU pairs (each processing a portion of
the reference in parallel). We will next look into this trade-off.
Fig. 13a captures the throughput. Y-axis shows the num-
ber of querys mapped per second; X-axis, the number of Fil-
terU + MatchU pairs, N. The two horizontal lines
correspond to the throughput of the two baselines, SOAP3-
dp and GenAx, respectively. Each trendline corresponds to

1. Single-nucleotide polymorphism, SNP, the dominant type of sub-
stitutions induced by genomic variations.
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Fig. 13. Throughput performance and energy consumption.

a different M budget; each point on each trendline, to a dif-
ferent L. We don’t include L values which result in N >
512 (Section 5.7).

According to Fig. 13a, for each M, starting from L=15 (on
the left), decreasing L generally makes higher N possible, and
consequently increases throughput. However, lower L also
prune the search space less, resulting in a progressively
higher number of search operations in processing each guery.
For M=32MB (16GB), at L values lower than 12 (11), this effect
starts to become dominant, and wipes off the throughput ben-
efits of the higher NV (i.e., more FilterU + MatchU pairs operat-
ing simultaneously). Besides, we also observe how larger A/
budgets improve the overall throughput. While most of the
GeNVoM configurations render a higher throughput than the
baselines (i.e., remain above both baseline lines), the fastest
design, GeNVoMpe,y, is 114.6x (3.67 x) faster than SOAP3-dp
(GenAx) for M = 128GB, L = 13, C = 55, and N = 434, con-
suming 35.3Watts on average and 298.3mm?.

Fig. 13b captures energy-efficiency. Y-axis shows the
number of gquerys mapped per mjoule of energy (q/m)J);
X-axis, the number of FilterU + MatchU pairs, N. The two
horizontal lines correspond to the q/m] of the two baselines.
Similar to Fig. 13a, each trendline corresponds to a different
M budget; each point on each trendline, to a different L.

According to Fig. 13b, energy efficiency degrades with
decreasing L. The reason is two-fold: Lower L increase the
number of search operations per query due to less effective
search space pruning. At the same time, lower L make higher
values of N possible, which increases the power consump-
tion. Still, all (many) GeNVoM configurations are more
energy-efficient than SOAP3-dp (GenAx). The most energy
efficient design, Ge NVo M gnergy, with 442.3 q/m], corresponds
to M =128GB, L =15, C =4, and N = 27. GeNVoMgpergy
improves energy-efficiency of SOAP3-dp (GenAx) by 210.9x
(1.36x), while consuming 5.2Watts on average and 195.3mm?.

Putting it all together, Fig. 13c depicts the trade-off space of
throughput (z-axis) versus energy-efficiency (y-axis) for the
evaluated GeNVoM configurations and the baselines. Points
closer to the top-right corner are faster and more energy-effi-
cient. All GeNVoM configurations outperform SOAP3-dp in
both throughput and energy efficiency, while a few are both
faster and more energy-efficient than GenAx. At the Pareto-
frontier reside GeNVoMp..y, GeNVoMgy,eq, and also
GeNVoMopim which represents a sweet spot for both perfor-
mance and energy-efficiency. GeNVoMo,yim corresponds to
M =128GB, L=14, C =14, and N =108, consumin

(b) Energy (c) Trade-off

21.9Watts on average and 216.5mm?. GeNVoMq,ti, can map
10.5M guerys per second (84.8x faster than SOAP3-dp; 2.63 %,
than GenAx) and 364.1 querys per mJ (173.5x better than
SOAP3-dp; 1.12x, than GenAx). All three Pareto-frontier con-
figurations correspond to M = 128G B, which indicates that
GeNVoM benefits from larger memory space for both
throughput and energy-efficiency.

Without loss of generality, for L =15, GeNVoM maps
45.4% of the querys in Phase 1; 42.1% in Phase 2 (reverse
complement); and 8.4%, in Phase 3. Specifically, in Phase 3,
GeNVoM maps 3.0% of the querys after anchoring the first
half; 2.6% after anchoring the second half; 1.8% after anchor-
ing reverse complement of the first half; and 1.0% after
anchoring reverse complement of the second half, respec-
tively. This renders a mapping rate (i.e., the share of suc-
cessfully mapped querys over all) of around 96.0% for
GeNVoM, while SOAP3-dp can map 97.4% of the querys.

6.2 Mapping Accuracy

Since we were not able to run experiments using GenAx, we
compare the accuracy of GeNVoM to SOAP3-dp only. As
SOAP3-dp outperforms the accuracy of BWA-SW [15],
which has a very similar accuracy to GenAx, SOAP3-dp is
expected to be more accurate than GenAx.

To compare the mapping accuracy of GeNVoM to
SOAP3-dp, we use a simulated input dataset with known
expected matching indices. We differentiate between two
cases: (1) the query is aligned to a wrong portion of the refer-
ence; or (2) the query is not aligned to any portion of the refer-
ence. Table 2 shows the corresponding rate of occurrence for
(1) as the Misalignment rate; for (2), as the Miss rate, consider-
ing different configurations.

Misaligned querys are still mapped to a portion of the ref-
erence, which may be similar enough. Therefore, misalign-
ment rate does not necessarily correspond to an error rate.
The numbers in Table 2 reflect all problematic cases for
GeNVoM due to prefix corruptions, indel mishandling or
false positives.

We further observe that both misalignment rate and miss
rate slightly increase with larger L values (as we move right
from GeNVoMg,.,q, to GeNVoMp,, ), due to higher prefix
corruption probability. However, the overall accuracy of
different GeNVoM configurations considering different L
values stay in a similar range. Generally, GeNVoM fails to
align only around 0.03% more guerys than SOAP3-dp, while
misaligning around 1.85% more.
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TABLE 2
Mapping Accuracy of GeNVoM w.r.t. SOAP

GeNVoMgergy GeNVoMopim GeNVoMp.,; SOAP3-dp

Misalign. Rate 2.94% 2.97% 2.99% 1.12%
Miss Rate 0.03% 0.03% 0.04% 0.01%
Total 2.97% 3.0% 3.03% 1.13%

Next, we evaluate the effectiveness of GeNVoM’s anchor-
ing phase (Phase 3 from Section 4.4), in improving the accu-
racy of mapping over the first two phases. Without loss of
generality, we use GeNVoMEg,.,, as a case study, which fails
to map 2.88% of the querys after the first two phases. How-
ever, Phase 3 manages to map 98.6% of the querys that the
first two phases missed (due to indels and prefix corruption),
while aligning 91.2% of them to the correct index of the refer-
ence. This analysis demonstrates how effective multi-phase
search is in improving the mapping accuracy when dealing
with querys failed to be mapped by the first two phases.
Besides, out of the 2.99% misaligned reads, 0.01% are mis-
aligned due to false positives (FP) of Phase 3, 0.25% due to
FPs of prefix corruptions, 0.8% due to FPs of partial matches,
and 1.93% due to FPs induced by PVT wvariations. Hence,
replacing PCM with other technologies featuring a higher
Ryigh/ Riow ratio can significantly reduce the number of mis-
aligned reads, by up to 64.5%.

SOAP3-dp lets users trade accuracy for higher through-
put. In this mode, SOAP3-dp turns off its complex, dynamic
programming based mapping mechanism, and only consid-
ers substitutions. The user can set the accuracy level by tun-
ing the number of acceptable mismatches, which is similar to
the tolerance level of GeNVoM. A lower number of acceptable
mismatches implies a lower tolerance. Lower tolerance leads to
lower mapping accuracy — as chances of missing the map-
ping of even similar-enough querys with a few corruptions
increases. At the same time, lower folerance improves
SOAP3-dp’s throughput — as there is no need for sophisti-
cated processing to cover complex corruptions. On the other
hand, tolerance does not affect GeNVoM's throughput notice-
ably, since neither FilterU’s nor MatchU’s performance
depend on it. More specifically, GeNVoM can tune tolerance
without compromising search throughput.

Fig. 14 depicts how SOAP3-dp’s mapping (in)accuracy
(left y-axis) changes with tolerance in terms of the number of
acceptable mismatches (z-axis). The left y-axis corresponds
to the Total row of Table 2. The bar labeled by DP captures
the default for SOAP3-dp, which relies on complex, dynamic
programming based mapping. The trendline captures GeN-
VoMp,,f's speed-up w.rt. SOAP3-dp (right y-axis). We
observe that, for smaller tolerance values, SOAP3-dp becomes
less accurate, and at the same time faster, which decreases
GeNVoM's speed-up over SOAP3-dp. The lowest inaccuracy
of SOAP3-dp, 2.88% for a tolerance of 0, is close to the inaccu-
racy of GeNVoMp.,;. However, being 21.5% faster than the
default SOAP3-dp, this point is still 93.4x slower than GeN-
VoMp., ;. Hence, GeNVoM outperforms even an iso-accuracy
baseline by approx. two orders of magnitude.

A Note on Acceptability. In a typical NGS query dataset,
all querys, if concatenated back to back, would be at least
50x longer than the reference genome [64]. Therefore, even
if we miss the mapping of a few percent of the querys (due
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to different read errors/genome variations), we still have
plenty of querys to cover such missed regions of the refer-
ence. The average number of guerys covering any given
base in the reference genome is called the depth. Only miss-
ing all querys covering a base of the reference would be
problematic.

What is the probability for GeNVoM to miss all querys
covering a given base of the reference? Let the number of
querys covering a given base be @), and let min(Q) denote its
minimum. @ follows a Poisson distribution [65]. For a repre-
sentative depth of 50, the probability of having a base cov-
ered by less than 10 querys is 5.2 x 10712, practically
negligible. Therefore, we can assume that all bases are cov-
ered at least by 10 querys, i.e., that min(Q) = 10. The worst-
case probability of GeNVoM missing a mapping, P is
around 3.03% (Table 2). Hence, the probability of GeNVoM
missing all querys covering a base of the reference becomes
Piss™™@ = 6.5 x 1079, which is practically negligible.

7 DISCUSSION & CONCLUSION

This paper proposes GeNVoM, a novel read mapping acceler-
ator which unlocks the throughput potential of non-volatile
TCAM. GeNVoM results in up to 114.6x (3.67x) higher
throughput while consuming up to 210.9x (1.36x) less
energy when compared to a highly-optimized GPU (ASIC)
implementation.

Currently, short (i.e., 100-200 base long) reads from mod-
ern Illumina NGS platforms [1] constitute more than 90% of
all reads in the world. This dominance is unlikely to quickly
change in the near future due to the progressively dropping
sequencing cost of short read technologies, rendering them
significantly more cost-efficient than the long read counter-
parts such as PacBio [66] or Oxford Nanopore [67] (where
read lengths can exceed tens of thousands of bases). The key
benefit of long read sequencing technologies comes from the
capability of directly extracting long-range information, and
not necessarily from higher accuracy. That said, many emerg-
ing recent technologies such as 10xGENOMICS [68] can
obtain long-range information from short reads. Although it
is very hard to predict the future exactly, considering practi-
cal facts such as market share and market caps, we believe
that short read platforms will remain prevalent at least in the
near future. So, GeNVoM is designed for short read mapping.

Short read mapping and long read mapping represent two
fundamentally different problems. This is because of the
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difference in NGS and genomic variation induced noise
manifestations. Long reads are subject to more frequent and
complex corruptions, which gives rise to very different algo-
rithms for the mapping problem than short reads. For exam-
ple, perturbation by a significant number of indels is not
uncommon [69]. A very efficient hardware accelerator for
long read mapping has also been proposed recently [70]. As
such accelerators are highly optimized for long reads (which
suffer from more complex noise manifestation), they are by
construction sub-optimal for short read mapping (for which
substitutions are dominant per Fig. 3).

GeNVoM features a rich design space. 3D stacking is an
option, for example, to enable even more parallelism subject
to a stringent thermal budget, where the scale of the prob-
lem demands careful optimization for data communication
between the memory modules and logic embedded in/near
memory, which we reserve for future work.
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